
Classifying Approaches for Constructing
Single Underlying Models

Johannes Meier1, Christopher Werner2, Heiko Klare3[0000−0002−9711−8835], Christian
Tunjic4, Uwe Aßmann2, Colin Atkinson4[0000−0002−3164−5595], Erik

Burger3[0000−0003−2832−3349], Ralf Reussner3[0000−0002−9308−6290], and Andreas Winter1

1 Software Engineering Group, University of Oldenburg, Germany
{meier,winter}@se.uni-oldenburg.de

2 Software Technology Group, Technische Universität Dresden, Germany
{christopher.werner,uwe.assmann}@tu-dresden.de

3 Software Design and Quality Group, Karlsruhe Institute of Technology, Germany
{klare,burger,reussner}@kit.edu

4 Software Engineering Group, University of Mannheim, Germany
{tunjic,atkinson}@informatik.uni-mannheim.de

Abstract Multi-view environments for software development allow different
views of a software system to be defined to cover the requirements of different
stakeholders. One way of ensuring consistency of overlapping information often
contained in such views is to project them “on demand” from a Single Underlying
Model (SUM). However, there are several ways to construct and adapt such SUMs.
This paper presents four archetypal approaches and analyses their advantages and
disadvantages based on several new criteria. In addition, guidelines are presented
for selecting a suitable SUM construction approach for a specific project.

Keywords: projectional, SUM, model consistency, integration, metamodeling

1 Introduction

The increasing complexity of modern software-intensive systems means that individual
developers are no longer able to cope with every detail of their structure and functionality.
View-based software development approaches are therefore useful for allowing individual
aspects of a system to be considered independently by separate developers. However, the
resulting fragmentation of system descriptions leads to redundancies and dependencies
between the information shown in different views which are difficult to resolve manually.
Therefore, automatic mechanisms are needed to ensure holistic consistency between
views and the system they portray.

View-based approaches can be characterized as either synthetic or projective [16]
based on the primary source of information for the views. Synthetic approaches distribute
information about the system over all the separate views, whereas projective approaches
centralize the description in a Single Underlying Model (SUM) [2] from which views
are projected when needed. As with all model-driven development approaches, a SUM is
constructed in terms of instances of concepts defined in a metamodel, which we refer to

2 J. Meier, C. Werner et al.

as a Single Underlying MetaModel (SUMM). Many of the challenges faced in defining
generic mechanisms for creating and synchronizing SUMs therefore need to be solved at
the SUMM level.

This paper compares the advantages and disadvantages of different strategies for
realizing SUM-based approaches to software engineering. The common feature of all
projective approaches is that views are regarded as constructively correct, and thus
inherently consistent with one another, as long as they agree with the SUM. The problem
of maintaining inter-view consistency therefore becomes the problem of maintaining the
internal consistency of the SUM and the correctness of the SUM-to-View projections.
To describe the different approaches in a uniform way and analyze their pros and cons
systematically, this paper classifies the different strategies for constructing SUM(M)s
and identifies criteria for evaluating them. Four existing approaches for constructing
SUM(M)s are then compared in terms of how they fulfill the identified criteria. Fi-
nally, the suitability of the approaches for different situations is analyzed based on the
identified criteria. The presented results allow researchers to classify new approaches
for SUM(M) construction and help developers select SUM-based approaches for their
specific requirements based on the identified criteria.

After discussing related work in Section 2, the running example and terminology
used in this paper are introduced in Section 3, followed by classification criteria for
SUM approaches that are described in Section 4. The four SUM approaches OSM
(Section 5), VITRUVIUS (Section 6), RSUM (Section 7), and MOCONSEMI (Section 8)
are presented subsequently and are classified using the criteria in Section 9. In addition,
this section describes guidelines for deciding when to choose each approach. Section 10
summarizes the findings of this paper.

2 Related Work

The explicit use of views or perspectives in software engineering can be traced back
to the VOSE method in the early 1990s [9], which strongly advocated a synthetic
approach to views given the state-of-the-art at the time. Most “view-based” software
engineering methods that have emerged since then, such as by Kruchten [20] or the
Unified Process [22], assume that views are supported in a synthetic way, although this
is usually not stated explicitly (the actual distinction between synthetic and projective
approaches to views was first clearly articulated in the ISO 42010 standard [16]). To
our knowledge, no general purpose software engineering method available today is
based exclusively on the notion of projective views driven by a SUM. However, there
are approaches that address the more specific problem of keeping multiple views on a
database consistent [7], or that support a synthetic approach to modeling in a limited
context like multi-paradigm modeling [28].

The discipline in which the idea of using views to provide different perspectives on
large, complex systems is the most mature is Enterprise Architecture (EA) modeling,
characterized by approaches such as Zachman [31] and TOGAF [12]. These all pro-
vide some kind of “viewpoint framework” defining the constellation of views available
to stakeholders and the kind of “models” that should be used to portray them. Some,
like RM-ODP [24], adopt an explicitly synthetic approach, while others such as Archi-

Classifying Approaches for Constructing Single Underlying Models 3

Mate [15] and MEMO [10] make no commitment. However, again no EA modeling
platform today explicitly advocates, or is oriented towards, the use of projective views.

Bruneliere et al. [4] conducted a systematic study of model view approaches and
from it distilled a detailed feature model of the different capabilities they offer. However,
they mainly focused on mechanisms and languages rather than fundamental architectural
choices, and did not specifically consider the “synthetic versus projective” distinction
of importance here. Atkinson and Tunjic [3], on the other hand, focused on exactly
this distinction when they identified several fundamental design choices for realizing
multi-view systems. However, they were concerned with the fundamental differences
between SUM-based and non-SUM-based approaches rather than between individual
SUM-based approaches. In contrast, in this paper we explicitly focus on four distinct
SUM-based approaches.

Given the growing importance of projectional approaches, one goal of this paper
is to support the evolution of SUM construction methods based on criteria to specify
the conceptual solution space (Section 4.1). The aims is for developers to be able to
use these criteria (Section 4.2) to help select a concrete SUM approach for a specific
situation. Four existing SUM approaches are therefore classified in terms of the criteria
characterizing the feasibility of projective, multi-view approaches and examples of how
to design and apply SUM approaches are presented.

All four groups actively developing SUM-based approaches at the present time are
contributing authors of this paper, which is an extension of a MODELSWARD2019
paper [25]. The main additions are the inclusion of a fourth SUM-based method (RSUM)
in Section 7, and a new, independent set of “technical criteria” for classifying SUM
approaches in Section 4.3. The explanation of the use of the different SUM approaches
in the context of the running ongoing example is also extended and made more explicit.
Finally, further insights about how the different SUM approaches can be combined,
arising from an ongoing series of joint meetings, have been added to Section 9.5. The
progress made in these meetings and VAO international workshops will be continued at
the International Workshop on View-based Software Engineering (VoSE) in September
2019 with further researchers.

3 Running Example and Terminology

In this section we introduce a running example of a highly simplified software develop-
ment project in which requirements, architecture models and implementation (i.e. code
units) need to be kept consistent. These three views are described by languages using
metamodels that define the elements (e.g., classes, associations etc.) that can appear in
models. Figure 1 sketches metamodels for the three views. Since this example is used to
demonstrate all four SUM approaches, it is directly taken from the initial paper [25].

As shown in Figure 1, requirements contain natural language sentences (package
Req). The RequirementsSpecification consists of Requirements which are identi-
fied by a unique id and contain the corresponding natural langauge sentence as simple
text, written by an author. Simplified class diagrams are used for the architecture and
represent system modules as classes (package UML). Classes have a className, one
or more unidirectional Associations and are collected in ClassDiagrams. The imple-

4 J. Meier, C. Werner et al.

RequirementsSpecification

Requirement

id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

JavaASG

ClassType

name : EString [1]

Method
name : EString [1]

ClassDiagram

Class
className : EString [1]

Association
name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

container [1]

content [∗]

asg [1]

classes [∗]

class [1]

methods [∗]

calledBy [∗] calling [∗]

diagram [1]

classes [∗]

class [1]

associations [∗]

type [1]
usedBy [∗]

Req JavaUML

Figure 1. Simplified Metamodels for Requirements (left), Class Diagrams (middle), and Java
Source Code (right), taken from [25]

mentation is represented by simplified Java (package Java) and realizes the architecture
and requirements. The JavaASG (Abstract Syntax Graph) contains ClassTypes with
their name, which in turn contain Methods with their call relations.

