
Towards Model-driven IoT Maintenance

Muzaffar Artikov1, Dilshodbek Kuryazov2 and Andreas Winter2
1Urgench branch of Tashkent University of Information Technologies, Uzbekistan

2Carl von Ossietzky Universität, Oldenburg, Germany
muzaffar.artikov@ubtuit.uz, {kuryazov,winter}@se.uol.de

1 Motivation

Internet of Things (IoT) is a network of intercon-
nected ”things” that provides certain services in or-
der to reach common goals. They are implemented
by the combination of heterogeneous hardware, soft-
ware, and network technologies. The ”thing” can
be any real-world object embedding sensors/actuators
that are uniquely identifiable. They can collect data
through their sensing capability and and their states
can be changed through acting. In IoT, the most de-
vices (i.e., things) are equipped with software support
to autonomously provide ”smarter” services. IoT sys-
tems have commonly been termed ”Smart X” includ-
ing Smart Home, Smart City, Smart Grid, Smart Car,
Smart Traffic Control, etc [2].

IoT systems consist of various hardware devices,
complicated processes and highly connected systems
making up heterogeneous systems with huge load of
data. IoT encompasses heterogeneous hardware com-
ponents such as sensors, actuators, networks, gateways
and software components, i.e., IoT operating systems,
drivers, libraries, 3rd party services, mock-ups. More-
over, the network aspect of IoT is heterogeneous too
using the variety of network protocols and different
topology. Thus, developing and maintaining IoT sys-
tems is quite complex and developers often have to re-
sort to ad-hoc solutions. These ad-hoc solutions might
be unstable and their maintenance might require much
effort.

IoT systems undergo various maintenance activities
such as bug fixes, optimizations or extensions. Lientz
and Swanson [3] defined four types of maintenance:
adaptive, perfective, corrective and preventive. Since
IoT is considered as software-intensive system, these
four types of maintenance can also be considered in
IoT maintenance. Adaptive IoT maintenance implies
applying changes to IoT systems. For instance, if de-
velopers change certain network protocol within a IoT
system to another. Perfective maintenance implies
adding new functionality to IoT systems. For example,
stakeholders may require to add new components (e.g.,
things) to the system. If some errors occur due to the
break of some sensors or actuators, fixing them is con-
sidered as corrective maintenance. Preventive mainte-
nance tends to avoid possible problems in the future.

The main reason that causes majority of challenges
in IoT development and maintenance is heterogeneity
of it’s components. Heterogeneous nature of IoT com-
ponents pertains to the hardware, software and net-

work aspects of IoT, and complicates the development
and maintenance of IoT systems. Diversity of develop-
ment technologies and languages raises a need to shift
IoT systems to more abstraction levels.

Like any software system, IoT systems should be
maintained to keep them stable and operational. But,
IoT systems are typically deployed in distributed en-
vironments where they operate making them difficult
to maintain, test and debug remotely. Maintaining
IoT systems in their operating environments (i.e., in
production) is cumbersome. If they are maintained in
production environment, it might lead to interruptions,
failures or delays of production and serviceability.

In order to minimize risks in production and to con-
tinually improve the quality of IoT solutions, the devel-
oped IoT systems have to be maintained without halt-
ing their serviceability. Thus, they have to be shifted to
some level of abstraction to handle their maintenance
and to keep their components operate together.

2 IoT Abstraction by MDE

Model-Driven Engineering (MDE) is the modern
style of abstracting planned or existing software-
intensive systems. It supports well-suited abstraction
concepts to develop and maintain software projects. A
higher level of efficiency in IoT development, mainte-
nance and integration can be achieved by the MDE-
based abstraction of different soft- and hardware com-
ponents and units.

Model-driven IoT [1] provides abstraction of physi-
cal components and their software support. It eases
maintenance of IoT systems by isolating the prob-
lem area and predicting future errors in the system.
This abstraction can demonstrate the impact of de-
sign changes, usage scenarios, environmental condi-
tions, etc.

In order to achieve the higher abstraction levels of
IoT systems, the following main model-driven abstrac-
tion languages (i.e., domain-specific languages) can be
defined to describe their different aspects:
Thing Description. As ”things” in IoT can be hard-
ware components, these components and their behav-
ior should be described in some ways how they behave,
where they are located, how they are utilized, e.g., how
their APIs look like. These hardware components can
be abstracted by using a device description language.
Hardware-Software Mapping Description. In IoT, all
hardware components are associated with a piece of
software, e.g., drivers, network protocols or other soft-

