
Towards Integrated IoT Languages
Muzaffar Artikov

Software Engineering Department
Urgench branch of Tashkent

University of Information Technologies
Urgench, Uzbekistan

muzaffar.artikov@ubtuit.uz

Johannes Meier
Software Engineering Group

University of Oldenburg
Oldenburg, Germany

meier@se.uni-oldenburg.de

Andreas Winter
Software Engineering Group

University of Oldenburg
Oldenburg, Germany

winter@se.uni-oldenburg.de

Abstract—Internet of things (IoT) is a nascent technology that
envisages connecting everything to the Internet and intends to im-
prove people’s lives by providing intelligent services ubiquitously.
As IoT comprises heterogeneous technology stack it is difficult
for developers to describe IoT components for further exploiting
on IoT development activities. Model-driven engineering posses
required capabilities to describe heterogeneous IoT components,
separate stakeholders’ concerns and one of the best candidates
to handle the IoT development challenges.

Therefore, there is a need to develop a set of languages, which
models IoT systems from different perspectives and keep those
models consistent. This paper intends to describe an integrated
multi-viewpoint approach to develop IoT systems.

Index Terms—Internet of Things, Languages, Integration

I. MOTIVATION

Nowadays Internet is heavily loading with various types
of smart devices to provide more intelligent services. These
smart devices (or things) are made by exploiting sensors and
actuators and equipped with networking capabilities enabling
to exchange messages between each other and to form the
Internet of things (IoT).

Smart technologies employ sensors and actors to increase
the efficiency of services and processes, including environ-
mental sustainability, energy efficiency, mobility, health care,
safety, and security. ICT helps to optimize the processes, while
IoT provides the platform for managing a multitude of small
sensor, actor devices, home servers, etc.

In 1980’s, students of Carnegie Mellon University published
availability and temperature of soda of coke vending machine
on a network [1]. This example is seen as the first IoT system.
However, the term ”Internet of Things” was coined by Kevin
Ashton in 1999 in the context of supply chain management [2].
He defined it as follows: ”The Internet of Things is about
installing sensors (RFID, IR, GPS, laser scanners, etc.) for
everything, and connecting them to the internet through spe-
cific protocols for information exchange and communications,
in order to achieve intelligent recognition, location, tracking,
monitoring and management” [3]. This definition points to the
different parts of IoT systems. IoT systems combine various
components of the following technology categories:

• Hardware. Various sensors/actuators, networking de-
vices, embedded systems, gateways, sensor nodes, smart
devices (e.g. Smart Home appliances) belong to this

category. Hardware is required to sense data from the
environment and to influence the environment by actions.

• Software. This category includes different software com-
ponents, such as IoT operation systems, management
software, drivers, libraries, third party services, virtual
things, etc. Programming languages can be related this
category as well. Software is required to control the
hardware and to realize IoT use cases, which analyze
sensed data and derive actions.

• Network. Various network topologies, network protocols,
network connection types (e.g., wired or wireless) can be
concerned in the scope of this category. Networks are
required to allow communication between sensors sens-
ing data, servers managing IoT use cases and actuators
executing environmental actions.

Developing and maintaining a system that encompasses
all of the above-mentioned components is quite complex.
Therefore, developers often resort to ad-hoc solutions solving
only the current problem and ignoring overall design decisions
or architecture. These ad-hoc solutions might be unstable and
their evolution would require more and more effort each time.
For instance, if any device in the system needs to be replaced
by another device, developers will have to reconstruct the
entire system by rewriting some parts of the code, changing
data exchange protocols, and so on.

During the development of IoT projects, different kinds of
developers take part. Surely, these developers should own com-
mon knowledge pertaining the system in order to collaborate
efficiently. For instance, if the hardware developer develops
a new kind of sensor, then software developers should know
about the capabilities of that sensor. Subsequently, the software
developer should develop software fulfilling the assumption of
the sensor’s capabilities.

While developing IoT systems, most IoT development
teams, firstly, install hardware infrastructure (sensors, actu-
ators, embedded systems), and afterwards they interconnect
hardware and software components including operation sys-
tems (OS), drivers, libraries. To interconnect components of
IoT system they employ various network protocols depending
on the type of IoT systems and taking into account the
geographical width of the system. To control the whole system
they still need software. While developing, they have to
face various challenges that are the result of heterogeneous



technologies, which include various software, hardware, con-
nectivity technologies and so on.