These three languages describe different (but not necessarily all) facets of the sys-
tem under development and thus represent three overlapping viewtypes. According to
Goldschmidt, Becker, and Burger [11], a viewtype is the metamodel of a view, while
a view is a model that projects information from another model (here: the SUM) for a
specific purpose. Since all views share information about the system under development,
they are semantically interconnected and contain dependent information, which requires
updates of other views if one is changed. The interdependence of information can be
explicitly defined in terms of consistency rules which define the relations that have to
hold between instances of metamodels.

In the running example, two exemplary consistency rules can be found, which are
directly taken from [25] – Consistency Rule 1 targeting redundant information which
needs to be kept consistent and Consistency Rule 2 controlling the way additional
information is derived from other, already existing information. These two consistency
rules are considered representative, because overlapping views usually contain redundant
concepts or special interrelations.

Consistency Rule 1: Classes can be defined in the architecture view and in the imple-
mentation view. A class can be defined only in the implementation (Java.ClassType),
or in both the implementation and the architecture (UML.Class) if it represents a module.
In the latter case, the class has to be kept consistent in the implementation and architec-
ture views (i.e. if it is renamed). Therefore, the implementation and architecture are only
consistent if the architecture contains a subset of the classes in the implementation.

Consistency Rule 2: Since requirements define goals that the implementation should
fulfill, the progress of the development project can be measured by counting the require-
ments that are supported by the current implementation. Therefore, Requirements must
be linked to the implementing Methods. We thus require that each Method has to be
automatically linked to those Requirements that contain the Method’s name in their
text. This additional information between the requirements and implementation has to
be stored and kept consistent. Only these two consistency rules are considered to keep
the example as simple as possible. However, in general many further rules could also be
envisaged. These two consistency rules and three languages help to show the application
of the SUM approaches in Section 5–8. SUM approaches specify conceptually how
SUMs and corresponding SUMMs are constructed. Platform specialists design SUM
approaches and implement supporting platforms. Sections 5–8 show how four such

Classifying Approaches for Constructing Single Underlying Models 5

SUM platforms are applied to this running example. SUM approachesare applied by a
methodologist who uses a SUM platform to construct a concrete SUM(M) fulfilling the
needs of the particular multi-view-project [2].

Depending on the approach, the methodologist creates the SUMM either by reusing
the existing metamodels in Figure 1 or by defining a new metamodel from scratch. After
that, the developer works with views projected from the SUM which is an instance of the
SUMM developed by the methodologist. To provide views to cope with all the concerns
of developers new viewtypes can be configured by the methodologist.

4 Classification Criteria

In order to classify SUM approaches, this section describes classification criteria grouped
into three categories with the following objectives: design criteria which target the
SUM construction process in Section 4.1, selection criteria which help users select an
appropriate approach for the current application in Section 4.2, and technical criteria
which focus on technical realization strategies to implement an already conceptually
designed SUM approach in Section 4.3.

Because the first two criteria groups were already defined in the initial version of
this paper, those definitions have been directly taken from [25] and repeated here. The
extended criteria and their grouping represent the first new contribution of this paper.
They are used to classify the four SUM approaches (Section 5.3, Section 6.3, Section 7.3,
Section 8.3) and to compare them with each other (Section 9).

4.1 Design Criteria

Design criteria capture how a SUM is constructed independently of technical issues
(Section 4.3). They describe the main conceptual design decisions for SUM approaches,
which span the solution space of possible approaches from the problem perspective.
They do not evaluate the quality of SUMs, but help platform specialists decide on the
conceptual degrees of freedom when designing a SUM approach.

Criterion C1 (Construction Process) covers the process of creating a SUM(M)
depending on the initial situation. In a top-down approach, a new SUM and SUMM
are created from scratch. A bottom-up approach, on the other hand, starts with existing
models and metamodels and combines them into a SUMM and initial SUM.

Criterion C2 (Pureness) relates to the absence of internal redundancy in the SUM
under construction. An essential SUM is “completely free of any internal redundancy”
[3] and dependencies by design. A pragmatic SUM contains redundant information
(e.g., because it contains different metamodels that define concepts more than once)
that has to be interrelated and kept consistent, and thus only behaves as if it is free of
dependencies due to internal consistency preservation mechanisms. Pragmatic SUMs
require additional information to wire the internal models together and thus involve more
complex consistency rules than equivalent essential SUMs. In between these extremes,
some initial redundancies could be resolved targeting a more essential SUM.

While C1 focuses on the starting point of the SUM construction process, C2 focuses
on the results. Together they allow SUM approaches to be compared at a conceptual
level, while the details of the approaches are designed individually.

6 J. Meier, C. Werner et al.

4.2 Selection Criteria

When there are several concrete SUM approaches available, the selection criteria help
to select the most appropriate SUM approach for a particular situation. These criteria
reflect the conceptual preconditions and requirements that favor one concrete SUM
approach over another for the application in hand. They therefore help methodologists
compare different SUM approaches when selecting one to use for a particular project.
For example, if many new viewtypes have to be defined on top of the SUM, an approach
should be selected that eases the definition of new viewtypes (see following E3).

Criterion E1 (Metamodel Reusability) determines whether concepts to be repre-
sented in the SUMM are already available within predefined metamodels and should be
reused in the new SUMM. If so, the SUM approach has to accommodate these legacy
metamodels by combining them into an initial SUMM. This can either be done directly
without additional work or indirectly by providing strategies for migrating the “legacy”
metamodels into the SUMM (“easy”). The value “middle” indicates that some manual
effort is required, while “hard” indicates no support from the approach. Since numerous
languages, metamodels and tools with fixed viewtypes are usually already available,
approaches fulfilling this criterion support their reuse. Reusing metamodels usually
implies a bottom-up approach according to C1.

Criterion E2 (Model Reusability) establishes whether already existing artifacts
(i.e., existing instances of the metamodels) need to be incorporated in an initial version
of the SUM. If so, the SUM approach has to import these models. This can be done
directly without additional work or indirectly using a strategy for migrating the legacy
models into views or into the SUM by some kind of model-to-model transformations
(“easy”). It requires the reuse of the corresponding initial metamodels according to
E1 and usually requires a bottom-up strategy according to C1. To reuse models they
may have to be consistent according to the consistency relations between the integrated
metamodels before they can be integrated into the SUM. This requires additional manual
effort to ensure consistency beforehand (“middle”), in contrast to SUM approaches
which offer strategies to handle inconsistent information during their integration into
the SUM (“easy”). Existing artifacts developed without a consistency-preserving SUM
approach usually do not initially fulfill the consistency relationships, which is why this
criterion also checks whether those inconsistencies can be handled automatically during
integration. The value “hard” indicates no support from the approach.

Criterion E3 (Viewtype Definability) focuses on the task of specifying new types
of views on a SUMM for specific concerns (e.g., managing the traceability links from
Consistency Rule 2) whose instances can be used by developers to change the related
information in the SUM. Supporting the definition of customized, role-specific viewtypes
is an essential capability of view-based development approaches, so the level of difficulty
involved has a strong impact on the usability of an approach. The degrees of difficulty
depend on whether there are no redundancies (“easy”) or all initial redundancies still
exist (“hard”) and how many models internally exist to query information from. This
is because redundant and distributed information makes it harder to collect all relevant
information and to propagate changes back into the SUM.

Criterion E4 (Language Evolvability) focuses on the task of maintaining the
SUMM in the face of evolved language concepts represented in their metamodels,

Classifying Approaches for Constructing Single Underlying Models 7

changed consistency rules, and the integration of new viewtypes. Changes in the meta-
model can require corresponding changes in the model (i.e., model co-evolution [14]) as
well as the creation or adaptation of consistency rules. Since languages are subject to
change (e.g., new versions of Java are regularly introduced) the difficulty of updating the
SUMM and its instances after evolution of the integration languages is a relevant criterion
whose importance depends on the probability that languages will evolve. The degrees of
difficulty, “easy”, “middle”, and “hard” depend on how many of the unchanged parts of
the SUMM can be reused unchanged in the new SUMM version.

Criterion E5 (SUMM Reusability) focuses on the question of whether only a
subset of the integrated metamodels and their consistency rules from one project can be
reused to construct a SUMM for other projects, or if a SUMM can only be reused as a
whole. Additionally, this criterion addresses the amount of effort involved in adding new
metamodels to an already existing SUMM. Although this criterion does not target reuse
at the model level, it is important since there are many software development projects
that use slightly different languages or consistency rules, which need to be managed. The
degrees of difficulty depend on whether each single part of the SUMM can be reused
without any manual effort (“easy”), some manual effort is required with some restrictions
(“middle”) or the SUMM is non-reusable and unstructured (“hard”).