muzaffar.artikov@ubtuit.uz
{kuryazov,winter}@se.uol.de


ware services. Thus, mappings between hard- and soft-
ware components have to be described using a language
in order to wire up right software components with
right hardware components.
Rule System/Logic Description. ”Things” in IoT op-
erate based on control logic consisting of states, state-
transitions, events and actions. This control logic fol-
lows certain rule systems which define the chains of
states, transitions and actions. For developing the con-
trol systems in IoT, their rule systems have to be de-
fined using a rule description language.
Communication Description. As IoT systems consist
of various individual embedded units and components,
they have to communicate with each other to fulfill cer-
tain tasks. Thereby, they perform specific tasks by the
orchestrations of various soft- and hardware compo-
nents based on control and data flow. Communication
among various IoT components can be abstracted by
a communication description language.
Integration Description. After having a set of descrip-
tion languages, they have to be integrated to achieve
common goals. This can be accomplished by defining
an integration description language [4].

These are the minimal set of description languages
for abstracting IoT systems in order to achieve a higher
lever of efficiency in IoT development and mainte-
nance.

3 Maintenance

Section 2 has given some ideas for abstracting IoT
systems by MDE concepts. These abstractions help to
resolve IoT maintenance challenges explained in Sec-
tion 1 focusing on adaptation, perfection, correction
and prevention [3]:
Adaptation. IoT systems provide various smart ser-
vices, yet, their underlying hardware and software sup-
port is similar. This common underlying technology
base has to be adapted and configured differently to
provide various services. These adaptations and con-
figurations can be easily done using the MDE-based
abstractions, e.g., the Thing Description language in-
stead of having knowledge on several implementation
technologies. For instance, if a hardware component is
replaced by another, it can be described by the Thing
Description language and mapped to right software us-
ing the Hardware-Software Mapping language.
Perfection. Usually, there is a need for optimizing
and extending IoT components which yields perfec-
tion. As the MDE-based abstraction languages are
completely independent from any implementation tech-
nologies and languages, improvements and perfections
of IoT systems are easy using these languages (all lan-
guages in Section 2) rather than focusing on each indi-
vidual technology.
Correction. Like any system, IoT systems are prone
to errors and bugs. If errors or bugs occur due to the
break of sensors or actuators, they have to be debugged
and fixed. Bug fixes are usually done by testing. The
MDE-based IoT systems can be tested based on the
recorded data and predefined success states without in-
terrupting real systems. As the integral part of the fast

prototyping, the success states, test cases and scenarios
can be predefined before actually further maintaining
IoT systems enabling test-driven development.
Prevention. It is quite essential to prevent possible fu-
ture failures in IoT systems as their services are directly
concerned with the daily lives of people and industries.
Thus, possible failures have to be predicted and pre-
vented in advance without interrupting the whole sys-
tem’s activity. In case of the industrial IoT systems,
they and their components have to be maintained with-
out interrupting production. It can initially be assured
before actually deploying in production if they are ab-
stracted and separated from their actual production.
For instance, this can be done by describing success
states using the Rule Description language which al-
lows for easy maintenance and fast prototyping of IoT
solutions with high quality.

4 Conclusion

IoT systems are heterogeneous and realized us-
ing various implementation technologies and languages
making them difficult to develop and maintain. This
research proposes abstraction of IoT systems from
their underlying implementation technologies and their
servicing environments. There, MDE concepts pro-
vide a means to reverse engineer and design IoT sys-
tems enabling separation of concerns which eases re-
usability, applicability and adaptability in development
and maintenance of IoT systems. As the future work,
this research intends to develop MDE-based abstrac-
tion languages defined in Section 2 for covering the
challenges in Section 1 and meant to be enabler for
easy development and maintenance of IoT systems.

References

[1] F. Ciccozzi and R. Spalazzese. MDE4IoT: support-
ing the internet of things with model-driven engi-
neering. In International Symposium on Intelligent
and Distributed Computing, pages 67–76. Springer,
2016.

[2] D. Kuryazov, A. Winter, and C. Schönberg. To-
wards Collaborative Smart City Modeling. In
International Scientific-Practical and Spiritual-
educational Conference to explore the importance of
information and communication technologies in the
innovative development of real sectors of the econ-
omy, TUIT, volume 5, Tashkent, 04 2018.

[3] B.P. Lientz and E.B. Swanson. Software mainte-
nance management. Addison-Wesley, 1980.

[4] J. Meier and A. Winter. Model Consistency en-
sured by Metamodel Integration. In R. Hebig
and T. Berger, editors, 6th International Work-
shop on The Globalization of Modeling Languages
(GEMOC), co-located with ACM/IEEE MODELS
2018, pages 408–415, Copenhagen, 10 2018. CEUR
Proceedings of MODELS’18 Workshops.


	Motivation
	IoT Abstraction by MDE
	Maintenance
	Conclusion