Model-Driven Engineering (MDE) methodology possess re-
quired concepts to face the IoT development and maintenance
challenges. As first-class citizens in MDE, models employed
to represent the IoT domain knowledge and allow separation
of the domain concerns from technical implementation. One
of the main benefits of MDE is through abstraction it handles
heterogeneity challenge of IoT systems.

II. RELATED WORK

Model-Driven Engineering provides reliable foundations
and is considered as an enabling technology for advanced IoT
applications. MDE is the modern day approach of software
system development, which supports well-suited abstraction
concepts for development activities. Though, MDE is mainly
used in software development activities, it is possible to apply
its techniques to other development domains such as IoT
development as well.

There are several MDE approaches for developing IoT
applications, e.g. the Sirius-based ThingML language [4].
The approach envisages expressive modeling of the IoT-based
smart architectures, possibly with code generation. The moti-
vation for model-driven development is to describe a system
on a higher level of abstraction. This is usually done in UML
and other languages by diagrams modeling specific aspects
or views of model-driven architectures for smart systems. In
ThingML, the state machine diagrams are used in several em-
bedded domains to model the behavior of specific objects e.g.
the discrete behavior of components. In the MDE paradigm
of ThingML, the states of hardware components are managed
by defining finite state machines.

MDE techniques are proposed to ease the development
of IoT applications. In approach, applications are specified
using high-level abstractions using models. These models are
then used to produce deployable source code. For instance,
PervML [5] enables developers to specify their software
architectures at abstraction levels through a set of models.

Ciccozzi and Spalazzese introduced MDE4IoT [6], a MDE
Framework supporting the modeling of Things and self-
adaptation of Emergent Configurations of connected systems
in IoT-based smart systems. As IoT systems consist of several
connected software services and hardware components, there
might be failures in performance of the overall system because
of some non-responding devices. According to the article,
in such cases the system should adapt to work and sustain
without these inactive devices, and re-install and maintain its
activities. In order to avoid such failures, MDE4IoT is meant to
exploit the combination of a set of domain-specific modeling
languages to achieve separation of concerns.

The research presented in [7] uses the MDE principles
to build a holistic development methodology involving a
common, semantically expressive abstraction model, to spec-
ify a smart space with its specific services. It proposes
the Resource-Oriented and Ontology-Driven Development
(ROOD) methodology, which improves traditional MDE-based

tools through semantic technologies for rapid prototyping of
smart spaces according to the IoT paradigm. In the framework
of ROOD, the Smart Space Modeling Language (SsML) was
developed based on UML, that defines a Domain Specific
Model (DSL). It can be used for describing high-level behav-
iors, interactions and context information of the entire smart
space. It further defines the processing aspects related to the
sensing and actuating capabilities of the smart objects, as well
as the context model they manage; moreover, encapsulate these
concepts into RESTful resources.

Patel et. al. [8] presents a multi-stage model-driven approach
for IoT application development, based on identification of the
skills and responsibilities of the various stakeholders involved
in the process. The approach uses configurable modeling
languages that are customized for a particular stakeholder
task and application area, where abstractions available to a
specific stakeholder are generated from information provided
by other stakeholders at previous stages. The approach is
complemented by methods for generating code and mapping
tasks that lead to the deployment of node-level code on
composite devices.

III. INTERNET OF THINGS-CASE STUDY

In this paper simple Smart Conference Room scenarios
(Figure 1) are considered. Smart Conference Room is equipped
with two ”window blinds thing”s (brown colored) and ”smart
bulb thing” (blue colored). Smart blinds can open and close
by the request from the IoT gateway (red colored). Smart
bulb switches on and off by the request as well. Thus,
things communicate with cloud via IoT gateway and execute
commands from the cloud. Gateway manages communications
between blind things and smart bulb and cloud. A mobile
phone communicates with cloud in order to send commands
to the system. In the cloud there is a server application, which
serves mobile application requests consequently by sending
commands to gateway application.

In our example, things communicate with gateway via
MQTT and gateway communicate with cloud using Websocket
protocol. Mobile application communicates with the cloud via
HTTP protocol.

Fig. 1: Smart Conference Room



We will consider two scenarios within the room. First, in
Presentation scenario blinds should be closed and bulb should
be switched off. Second, in the Discussion scenario blinds
should be opened and the light on if there is not sufficient light
in the room (e.g. the sun is set). Execution of each scenario is
conducted via the mobile application. In simple words, if user
clicks on a ”Presentation” button in the mobile application the
Presentation scenario is set, and if user clicks on ”Discussion”
button the Discussion scenario is executed.