4.3 Technical Design Decisions

Technical Design Decisions describe the degrees of freedom available in the technical
realization of a single approach. These technical realization choices are orthogonal to the
conceptual design decisions (Section 4.1) and the related conceptual selection criteria
(Section 4.2) since they can be realized independently of the actual SUM approach used.
In other words, they form degrees of freedom for realizing different technical aspects
of a particular SUM approach after deciding on the design criteria. They help platform
specialists identify and address technical challenges during implementation.

Criterion T1 (Configuration Languages) addresses the platform specialist’s chal-
lenge of providing languages that can be used by methodologists to customize a SUM
approach to the needs of the current project. In particular, languages to specify project-
specific consistency rules are required that allow methodologists to tailor SUM ap-
proaches to different projects in different application domains. Methodologists need
languages to consider and realize project-specific consistency rules, manipulate the SUM,
define additional viewtypes and support additional needs of the developers.

Criterion T2 (Meta-Metamodel) addresses the issues of choosing a language to
describe metamodels in the implementation of a SUM approach. This meta-metamodel
defines the possible language elements available to methodologists to describe the
SUMM and the viewtypes to be integrated.

5 Orthographic Software Modeling

Orthographic Software Modeling (OSM) is a view-based approach initially developed to
support software development [2] using multiple perspectives. However, OSM can be
applied to other domains like enterprise architecture modeling [27] in order to support
methods like Zachman [31].

8 J. Meier, C. Werner et al.

5.1 Design Objectives

The OSM approach is inspired by the orthographic projection technique used to visualize
physical objects in CAD systems. OSM utilizes this principle to define “orthogonal”
views on a system under development that present each stakeholder, such as software en-
gineers, with the data he or she needs in a domain-specific notation. Although stakehold-
ers can only see and manipulate the system using the views, since the actual description
of the system is stored in a SUM. The views are defined to be as “orthogonal” as possible
using independent dimensions (i.e., concerns) ranging from behavioral properties and
feature specifications to architectural composition. Ultimately, the system description
in the SUM can be made formal enough to be automatically deployed and executed on
appropriate platforms, thus allowing automatic redeployment on changes. To support the
complete life-cycle of a system, ranging from requirements analysis to deployment, the
internal structure of the SUM must support the storing of all required data in a clean and
uniform way. The data in the SUM should thus be free from dependencies and capture
all relationships between inner elements in a redundancy-free way using approaches like
Information Compression and Information Expansion [3].

In order to use the OSM approach, an environment has to be developed which
realizes its goals and principles. Both steps, the definition of the approach and the imple-
mentation of a framework which supports the concepts of the approach, are performed
by a platform specialist. The work involves the development of a framework which
can be customized for the used methodology (e.g., KobrA [1], MEMO [10], Archi-
Mate [15]) and the targeted domain (e.g., software engineering, enterprise architecture
modeling). The configurations can be reused for projects in the same domain and the
same methodology. Tunjic, Atkinson, and Draheim [27] present a metamodel which
is used by the current prototype implementation to support the configuration of OSM
environments. In particular, it facilitates the configuration of the SUMM and viewtypes,
and their integration in a dimension-based view navigation approach using hyper-cubes
of the kind used in OLAP [6] systems.

A software engineer, playing the role of a methodologist, performs the customization
of the environment for a specific domain and methodology. In order to be able to config-
ure and customize the environment according to the requirements, the methodologist
must have knowledge of the involved domain and the OSM environment. In particular,
he or she is responsible for defining the SUMM and the viewtypes in a way that adheres
to the principles of redundancy-freeness and minimality. Defining a viewtype involves
the definition of a suitable metamodel as well as a model transformation that maps the
concepts from the SUM to those in a view and vice versa. The resulting configuration
can be stored in the tooling environment for reuse in other projects.

Once a complete configuration of an OSM environment has been defined by a
methodologist, developers can use it to develop a specific system specification. To this
end, either an empty SUM is created to start a project from scratch, or existing content is
imported into the SUM using model-to-model transformations from external artifacts.
When using the OSM platform to develop a system, developers are able to access views
using the dimension-based view navigation approach and use them to see and update
information from the SUM.

Classifying Approaches for Constructing Single Underlying Models 9

Req

Java UML

Traceability

SUMM
+

SUM

VT Viewtype

SUM(M) pure SUM(M)

deepATL Transfor-
mation / Projection

Figure 2. SUM Approach OSM

ClassUseClass
name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

Class
name : EString [1]

Method
name : EString [1]

Requirement

id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

fullfills [∗]

fulfilledBy [∗]

class [1]

methods [∗]

class [1]

classUseClass [∗]

type [1]
usedBy [∗]

calling [∗]calledBy [∗]

SUMM

Figure 3. Exemplary Metamodel for SUM in
OSM (taken from [25])

5.2 Application to the Running Example

Figure 3 shows an example of an OSM-oriented SUMM, corresponding to the infor-
mation presented in Figure 1. Since a fundamental tenet of the OSM approach is to
have a pure and optimized SUMM, it is usually created manually from scratch based on
the needed viewtypes and concerns of the involved stakeholders. Figure 3 is a reduced
version of Figure 1 in which all redundant information, and thus the correspondences that
connect duplicate stores of data, have been manually removed. Thus, for example, the
two equivalent elements ClassType and Class have been compressed into one concept
Class in Figure 3. This is possible because although the two concepts define their own
properties for their own contexts, and use different names (i.e., name and className),
they are in fact equivalent and can be combined. Both attributes are therefore mapped
to the single attribute name in the SUMM. The two dependencies are distinct and are
hence both added to the Class element: The first allows Classes to have Methods,
while the second describes dependencies between two Classes (Consistency Rule 1).
Consistency Rule 2 is captured by a relationship between Requirement and Method,
representing the fact that the requirement is being fulfilled by the method. In order
to allow developers to create instances of the relationship, a new view can be defined
containing at least the concepts Requirement, Method and the relationship between
them. While Figure 3 shows the integration of the 3 domains into a SUMM, Figure 2
shows the arrangement of the viewtypes resulting from the integrated domains. Each
viewtype is related by a one-to-one projection to the SUMM, or more precisely to the
relevant concepts from the SUMM. The data structure shown in Figure 3 is simpler than
disparate representation in Figure 1. This is achieved by unifying names for equivalent
concepts (ClassType vs. Class) and using names with more meaning (Association
vs. ClassUseClass). Although the SUMM is built from scratch in the presented ex-
ample, in principle it is possible to import existing artifacts into the environment using
model-to-model transformations.

10 J. Meier, C. Werner et al.

5.3 Classification Based on the Criteria

In OSM the SUM is built following a top-down approach (C1), based on the domain and
applied methodology. Since the SUM is created from scratch, it can be constructed in an
optimal way by avoiding any internal redundancies and dependencies, resulting in an
essential SUM (C2) (see Table 1).

The E1 selection criterion is only conceptually supported by the OSM approach
(“hard”) since engineers can always informally draw upon the information contained
in existing metamodels when constructing the essential SUMM, either manually or by
model-to-model transformations. However, this is not a formal part of the approach.
The OSM approach supports the E2 selection criterion in a semi-automatic way, i.e.
by importing data from existing models into the newly constructed SUM using model
transformations (“hard”). The models do not need to be initially consistent as long as
the transformations are defined to generate consistent output. As the essential SUM
provides an integrated and redundancy-free structure, the E3 selection criterion can be
easily fulfilled by the OSM approach (“easy”), since the information relevant for views
is contained in one single artifact, the SUM. The E4 selection criterion, related to model
evolution, is supported quite well (“middle”) by OSM’s essential SUM principle, since
it is free of redundant information but has to check that the changes keep the SUMM
redundancy-free. However, the transformations that generate views from the SUM have
to be updated manually to stay up-to-date with the SUMM changes. Finally, the E5
selection criterion is supported by OSM, since a SUMM can easily be extended by
adding new concepts directly into the existing structure where they are needed. However,
redundancy-freeness must be preserved and when concepts are removed from the SUMM,
related concepts have to be checked to ensure consistency (“middle”).

The configuration of the current OSM prototype environment is realized using the
ECORE modeling language (T1), which is used to define the dimension-based view-
navigation feature of OSM. The SUMM and the view-types are defined using the PLM
modeling language (T2), which supports the usage of multiple classification levels using
ontologies, while the relationships between the SUMM and the view-types are defined
using the DeepATL transformation language.

6 VITRUVIUS

The VITRUVIUS approach [18] is based on a so called virtual SUMM (V-SUMM), which
composes a SUMM of existing metamodels instead of creating it from scratch. Therefore,
VITRUVIUS relies on pragmatic SUMMs that are defined in a bottom-up fashion.

6.1 Design Objectives

In the VITRUVIUS approach, the whole description of a system is encapsulated in a SUM,
which may only be modified via projectional views. This conforms to the projectional
SUM idea of the OSM approach. VITRUVIUS follows a pragmatic approach by com-
posing a SUMM of existing metamodels that are coupled by Consistency Preservation
Rules (CPRs), which specify how consistency of dependent information in instances of

Classifying Approaches for Constructing Single Underlying Models 11

those metamodels is preserved after one of them is changed. The CPRs use and modify
a trace model that contains so called correspondences, which reference model elements
that have to be kept consistent. A set of metamodels with a set of CPRs consitutes a
virtual SUMM (V-SUMM), while instances of them with an actual correspondence
model are denoted as V-SUMs. These CPRs make dependencies between metamodels
explicit and ensure that after modifications in one model, all other dependent models are
updated consistently. A V-SUM operates inductively, i.e., it is always consistent before a
modification and ensures that it is again consistent after modifications by executing the
CPRs. As a consequence, a V-SUM behaves completely like an essential SUM in the
OSM approach since it provides the same guarantees regarding consistency.

Consistency preservation in VITRUVIUS is performed in a delta-based manner. In
other words, it tracks edit operations instead of comparing two models states like in state-
based consistency preservation. This results in less information loss [8]. For example, a
state-based approach cannot reliably distinguish the deletion and creation of an element
from renaming it, whereas a delta-based approach tracks the actual operations. Specific
languages have been developed that support the definition of such delta-based consistency
preservation in the VITRUVIUS approach [17]. Consistency preservation in VITRUVIUS
was first investigated on a case study of component-based architectures, Java code and
code contracts [19].

The development of a framework such as VITRUVIUS first involves a platform
specialist who defines the interface of a V-SUM, implements the logic for executing
CPRs and defines or selects specific languages or at least an interface to define CPRs. The
current implementation of the VITRUVIUS approach (http://vitruv.tools) based
on Ecore contains a Java-based definition of V-SUMs and provides two languages for
defining consistency preservation at different abstraction levels.

The methodologist selects metamodels and reuses or defines CPRs for those selected
metamodels to define a V-SUMM. Finally, one or more developers can instantiate the
V-SUMM, derive views according to existing or newly defined viewtypes, and perform
modifications of them. A change recorder tracks modifications in a view and applies
them to the V-SUM as a sequence of atomic change events (creation, deletion, insertion,
removal or replacement). After each of these changes is applied, the responsible CPRs
are executed to restore consistency, which results in an inductively consistent V-SUM.

6.2 Application to the Running Example

We depict an exemplary V-SUMM for the metamodels from Figure 1 in Figure 4. It
consists of the reused metamodels and a set of CPRs between them. For Consistency
Rule 1, a CPR defines the creation of a Java class ClassType in reaction to the creation
of a UML class Class. The methodologist is free to specify the expected behavior in
the other direction, i.e., whether a UML class is created for each Java class or if the
developer shall be asked what to do. Additionally, the rule propagates all changes on the
name or className to the respective other model. The additional requirements traces in
Consistency Rule 2 can be expressed by matching requirements and methods after adding
or modifying methods as well as requirements, and by storing them as correspondences
in the existing trace model. Alternatively, such links could be specified in an additional
model, which is modified by a CPR whenever a requirement or method is changed.

http://vitruv.tools

12 J. Meier, C. Werner et al.

Req

UML

Java

CPR

CPR

VTUML

VTJava

VTReq

VTTraceability V-SUMM

MM
Metamodel

CPR
Consistency
Preservation
Rule

VT Viewtype

View Trans-
formation

public class C2 extends C1 {
// @implements req 2
public static void do() {

// Do something
}

}

Java-requirements view
programmer

uses

C1

C2 C3

UML class diagram viewarchitect

uses

Figure 4. Example V-SUMM in VITRUVIUS (extended version of Fig. 3 of [25])

Two types of projectional viewtypes can be defined on a V-SUMM. First, existing
viewtypes for the existing metamodels, such as a textual editor for Java or a graphical
editor for UML, can be reused. In Figure 4, these viewtypes are VTJava, VTUML and
VTReq, which provide concrete syntaxes for the original metamodels from Figure 1.
Second, the methodologist and the developers can defined additional viewtypes, which
may combine information from different metamodels and their relations defined in
the CPRs. Figure 4 contains VTTraceability, which displays the trace information for
Consistency Rule 2 by extracting information from Java and the requirements model,
as well as from the correspondences generated by the CPRs. This viewtype could, as
exemplarily sketched in Figure 4, show the Java code with annotations attached to
the methods that show the requirements they fulfill. Such viewtypes may combine
information from multiple metamodels, which needs to be supported by an appropriate
language. In VITRUVIUS, that can be expressed with the ModelJoin language [5].

6.3 Classification Regarding the Criteria

VITRUVIUS follows a bottom-up construction approach (C1) to build a pragmatic SUM
(C2). This V-SUMM may contain redundancies, but keeps them consistent by explicit
consistency preservation mechanisms. In general, VITRUVIUS provides good support
for reusability and evolvability of metamodels and SUMMs, but requires considerable
effort to reuse existing models and to define new viewtypes (see Table 1).

Metamodel Reusability (E1) is well supported (“easy”), because existing meta-
models can be integrated into a V-SUMM as is without further effort. They serve as
an unmodified component of a V-SUMM. On the contrary, Model Reusability (E2) is
only moderately (“middle”) supported by VITRUVIUS. Although existing models can be
integrated into a V-SUM, they first need to be consistent according to the consistency
rules, and second, have to be enriched with the correspondences that would have been
created if the consistency preservation rules were executed during the creation of the
models. This is necessary because of the inductive characteristics of the approach. View-
type Definability (E3) is comparatively difficult (“hard”) using VITRUVIUS, because
information that is to be projected into a view is potentially spread across several models

Classifying Approaches for Constructing Single Underlying Models 13

so that information has to be combined and aggregated. This may require high effort
and especially high knowledge about the involved metamodels from the person who
specifies a viewtype. To ease viewtype definition, VITRUVIUS provides the specialized
ModelJoin language for defining viewtypes on several models.

One well supported feature is Language Evolvability (E4) (“easy”). Due to the
integration of original metamodels into the V-SUMM, their evolution can be easily
supported. Necessary adaptations after the evolution of a metamodels concern the
defined CPRs, as well as defined viewtypes. Finally, SUMM Reusability (E5) is high
(“easy”), because it is easy to add or remove single metamodels from the V-SUMM by
just adding or removing the metamodels with associated CPRs. For that reason, the reuse
of a subset of the metamodels in a V-SUMM is well supported and enables the reuse of
parts of a V-SUMM in a different context and the combinations with other V-SUMMs.

Regarding technical design decisions, the configuration languages (T1) in VIT-
RUVIUS consist of the declarative Mappings language and the imperative Reactions
language for specifying CPRs, as well as the ModelJoin language for defining view
types on several metamodels. All concepts of VITRUVIUS are designed for a meta-
metamodel (T2) that conforms to the EMOF standard. This especially includes the Ecore
meta-metamodel that is used for the current implementation of VITRUVIUS.

7 RSUM

The Role-based Single Underlying Model (RSUM, [30]) follows the same basic idea as
the VITRUVIUS approach where several metamodels are kept consistent with consistency
preservation rules. However, the metamodels are no longer regarded as separate, but can
be reconnected and combined with new relations as visualized in Figure 5.

7.1 Design Objectives

Regarding the design objectives, the RSUM approach differs only slightly from the
VITRUVIUS approach and follows the projectional SUM idea, whereby all information is
stored in a pragmatic SUM of different combined models. Additionally, only projectional
views can be generated on this SUM. Compared to the VITRUVIUS approach, which
works in the background with object-based programming, the RSUM approach uses role-
based programming as introduced by Kühn et al. [21] in the form of the Compartment
Role Object Model (CROM). The idea behind CROM is a new partition of elements into
natural types, role types, and compartment types. Naturals describe fixed objects that
play roles in compartments. A role adapts the behavior of a natural in a compartment
and interacts with various other roles in it. The concept of compartments is used in
the RSUM approach to explicitly describe consistency preservation rules (CPRs) and
build relationships [29] between metamodel elements that blur the boundaries of the
base metamodels. The compartments for consistency assurance follow an incremental
approach and propagate all changes directly to the related elements. Such incremental
direct propagation is also implemented between views and the RSUM, and back. It is
planned to extend the change propagation with the use of transactions.