IV. IOT LANGUAGES

The central artifacts in MDE are models. A model is an
abstraction of the system, which may already exists or is
intended to exist in the future [9]. In software engineering
software models are the documentation and implementation
of software systems [10]. Models can be exploited to describe
the system itself and as well as the individual elements of
the system. Models focus on relevant aspects of the system’s
domain. Models serve to represent systems on different levels
of abstraction. One of the benefits of model abstraction is
that it helps to understand the system faster. Therefore, they
can be used as a documentation of the system as well.
Besides, models can be used for various purposes in software
engineering, e.g. for model transformation, code generation,
and testing. In model-driven software development models
designed via Unified Modeling Language in many cases [11].
The structure and all elements which are allowed to be part of
a model are defined by one metamodel. Each model conforms
to one metamodel.

If a model is used to represent a system from a certain point
of view, defined by the concerns of stakeholder, it is called a
view. Than the corresponding metamodel of the model is called
viewpoint.

The following primary model-driven abstraction languages
(i.e., domain-specific languages) can be described to define
their various elements in order to attain the greater abstraction
levels of IoT systems:

Thing Description. Figure 2 contains the metamodel for
Things. Things as the main components in IoT are uniquely
identifiable, should have unique address in Internet and should
have physical location. Things provide sensing and acting
services, they can be in certain state. Within things occurs
events which are relevant to the context of the whole system.
Things may be physical or virtual (mock). Things can be
named physical if they exist physically among IoT system’s
components. Virtual things are the things, which are non
physically located within IoT system. They can be third party
services like maps, weather services, etc. or mocks, which can
play the role of things virtually without existing in reality.

Rule Description. ”Things” in IoT may operate based on
a simple control logic consisting of event triggers and ac-
tions. For developing the control systems in IoT, their rule
systems can be defined using a rule description language
(Figure 3). Simple rules can be described in ”if Event
then Action” manner. Actions may be executed sequentially
(SequentialAction) or simultaneously (ParallelAction). These

Fig. 2: Viewpoint for Things

actions incorporate other action instances. Sequential actions
has property named ”order” that defines the execution order
of each sub-action.

Fig. 3: Viewpoint for Rules

Communication Description. As IoT systems incorporate
various individual components, they have to communicate with
each other to fulfill certain tasks. Thereby, they perform spe-
cific tasks by the orchestrations of various soft- and hardware
components based on control and data flow. Communica-
tion among various IoT components can be abstracted by a
communication description language (metamodel described in
Figure 4). An IoT network can incorporate another networks
within itself. A network consists of communications between
nodes. Herewith, it should be able to describe information such
as the connection link (e.g., wired, wireless), communication
protocol, data exchange formats and etc. Worth to mention
that there is a relation between connection protocols and
connection links, as some protocols work with a wireless link,
some work with wired linked connections.

These are the minimal set of description languages for
abstracting IoT systems in order to achieve a higher level
of efficiency in IoT development and maintenance. Certainly,
there can be more languages to describe other aspects of
IoT systems. Each language represents an IoT system from a
certain point of view. Models designed in these views should
serve as an existing asset in other views. For instance, if in
Things view there were described N things, in Communication
view there may also be described communications between
these N things. In Rules view Acting services from Things view



Fig. 4: Viewpoint for Communication

can be used as an Action instance. Therefore, the integration
of views is required and sketched in the next section.

V. INTEGRATION

The final goal is to develop one working IoT system. To
manage their complexity and heterogeneity, several different
languages are required to describe different aspects of the
IoT system regarding the different concerns of different stake-
holder. Therefore, Section IV presented viewpoints for Thing,
Rule, Communication. These viewpoints model IoT systems
from different perspectives, so that different IoT experts can
model independently from each other their views. In order to
form the final IoT system as a whole, the three viewpoints
have to be integrated.

As detected in Section IV, the three viewpoints describe
overlapping and depending information. Therefore, the views
managed by different stakeholder contain overlapping and
depending information. For the three IoT languages, they are
depicted in Figure 5: In the Rules, only events and actions are

Things

Rules Communication

Connect existing Things

Connect for required data flow

In
Rule

s,
us

e on
ly

ex
ist

ing

an
d

va
lid

Thin
g

inf
or

mati
on

Rename Thing information

Fig. 5: Consistency issues between the three IoT languages

usable which are defined by the Things. The Communication
must connect only existing Things. Since the Rules require
data flow between sensors and actuators, this data flows has
to be enabled by the Communication. Renaming of Things
and their properties has to be renamed in all views.