14 J. Meier, C. Werner et al.

UML

Java
+

Req

CMC

VTReq

VTJava VTUML

VTTraceability

M(M)
pure M(M)

CMC
Consistency
Management
Compartment

VT Viewtype

View Trans-
formation

Figure 5. SUM Approach RSUM

Req

Java UML

Traceability

SUM(M)1 2

Add As-
sociation

3 5

Change
Multi-
plicity

2x
6

Merge
Classes

Merge
Attributes

7

8

VT Original View(type)

VT SU(M)M

VT New View(type)

i Intermediate (Meta)Model

Integration Operator

Figure 6. SUM Approach MOCONSEMI with
Chain of Configured Operators to integrate Re-
quirements, UML and Java, adapted from [25]

For the development of the RSUM framework, a platform specialist is required that
provides the basic functionalities for the integration of new views, metamodels, models,
and CPRs. The direct implementations can be automatically generated with Domain
Specific Languages (DSLs), created by the platform specialist, and integrated into the
framework. The current RSUM implementation uses CROM and is based on the SCala
ROLes Language (SCROLL) [23], a role-based programming language in Scala.

The methodologist selects the needed metamodels and then defines all CPRs between
these metamodels in predefined DSLs. Consistency rules differ in two classes, as exem-
plified in Section 3 with “Consistency Rule 1 & 2”. For rules of the first category, special
consistency relationships are defined using extra consistency management compartments
(CMCs) in RSUM. The second category of rules creates relational compartments that
blur the separation between the integrated metamodels, as described in more detail in the
next paragraph. After that, the developer creates new viewtypes and instantiates views
from them on the RSUM. To minimize the learning effort for different SUM approaches,
the RSUM approach uses the syntax of ModelJoin [5] to define viewtypes, which is used
to generate view compartments with incremental change propagation to the RSUM. In
the RSUM, consistency is automatically ensured by the defined CPRs.

7.2 Application to the Running Example

Figure 7 shows an RSUM at the metamodel level resulting from the running example
in Figure 1. The basic concept consists of separating all relations from the classes and

Classifying Approaches for Constructing Single Underlying Models 15

RSUM

11 11 11

RequirementsSpecificationClassDiagram

Requirement

id : EString [0..1]
author : EString [0..1]

text : EString [0..1]

Class

className : EString [1]

Association

name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

JavaASG

ClassType

name : EString [1]

Method

name : EString [1]

ClassUseClass

TargetSource

MethodsCallingMethods

Target
RoleGroup (1..1)

Source

1

1

1

1

ClassUseType

TargetSource
11

ClassHasMethods

TargetSource
11

MethodsFulfillRequirement

TargetSource
11

ClassUseClass

SourceTarget

JavaHasClasses

TargetSource

ContainRequirement

SourceTarget

ConsistencyManagement

SyncAttribute

Construction

Constructor

Destruction

Destructor

SyncAttributeConsistentNames

Sync
SyncManager

0..*0..*

0..*

RsumManagement

RsumManager

ExtensionsExtensions
Extensions

Extension

…

0..*

0..*

0..*

…

Natural

Compartment

Role

Plays Relation

RoleGroup (n..m)

Role . . .

Relation

Role

n..m n..m

Role

n..m

Role cardinality

n..m

Legend:

Figure 7. RSUM metamodel of the running example.

managing them in extra relational compartments. This leads to a certain additional
overhead but simplifies the administration of the elements in the RSUM and the views.
Furthermore, they are automatically generated when integrating metamodels in the
RSUM, whereby this design decision remains hidden from the developer. Figure 7 high-
lights three special compartments in grey that are not created by integrating metamodels.
The RsumManagement compartment is the central component of the RSUM approach
and manages the internal elements, the active and inactive views, and the extensions
where currently only one extension for recording changes is pre-implemented. The other
two compartments serve to ensure consistency in RSUM and are only created when a
consistency rule is defined and integrated. In this case, the ConsistencyManagement
compartment (CMC) ensures consistency between the naturals Class and ClassType,
defining what happens to the other element when deleting, inserting, or modifying one of
these elements. This compartment is automatically generated after describing the CPRs
from a methodologist in the predefined DSLs. The last highlighted compartment is the
MethodsFulfillRequirement compartment, which represents a new relation between
the naturals Method and Requirement. This compartment is created by a DSL and then
integrated into the RSUM. This new relation merges the requirements model with the
Java source code model as shown on an abstract level in Figure 5.

For the generation of views, projections can be generated on all relations (relational
compartments) and naturals. In this approach, the views are implemented as compart-
ments, which means that the elements in the RSUM only play roles in the views and
therefore do not generate materialized views. The flexibility arising from the fact that
roles can be played by other elements at instance level is a big advantage of the role
concept and makes the approach useful.

7.3 Classification Regarding the Criteria

When considering the design criteria, the RSUM approach looks the same as the VIT-
RUVIUS approach. It follows a bottom-up design approach (C1) to create a pragmatic
SUM (C2) and does not resolve inconsistencies but provides consistency management
through CPRs. If there are certain 1-to-1 mappings between model elements in the

16 J. Meier, C. Werner et al.

RequirementsSpecification

Requirement

id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

JavaASG

ClassType

name : EString [1]

Method
name : EString [1]

ProjectData

ClassDiagram

Association
name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

container [1]

content [∗]

asg [0..1]

classes [∗]

class [1]

methods [∗]

calledBy [∗] calling [∗]

containsRequirementsSpecification [∗]

integrator [0..1]

containsJavaASG [∗]

integrator [0..1]

fulfilled [∗]

fulfilledBy [∗]

integrator [0..1]

containsClassDiagram [∗]

classes [∗]
diagram [0..1]

class [1]

associations [∗]

type [1]
usedBy [∗]

SUMM

Figure 8. SUMM with integrated Requirements, Class Diagrams and Java (taken from [25])

CPRs, it would be possible to merge them into one natural type. However, this leads to
disadvantages in a language evolution step.

The reusability of metamodels (E1) is supported as the metamodels have no special
dependencies in the RSUM and new ones can be added without much effort (“easy”).
Regarding the reusability of models (E2), it looks like the reusability of metamodels
without the possibility to compare input models with existing instances (“middle”). Cur-
rently, (meta)models can be automatically integrated into RSUM as Ecore and XMI files.
Since the definition of viewtypes (E3) requires knowledge of the integrated metamodels,
this could lead to some problems (“middle”). If, however, enough knowledge of the
underlying models is available or only predefined viewtypes of the methodologist are
used, the use of ModelJoin no longer poses a problem. The evolution of languages (E4)
is relatively easy due to the integration of metamodels (“middle”). However, not only the
consistency compartments have to be modified, all additional relational compartments
must be adapted. As in VITRUVIUS, the SUMM (E5) is easy to reuse since metamodels
and consistency relationships can easily be integrated and removed because of the loosely
coupling of all elements provide by the role concept.

Regarding the technical criteria, a DSL is used to generate the CPRs and also
viewtypes are generated with ModelJoin queries (T1). The management of the created
elements is done by the RsumManagement compartment. In the background the RSUM
approach works with the role-based programming language SCROLL on the CROM
model, which is modeled with ECORE (T2).

8 MOCONSEMI

MOdel CONSistency Ensured by Metamodel Integration (MOCONSEMI, [26]) combines
the bottom-up reuse of existing (meta-)models with their operator-based improvement
into one more essential SUM.

8.1 Design Objectives

MOCONSEMI is a SUM approach which starts with existing initial models and conform-
ing metamodels (exemplarily shown in Figure 1) and creates a SUM(M) as suggested
by Atkinson, Stoll, and Bostan [2]. In practice, many models and metamodels already
exist in the form of DSLs and tools with fixed data schemas. To reuse them, these initial

Classifying Approaches for Constructing Single Underlying Models 17

models and metamodels are integrated and kept in sync as views of the SUM. To achieve
this, the initial models and conforming metamodels have to be transformed into the final
SUM and conforming SUMM. Therefore, the required transformations have to target
models and metamodels together.

After creating the initial SUM(M) as the output of the executed transformations
with the initial (meta)models as input, the initial models have to be kept consistent with
respect to changes made by the developer in the SUM. Therefore, the transformations
have to be executable in an inverse direction from the SUM to the initial models, as
well as in a forward direction. The last main design objective of MOCONSEMI is that
the required transformations are reusable in different projects, not only in software
engineering projects.

To fulfill these design objectives, MOCONSEMI uses operators which divide the
whole transformation between initial models and the SUM into chains of small and
reusable parts. Each operator does a small change on the current metamodel (e.g., adds
a new association) controlled by metamodel decisions (e.g., multiplicities, source and
target class of the new association). To achieve the required model co-evolution [14], the
operator also changes the current model to keep it consistent with the changed metamodel.
Degrees of freedom in the model-co-evolution process are influenced by model decisions,
which allow consistency rules to be fulfilled (e.g., specify, when new links should be
added, or if at all). The concatenation of several operators builds the whole transformation
between initial models and SUM. Additionally, the operators can be used to define new
viewtypes on top of the SUMM. The required backward executability of operators is
attained by combining each operator with an inverse operator, e.g., DeleteAssociation
for AddAssociation.

8.2 Application to the Running Example

The operators are developed once by the platform specialist and are provided as a reusable
library (currently 23 operators including inverse ones). A supporting framework is under
development using Java and a subset of Ecore, reusing parts of Eclipse EDapt [13], and
extending some coupled operators [14] for the needs of MOCONSEMI.

The methodologist reuses the provided operators by combining them as chain of
operators to describe the transformation between initial (meta-)models (Figure 1) and
SUM(M) (Figure 8) in step-wise way as shown in Figure 6 individually for each project.
The methodologist uses the metamodel and model decisions to configure the operators
to support the consistency rules for the current project.

The first step is to combine the initial models and metamodels for Requirements ,
Java and ClassDiagrams only technically at 1 and 3 . For this, the used EMF frame-
work requires ProjectData and its compositions as container (Figure 8). After that,
Consistency Rule 2 is realized by the operator AddAssociation 1 → 2 as the first
contentwise integration regarding traceability links between requirements and methods.It
creates a new association between Requirement and Method whenever required and
thereby enables traceability information to store. In the model, the operator adds links
between some methods and requirements as configured by the methodologist to ensure
that a method is linked with those requirements that contain the name of the method in
their text.

18 J. Meier, C. Werner et al.

Before fulfilling Consistency Rule 1, the operator ChangeMultiplicity is applied
twice 5 as a technical preparation. After that, MergeClasses 5 → 6 merges the two
classes Class (from UML) and ClassType (from Java) into one single class in the
metamodel representing data classes both in UML and Java at the same time. In the
model, matching UML and Java instances are merged into each other, again controlled
by a model decision, which was configured to identify matching instances when they
have the same values for Class.className and ClassType.name. The motivation for
this merging step is the unification of redundant information which ensures consistency
and makes the resulting SUM more “essential”. Finall,y MergeAttributes merges the
two redundantly name attributes. The last stable model and metamodel are used as the
SUM(M) . The SUMM in Figure 8 marks the changes done by the operators in red
compared to the initial metamodels in Figure 1.

Ultimately, MOCONSEMI “migrates” the initial (meta)models to view(type)s on
the SUM(M). Therefore, the developer can change the initial models, the SUM and
the newly defined views in the same way. To propagate the changes automatically into
all other models in order to ensure their consistency, the operator chain is executed in
forward and backward directions.

8.3 Classification Regarding the Criteria

Since MOCONSEMI starts with the initial (meta-)models, it is bottom-up regarding C1
(see Table 1) and inherits all their initial redundancies. Because the operators can resolve
redundancies in a step-wise way, pureness can be improved until, in the best case, a
SUM(M) without any dependencies is attained (C2).

Metamodel Reusability (E1) is well supported (“easy”), since the initial metamod-
els are used as the starting point of the operator chain. The same counts for the Model
Reusability (E2) (“easy”), since even initial inconsistencies can be resolved by execut-
ing the operator chain in both directions. Viewtype Definability (E3) benefits by the
explicit and integrated SUMM, since all information is collected and integrated inside
one metamodel (“middle”). In contrast to OSM, the SUM(M) in MOCONSEMI might
still contain redundant information, which makes the definition of new viewtypes harder,
since the same information can be found at different places. The Language Evolvability
(E4) in MOCONSEMI highly depends on the kind of change. Additional elements in the
metamodels are directly added to the SUMM without any changes in the operator chain,
while big refactorings in the metamodels require lots of changes in the operator chain
(“middle”). SUMM Reusability (E5) is easy when adding new metamodels, because
the existing chain of operators is lengthen by some more operators. Removing an already
integrated metamodel requires all the operators which were needed for its integration to
be removed or changed (“middle”). As a result, E5 depends on the order of integrated
initial (meta-)models (“middle”).

Regarding technical design decisions, MOCONSEMI uses chains of operators as
a configuration language which change metamodels and models together to create the
initial SUM(M) and to keep all models consistent (T1). The same operators allow new
views to be defined. The current implementation supports a subset of ECore (T2).

Classifying Approaches for Constructing Single Underlying Models 19

Criterion OSM VITRUVIUS RSUM MOCONSEMI

C1 Construction Process top-down bottom-up bottom-up bottom-up
C2 Pureness essential pragmatic pragmatic pragmatic→ essential

E1 Metamodel Reusability hard easy easy easy
E2 Model Reusability hard middle middle easy
E3 Viewtype Definability easy hard middle middle
E4 Language Evolvability middle easy middle middle
E5 SUMM Reusability middle easy easy middle

T1 Configuration Languages
Ecore,

DeepATL
Mappings/React.,

ModelJoin
RCs,

ModelJoin
Bidirect. Operators

T2 Meta-Metamodel PLM Ecore CROM Ecore
Table 1. Comparison of the four Approaches regarding Design Criteria, Selection Criteria, and
Technical Design Decisions (extended version of Table 1 from [25])

9 Discussion and Comparison of SUM Approaches

This section summarizes the classification of the four presented SUM approaches in
Table 1 regarding the three groups of classification criteria. Each approach’s classification
is described in detail in its respective section, so this section contains a more abstract
discussion about the dependencies of the criteria on each other. It also answers the
general question of which approach fits best for which situation and why. We conclude
this section with the idea of combining SUM approaches to create more flexible ones.

9.1 Design Criteria

Design criteria form the foundation of every approach and therefore have considerable
influence on the manifestation of the selection criteria and limit the technical implemen-
tation possibilities. Figure 9 shows the solution space spanned by the design criteria and
the placement of the four presented approaches. Each approach can be distinguished as a
top-down or bottom-up approach (C1), whereby the decision to use existing models is
considered as a starting point. Three of the presented approaches (VITRUVIUS, RSUM,
and MOCONSEMI) follow a bottom-up approach while one (OSM) follows a top-down
approach. The top-down variant has the advantage that a new model is created and can
be adapted to the requirements of users. This facilitates the definition of new viewtypes
and avoids redundancy. However, it offers no reuse opportunities and makes adaptation
and evolution more difficult. Bottom-up approaches, on the other hand, offer increased
reusability, but require more effort to manage the (meta)models.

The use of an essential or pragmatic SUM(M) approach (C2) is directly influenced
by the decision whether a top-down or bottom-up approach is used (C1). In a bottom-up
approach, it is hard to achieve a SUM that is free of redundancy. The MOCONSEMI
approach is the only of the four approaches that offers a way of moving from a pragmatic
to an essential SUM(M) by creating a redundancy-free SUM(M) bottom-up. In a top-
down approach, redundancy can already be avoided by construction.

20 J. Meier, C. Werner et al.

C1: Construction Process

C2: Pureness

bottom
-up

top-
down

pragmatic
(initial dependencies)

pragmatic→ essential
(some dependencies resolved)

essential
(no dependencies)

Req

Java UML

Traceability

SUMM
+

SUM

OSM

Req

UML

Java
CPR

CPR
VTReq

VTJava VTUML

VTTraceability

VITRUVIUS

Req

Java UML

Traceability

SUM(M)1 2 3 4 5

6

7

MOCONSEMI

UML

Java
+

Req

CMC

VTReq

VTJava VTUML

VTTraceability

RSUM

Figure 9. Conceptual Classification of SUM Approachs

9.2 Selection Criteria

The selection criteria depend mainly on the underlying design criteria as mentioned in
the previous section. Metamodel Reusability (E1) is better supported by bottom-up
approaches than by top-down approaches, since they are already based on the metamodels
and no new ones are generated. The same applies to Model Reusability (E2). However,
it depends on the consistency of the models to be integrated and the already integrated
models. In addition, the mechanisms for reusability depend mainly on the automatic
modification of the basic metamodels because only changes that can be automatically
undone promote reusability. In contrast, Viewtype Definability (E3) depends on the
type of SUM(M) approach. Due to the absence of redundancy and the minimality of
an essential SUM(M) approaches, the creation of viewtypes is much easier. However,
if pragmatic approaches can provide reliable consistency mechanisms and viewtypes
are only defined on partial models, they can also support the creation of viewtypes in a
relatively simple way. The creation of viewpoints only gets complicated when they cross
model boundaries.