These consistency rules hold for the three IoT views and are
crucial to eliminate misapprehensions between developers and
experts of IoT systems. It is error-prone and time-consuming to
ensure such consistency rules manually for huge IoT systems
with lots of different stakeholder. To enable different stake-
holder to work together effectively, the consistency between
the different views have to be ensured automatically.

To ensure consistency in multi-view environments, several
approaches are currently under development [12] and can be
reused to integrate the introduced IoT languages. Since the
three IoT languages already exist in form of their viewpoints
(Section IV) and are used to specify the Smart Conference
Room example in form of views (Section VI), the approach
for integration has to support already existing viewpoints and
views. Since cross-viewpoint analyses and code generation for
the whole system are goals of the integration, the approach for
integration has to provide one explicit metamodel and con-
forming model representing the whole IoT system. Following
these two main requirements, MOCONSEMI [13] is selected
for the integration of IoT languages.

The use of MOCONSEMI to integrate the three IoT lan-
guages in form of the viewpoints is sketched in Figure 6: The

Things 1

Rules

2
Op1

3

Communication

4
Op2

5
Op3

SUMM
Op4

Fig. 6: Operator-based Integration of IoT languages

existing viewpoints for Things , Rules and Communication
are combined technically into one whole viewpoint at 1 and
3 . Afterwards, operators are selected and configured to inte-

grate the viewpoints contentwise regarding their overlapping
information, sketched here at 2 , 4 and 5 , by improving the
viewpoints step by step. At the end, the SUMM represents all
concepts for IoT systems as “Single Underlying MetaModel”
in an integrated and optimized way. This chain of operators
is executed at runtime to propagate changes made by one
developer inside one view into all other views. Therefore, the
consistency between all views is ensured automatically by the
operators improving viewpoints and views at the same time.
The final SUMM represents the whole integrated IoT system.

VI. APPLICATION

In Section IV defined three languages (viewpoints) to de-
scribe IoT systems. The running example, which is sketched
at Section III can be modeled with the corresponding views
of these viewpoints. Thus, an example would be considered
from Things, Communication and Rules viewpoints.

If consider our example from the Things perspective, there
are four things exist in our system: two window blind things,
a smart bulb thing and a smartphone. All four things are
Physical things. Window blind things provide two services:
OpenBlindActing and CloseBlindActing and they
have four states: OPEN, OPENING, CLOSING and CLOSED.
In window blinds there may occur OnOpen and OnClose
events. Smart bulb thing provides SwitchOnActing
and SwitchOffActing services and it has two
states: ON and OFF. Within a smart bulb may occur
OnSwitchOn and OnSwitchOff events. A smartphone
tend to select one of two scenarios: Presentation and
Discussion. It provides SelectPresentationActing
and SelectDiscussionActing services and it has



three states: DEFAULT, PRESENTATION, DISCUSSION.
Smartphone has OnPresentationSelect and
OnDiscussionSelect events, which occur when
one of the two scenarios selected. In Things view each thing
is named and the network addresses are defined.

After describing things the communication network can be
described. The network description can be considered as a
description of the configuration between nodes. In our example
nodes can be things, cloud and gateways. The defined names
and network addresses from Things view would be exploited
as Node instances to describe communication.

In Rules view for each scenario a model can be described.
Presentation and Discussion scenarios can be described as
Rule instances as following in a textual notation.

RULE Presentation:
IF smartPhone.onPresentationSelect
THEN windowdBlind1.CloseBlindActing AND
windowBlind2.CloseBlindActing AND
smartBulb.switchOffActing;
END RULE;

RULE Discussion:
IF smartPhone.onDiscussionSelect
THEN windowdBlind1.OpenBlindActing AND
windowBlind2.OpenBlindActing AND
smartBulb.switchOnActing;
END RULE;

In a rule description each rule can be named. In our
example there are ”Presentation” and ”Discussion”, initiated
by the keyword RULE. Each rule ended with END RULE
keyword. If describe first rule instance, there is an event
named onPresentationSelect, which occurs when user
chooses Presentation scenario. This event is generated by
smartPhone thing instance and is presented in IF section of
the rule. In THEN section defined actions that should be exe-
cuted, when an event occurs, which are OpenBlindActing
of blinds and SwitchOffActing of the smart bulb thing.