Language Evolvability (E4) means in general the evolution of metamodels. In
pragmatic approaches this should be easier than in essential ones because they are
constructed from existing metamodels and have formally defined relationhsips between
them. In contrast, these approaches must preserve consistency after the evolution steps,
i.e., the adaptation of the internal model operators and consistency preservation rules.
In essential approaches, there exists only a conceptual relation between the existing
artifacts and the SUMM, i.e., a manual adaptation of the new metamodel must be done to
ensure redundancy-freeness and minimality that leads to high effort and error proneness.
SUMM Reusability (E5) does not have much to do with criteria E1-E4, since it is about

Classifying Approaches for Constructing Single Underlying Models 21

adding and removing single metamodel elements in the SUMM. Pragmatic and essential
approaches achieve this in a different way. Pragmatic approaches facilitate the simple
addition and removal of metamodels, as the structure of the original metamodels still
exist separately and the change operations are performed on the abstract metalevel. In
contrast, essential approaches make it easy to fine-tune metamodels to project needs,
since the manipulation of the essential SUMM is possible at the level of individual model
elements. The existence of only one model without dependencies removes the clear
boundaries between the starting metamodels.

The application of the selection criteria highlights the general differences between
the four SUM approaches. None of the presented criteria is fulfilled by one approach
best, i.e., each approach has its pros and cons regarding all considered criteria. In general,
each selection criteria can be realized in a simple way if the corresponding design
criteria is selected, or in complex way using a lot boilerplate code if a different (non-
corresponding) design criteria is selected. From the correlation of design and selection
criteria, dependencies can also be determined within the selection criteria. The list of
criteria presented here cannot be considered complete and it is unclear whether these are
the most important criteria for selecting a SUM approach. However, the criteria can be
used as an initial indicator of which approach would be best, since relevant situations
such as the evolution and reusability of metamodels and other points are covered.

9.3 Technical Design Decisions

The technical design decisions (T1 and T2) are independent of the two categories de-
scribed before, since the implementation of each approach depends on the preferred
languages but could be done with different technical choices. The current implemen-
tations for each of the four approaches are presented here, all of which are constantly
evolving. The used Configuration Languages (T1) apply the generic approaches to
specific application projects. These configuration languages contain transformation lan-
guages to manage the consistency in, and the integration of models into, the SUM. In
addition, they imply query languages to realize initial and new view(type)s on top of the
SUM. If we consider the Meta-Metamodel (T2) of the four approaches they cover the
complete space between object-oriented modeling via role-oriented modeling to deep
modelling, which show that each technology allows the realization of SUM approaches.

9.4 Process for Approach Selection

After describing the overall differences between the four SUM approaches regarding the
different criteria, in this section we describe a process for selecting a SUM approach,
as illustrated in Figure 10. This process considers the choice of an approach from a
technical and a conceptual point of view.

From a conceptual point of view the main question is about the existence and
degree of reuse of legacy tools or metamodels (E1 and E2). If there are no tools or
metamodels to reuse, the top-down OSM approach fits most because it defines a new
metamodels without redundancy that can avoid dependencies to external tool vendors. In
addition, OSM provides a simple viewtype definition strategy (E3). If the reusability of
(meta-)models or viewtypes is important, bottom-up approaches (C1) like VITRUVIUS,

22 J. Meier, C. Werner et al.

RSUMOSM VITRUVIUS MOCONSEMI

E5: SUMM Reuse

else

E3: Viewtypes required

E1, E2: no Reuse
of (Meta)Models

E4: Language Evolution

E2:
inconsistent Models

T2: Deep Modeling

T2: Role-oriented

T2: Object-oriented

T1: declarative language T1: single language

C
on

ce
pt

ua
l

Te
ch

ni
ca

l

Figure 10. Process for selecting SUM Approaches

OSM VITRUVIUS RSUM MOCONSEMI

Advantages Easy Viewtype Definition
No Dependencies to Legacy Tools

Reuse of Metamodels / Tools
Modular Views

Reuse of Models + Metamodels
Modular Views

Reuse of Models + Metamodels
Easy + incremental Integration

Disadvantages No Support for Existing Artifacts Difficult Reuse of Models
Overhead for role-modeling

and programming
No Modularity

Exemplary
Application
Areas

No Reuse of (Meta-)Models
New Domain Description Language

Reuse of Metamodels
Combination of Existing

Standards for new Projects

Reuse of (Meta-)Models
Runtime adaptation and integration

of (Meta-)Models

Reuse of (Meta-)Models
Software Re-Engineering

Activities

Table 2. Main Advantages and Disadvantages of Approaches with Exemplary Application Areas
(extended version of Table 2 from [25])

RSUM, or MOCONSEMI are a better choice. These approaches are compatible to
existing tools or even to complete development environments and facilitate integration
without remodeling models. When the models have inconsistencies, theMOCONSEMI
is best because the models contained therein do not have to be conform to any specific
consistency rules and can be initially adapted. If, the reusability of the SUMM (E5) is
more important, VITRUVIUS or RSUM are the most appropriate. These approaches
allow the modular definition of consistency relationships and the reusability of these and
the (meta-)models across projects. VITRUVIUS and RSUM differ in the complexity of
view definition (E3) (use RSUM) and language evolution (E4) (use VITRUVIUS).

If the selection of a SUM approach is based on technical specifications, the question
of the implementation paradigm (T2) arises first. The OSM prototype implementation
currently uses deep modeling for the implementation, whereby RSUM is based on
the role-based programming paradigm. In contrast, the approaches MOCONSEMI and
VITRUVIUS use object orientation. One important difference between VITRUVIUS and
MOCONSEMI is the type of configuration languages (T1) supported. VITRUVIUS uses
multiple,c declarative languages in while MOCONSEMI only uses a single language.

In summary, the guideline in Figure 10 offers a decision-making aid for selecting the
most suitable SUM approach from a technical or conceptual point of view. In addition,
Table 2 summarizes the main advantages and disadvantages of the four SUM approaches.

Classifying Approaches for Constructing Single Underlying Models 23

9.5 Combination of SUM Approaches

As well as selecting a single SUM approach (Section 9.4), there can sometimes also
be advantages in combining several SUM approaches. Since SUMs can be accessed
by well defined views, their provided viewtypes can be used to merge several SUMs
into a single unified SUM. If an essential SUM was defined to support the modeling
of a specific aspect of a system using the OSM approach, it could be combined with
other already existing metamodels in pragmatic SUMs using the VITRUVIUS, RSUM or
MOCONSEMI approach.

A similar strategy helps to ease the construction of pragmatic SUMs. If several
(meta-)models are combined, pragmatic SUMs can become incomprehensible because
of the growing number of interrelations between the (meta-)models. Instead, combining
only small numbers of metamodels into a pragmatic SUMs and hierarchically composing
these pragmatic SUMs into larger reduces the complexity of each individual SUM and
improves their reusability. For example, it may be reasonable to combine highly related
metamodels, such as object-oriented programming languages and UML class diagrams,
into one SUM, which is equivalent to create an essential SUM, and to combine that SUM
with other, less related metamodels instead of combining them all together. Nevertheless,
this currently only represents a conceptual possibility and its feasibility and applicability
have to be further investigated in future work.

10 Conclusion

Larger and more complex systems require mechanisms to ensure holistic consistency
during system development. This paper presents uniform terminology and a criteria
catalog for the classification of approaches that use a SUM-based approach as a solution
to the consistency problem. These are then used to define a set of guidelines that can be
used to select which one of the four presented SUM approaches, OSM, VITRUVIUS,
RSUM, and MOCONSEMI, is the most suitable for a particular project. To this end, the
selection of an approach can be considered either from a technical point of view based
on the programming paradigm or from a conceptual point of view based on the selection
criteria including metamodel reusability and viewtype definability.

The four presented approaches cover the entire solution space available at the present
time. The OSM approach describes a top-down approach where a pure SUM is created
without redundancies. On the other hand, the RSUM and VITRUVIUS approaches are
based on pragmatic SUMs that take a bottom-up approach to keep multiple models
consistent through defined relationships. MOCONSEMI also introduces a bottom-up
approach, but can move between pragmatic and essential SUMs since redundant infor-
mation can be removed. We are not currently aware of an implementation of a pragmatic
top-down approach.

OSM is regarded as the initiator of the initial SUM idea, where models are only views
of an entire model and are projected from it by transformations. RSUM, VITRUVIUS,
and MOCONSEMI are concrete strategies for constructing a pragmatic implementation,
since the use of a single, redundancy-free model has some disadvantages as described in
the discussion.

24 J. Meier, C. Werner et al.

References

1. Atkinson, C.: Component-based Product Line Engineering with UML. Addison-Wesley (2002)
2. Atkinson, C., Stoll, D., and Bostan, P.: “Orthographic Software Modeling: A Practical Ap-

proach to View-Based Development.” In: Evaluation of Novel Approaches to Software Engi-
neering, pp. 206–219. Springer (2010)

3. Atkinson, C., Tunjic, C., and Moller, T.: Fundamental Realization Strategies for Multi-View
Specification Environments. In: 19th International Enterprise Distributed Object Computing
Conference, pp. 40–49. IEEE (2015)

4. Bruneliere, H., Burger, E., Cabot, J., and Wimmer, M.: “A feature-based survey of model
view approaches.” Software & Systems Modeling 9764, 138–155 (2017)

5. Burger, E., Henß, J., Küster, M., Kruse, S., and Happe, L.: “View-Based Model-Driven
Software Development with ModelJoin.” Software & Systems Modeling 15(2), 472–496
(2014)

6. Codd, E., Codd, S., and Salley, C.: Providing OLAP (On-line Analytical Processing) to
User-Analysts: An IT Mandate. Codd & Associates (1993)

7. Dayal, U., and Bernstein, P.A.: “On the updatability of network views—extending relational
view theory to the network model.” Information Systems 7(1), 29–46 (1982)

8. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., and Orejas, F.: “From State-
to Delta-Based Bidirectional Model Transformations: The Symmetric Case.” Model Driven
Engineering Languages and Systems LNCS 6981, 304–318 (2011)

9. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and Goedicke, M.: “Viewpoints:
A Framework for Integrating Multiple Perspectives in System Development.” International
Journal of Software Engineering and Knowledge Engineering 2(1), 31–57 (1992)

10. Frank, U.: Multi-perspective Enterprise Modeling (MEMO) – Conceptual Framework and
Modeling Languages. In: Hawaii International Conference on System Sciences (HICSS),
pp. 72–81 (2002)

11. Goldschmidt, T., Becker, S., and Burger, E.: Towards a Tool-Oriented Taxonomy of View-
Based Modelling. In: Proceedings of the Modellierung 2012. GI-Edition – Lecture Notes in
Informatics (LNI), pp. 59–74. GI e.V. (2012)

12. Haren, V.: TOGAF Version 9.1. Van Haren Publishing (2011)
13. Herrmannsdoerfer, M.: “COPE - A workbench for the coupled evolution of metamodels and

models.” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 6563 LNCS, 286–295 (2010)

14. Herrmannsdoerfer, M., Vermolen, S.D., and Wachsmuth, G.: “An Extensive Catalog of Opera-
tors for the Coupled Evolution of Metamodels and Models.” Software Language Engineering
LNCS 6563, 163–182 (2011)

15. Iacob, M., Jonkers, D.H., Lankhorst, M., Proper, E., and Quartel, D.D.: ArchiMate 2.0
Specification: The Open Group, (2012). http://doc.utwente.nl/82972/

16. ISO/IEC/IEEE: ISO/IEC/IEEE 42010:2011(E): Systems and software engineering – Architec-
ture description. International Organization for Standardization, Geneva, Switzerland (2011)

17. Kramer, M.E.: Specification Languages for Preserving Consistency between Models of
Different Languages. PhD thesis, Karlsruhe Institute of Technology (KIT) (2017).

18. Kramer, M.E., Burger, E., and Langhammer, M.: View-centric engineering with synchronized
heterogeneous models. In: Proceedings of the 1st Workshop on View-Based, Aspect-Oriented
and Orthographic Software Modelling. VAO ’13, 5:1–5:6. ACM (2013)

19. Kramer, M.E., Langhammer, M., Messinger, D., Seifermann, S., and Burger, E.: Change-
Driven Consistency for Component Code, Architectural Models, and Contracts. In: 18th
International ACM SIGSOFT Symposium on Component-Based Software Engineering. CBSE
’15, pp. 21–26. ACM (2015)

http://books.google.com/books?vid=ISBN978-3-642-14819-4
http://books.google.com/books?vid=ISBN978-3-642-14819-4
http://dx.doi.org/10.1007/s10270-017-0622-9
http://dx.doi.org/10.1007/s10270-017-0622-9
http://dx.doi.org/10.1007/s10270-014-0413-5
http://dx.doi.org/10.1007/s10270-014-0413-5
http://dx.doi.org/https://doi.org/10.1016/0306-4379(82)90004-7
http://dx.doi.org/https://doi.org/10.1016/0306-4379(82)90004-7
http://dx.doi.org/10.1007/978-3-642-24485-8_22
http://dx.doi.org/10.1007/978-3-642-24485-8_22
http://dx.doi.org/10.1007/978-3-642-19440-5_18
http://dx.doi.org/10.1007/978-3-642-19440-5_18
http://dx.doi.org/10.1007/978-3-642-19440-5_10
http://dx.doi.org/10.1007/978-3-642-19440-5_10
http://doc.utwente.nl/82972/

Classifying Approaches for Constructing Single Underlying Models 25

20. Kruchten, P.B.: “The 4+1 View Model of architecture.” IEEE Software 12(6), 42–50 (1995)
21. Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., and Aßmann, U.: “A Metamodel Family for

Role-Based Modeling and Programming Languages.” In: Software Language Engineering:
7th International Conference, Västerås, Sweden. Springer International Publishing, 2014,
pp. 141–160.

22. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development (3rd Edition). Prentice Hall (2004)

23. Leuthäuser, M., and Aßmann, U.: Enabling View-based Programming with SCROLL: Using
Roles and Dynamic Dispatch for Etablishing View-based Programming. In: Joint MORSE/-
VAO Workshop on Model-Driven Robot Software Engineering and View-based Software-
Engineering, pp. 25–33. ACM (2015)

24. Linington, P.F., Milosvic, Z., Tanaka, A., and Vallecillo, A.: Building Enterprise Systems with
ODP. Chapman and Hall (2011)

25. Meier, J., Klare, H., Tunjic, C., Atkinson, C., Burger, E., Reussner, R., and Winter, A.: Single
Underlying Models for Projectional, Multi-View Environments. In: 7th International Confer-
ence on Model-Driven Engineering and Software Development, pp. 119–130. SCITEPRESS -
Science and Technology Publications (2019)

26. Meier, J., and Winter, A.: “Model Consistency ensured by Metamodel Integration.” 6th Inter-
national Workshop on The Globalization of Modeling Languages, co-located with MODELS
2018 (2018)

27. Tunjic, C., Atkinson, C., and Draheim, D.: “Supporting the Model-Driven Organization Vision
through Deep, Orthographic Modeling.” Enterprise Modelling and Information Systems
Architectures-an International Journal 13(SI), 1–39 (2018)

28. Vangheluwe, H., Lara, J. de, and Mosterman, P.J.: An introduction to multi-paradigm mod-
elling and simulation. In: AIS’2002 Conference, pp. 9–20 (2002)

29. Werner, C., Schön, H., Kühn, T., Götz, S., and Aßmann, U.: Role-Based Runtime Model
Synchronization. In: 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 306–313 (2018)

30. Werner, C., and Aßmann, U.: “Model Synchronization with the Role-oriented Single Underly-
ing Model.” MODELS 2018 Workshops (2018)

31. Zachman, J.A.: “A framework for information systems architecture.” IBM Systems Journal
26(3), 276–292 (1987)

http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.18417/emisa.13.7
http://dx.doi.org/10.18417/emisa.13.7
http://dx.doi.org/10.1147/sj.263.0276

	Classifying Approaches for Constructing Single Underlying Models