After using the developed IoT languages from Section IV to
describe the Smart Conference Room, there is no more effort
for the integration: Since the integration was specified once
as indicated in Section V to integrate the three IoT languages
in general, this integration can be directly used for each IoT
system modeled with these three IoT languages, including the
Smart Conference Room.

VII. CONCLUSION

This vision paper presents a model-driven approach for the
development of Internet of Things systems. As IoT systems
comprise various aspects it is proposed to develop different
aspects separately and integrate them to provide one whole IoT
system. Thing, Rule and Communication were identified as
important aspects to describe for IoT systems and appropriate
viewpoints were developed in form of metamodels. Each
viewpoint describes a single aspect of IoT systems, which
allows separation of concerns and helps to manage complexity.
To ensure consistency between these aspects, the IoT view-
points are integrated into a Single Underlying MetaModel
representing all concepts of IoT systems.

The identified viewpoints cover not all aspects of IoT
systems: Therefore, future work is to identify viewpoints to
model missing properties of IoT systems, e.g. used data of
IoT systems, as well as to extend the existing viewpoints.

Future work is also to develop a concrete syntax for each
language: Since Section IV developed only metamodels to
describe the possible elements of the IoT languages, notations
how to represent these elements in usable way for stakeholders
is still missing. Metamodels and models for the domain-
specific IoT languages can be developed using the Eclipse
Modeling Framework (EMF) [14]. On top of EMF, Xtext [15]
allows to develop a concrete textual syntax, as it is sketched for
the Rule language in Section VI. The Sirius framework [16]
enables to develop a concrete graphical syntax.

REFERENCES

[1] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of things (iot):
A literature review,” Journal of Computer and Communications, vol. 3,
no. 05, p. 164, 2015.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[3] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[4] F. Fleurey, B. Morin, and A. Solberg, “A model-driven approach to
develop adaptive firmwares,” in Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems. ACM, 2011, pp. 168–177.

[5] E. Serral, P. Valderas, and V. Pelechano, “Towards the model driven
development of context-aware pervasive systems,” Pervasive and Mobile
Computing, vol. 6, no. 2, pp. 254–280, 2010.

[6] F. Ciccozzi and R. Spalazzese, “Mde4iot: supporting the internet of
things with model-driven engineering,” in International Symposium on
Intelligent and Distributed Computing. Springer, 2016, pp. 67–76.

[7] I. Corredor, A. M. Bernardos, J. Iglesias, and J. R. Casar, “Model-driven
methodology for rapid deployment of smart spaces based on resource-
oriented architectures,” Sensors, vol. 12, no. 7, pp. 9286–9335, 2012.

[8] P. Patel and D. Cassou, “Enabling high-level application development
for the internet of things,” Journal of Systems and Software, vol. 103,
pp. 62–84, 2015.

[9] A. R. Da Silva, “Model-driven engineering: A survey supported by the
unified conceptual model,” Computer Languages, Systems & Structures,
vol. 43, pp. 139–155, 2015.

[10] A. G. Kleppe, J. Warmer, J. B. Warmer, and W. Bast, MDA explained:
the model driven architecture: practice and promise. Addison-Wesley
Professional, 2003.

[11] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-driven
software development: technology, engineering, management. John
Wiley & Sons, 2013.

[12] J. Meier, H. Klare, C. Tunjic, C. Atkinson, E. Burger, R. Reussner,
and A. Winter, “Single underlying models for projectional, multi-view
environments,” in Proceedings of the 7th International Conference on
Model-Driven Engineering and Software Development (MODELSWARD
2019), 2019.

[13] J. Meier and A. Winter, “Model Consistency ensured by Metamodel In-
tegration,” 6th International Workshop on The Globalization of Modeling
Languages, co-located with MODELS 2018, 2018.

[14] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, “Emf: Eclipse
modeling framework 2.0,” 2009.

[15] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in Proceedings of the ACM international
conference companion on Object oriented programming systems lan-
guages and applications companion. ACM, 2010, pp. 307–309.

[16] V. Viyović, M. Maksimović, and B. Perisić, “Sirius: A rapid development
of dsm graphical editor,” in Intelligent Engineering Systems (INES),
2014 18th International Conference on. IEEE, 2014, pp. 233–238.


