Traceability enabled by Metamodel Integration

Johannes Meier, Andreas Winter
Carl von Ossietzky Universitat, Oldenburg, Germany
{meier,winter}@se.uni-oldenburg.de

Abstract

Traceability supports software development by con-
necting separated software artifacts explicitly with
each other using traceability links. While intra trace-
ability within single artifacts is solvable by a single
metamodel, for inter traceability between different
separated artifacts their metamodels have to be re-
lated to each other. Therefore, this paper presents an
approach to realize inter traceability by integrating
the metamodels of the artifacts into one metamodel
together with their traceability information. The ap-
proach is demonstrated in a small software project
using requirements, class diagrams, and source code.

1 Motivation

Traceability is “the ability to describe and follow
the life of a software artifact” [I} 2, B]. After “mod-
eling the relations between software artifacts in an
explicit way” [3], these relations between software ar-
tifacts are called traceability links. Traceability links
can be exploited among others for discussing with
stakeholders, for documentation, and for propagating
changes from on to another related artifact to ensure
consistency. Therefore, traceability is important in
software projects.

As example, in a simplified software development
project, there are requirements, class diagrams, and
source code as artifacts. The requirements are docu-
mented as list of textual requirements, class diagrams
model the data structures, and Java source code forms
the final software product. In this project, there are
two main scenarios for traceability:

1. Each requirement should be fulfilled by a method
in the source code. Since this relation often ex-
ists only implicitly, traceability links should ex-
plicitly link each requirement with its fulfilling
method. As benefit, validation checks are possi-
ble, e.g. whether each requirement is linked with
at least one method.

2. The required data structures are modeled with
class diagrams and implemented with Java at
the same time in two separated artifacts. Here,
traceability has to ensure the consistency between
classes within class diagrams and the correspond-
ing classes within the source code.

This simplified example will be used for motivation
and application throughout this paper.

[4] distinguishes between intra (called horizontal
in [4]) and inter (vertical) traceability. Intra traceabil-
ity describes traceability of software artifacts within
the same level of abstraction or development phase.
An example for intra traceability are methods called
by other methods, which are all defined within Java
source code. Inter traceability describes traceability
between software artifacts of different type, abstrac-
tion level, or development phase. The introduced
traceability scenarios are examples for inter traceabil-
ity, like source code which fulfills requirements.

Intra traceability can be realized by describing the
affected artifact by a model which conforms to a meta-
model. If the metamodel provides corresponding ref-
erences between the meta-classes, traceability links
can be added on model level. As simplified example
in Figure [1} a Java metamodel like [5] (an alterna-
tive is [6]) represents declarations of methods by the
meta-class MethodDeclaration and the use of meth-
ods by MethodInvocation. The traceability between

MethodDeclaration MethodInvocation

Declaration[0..1] MethodBinding Invocations[*]

+Body : Block[0..1] Method[1] | +Name : String[1] [Method[1] +Arguments : Expression[’]

Figure 1: Intra Traceability within in a Java Metamodel

declaration and use is realized by MethodBinding and
the connecting references. Navigation and query-
ing for declarations and invocations of given meth-
ods is enabled by such metamodels and intra trace-
ability. As another example, for renaming a method
(MethodBinding.Name), the new name has to be
used by related declaration and invocations. There-
fore, traceability is needed for MethodDeclaration
and MethodInvocation to retrieve its name from the
linked MethodBinding.

In the case of inter traceability between two differ-
ent artifacts like requirements and source code, this
solution is not possible with only two separated meta-
models for each artifact. With only two separate
metamodels available, no additional meta-class or re-
lation can be added between them. Therefore, the
independent metamodels have to be related to each
other. Section [3] presents the idea of metamodel inte-
gration [7], which takes existing separated metamod-
els and constructs one single, integrated metamodel
containing the content of all separated metamodels.
As goal, this paper shows, that metamodel integra-
tion enables traceability between different artifacts.

{meier,winter}@se.uni-oldenburg.de

2 Related Work

This Section classifies existing traceability ap-
proaches, and points to important challenges for trace-
ability approaches. The fulfillment of these challenges
by the new approach is discussed along its description
in Section [3] and its application in Section [4]

The related work regarding traceability can be de-
vided into two main groups [I]: The first group de-
scribes traceability of elements which are passed and
transformed through model transformation chains,
which are often used in Model-Driven Development
(MDD). Traceability links can be computed by ana-
lyzing the applied transformation rules, or by record-
ing them during the transformation execution.

Since step-wise transformations of artifacts into
other artifacts are not used in software development
projects like the ongoing example, this paper focuses
on the second group, which describes traceability be-
tween different existing and evolving artifacts. Since
these artifacts are isolated by physically separated
files, or different tools, traceability between these het-
erogeneous artifacts is required [§].

For storing identified traceability links, there exist
two main approaches [9]. The first approach saves
traceability links within the existing models as addi-
tional model elements. Because this embedding and
in-place-storage also changes the corresponding meta-
model, existing tools using the metamodel might not
work after this embedding. This would require effort
for the adaptation of existing tools.

Challenge 1 requires further use of the ex-
isting and unchanged, separated models and
metamodels. As comparable approach with an inte-
grated metamodel, [10] ignores the initial artifacts.

On the other hand, in-place-storing supports read-
ability for humans [II], and querying of model ele-
ments with their intra traceability. As benefit for the
user, also inter traceability links have to be presented
together with their traced elements.

Challenge 2 requires the easy visualization
and query of intra and inter traceability and its
traced content. Because in-place-storing can save
only intra traceability links, it does not fit here.

The second approach stores all traceability links
externally within a new traceability model conforming
to a traceability metamodel. This additional traceabil-
ity model stores only the inter traceability links which
refer to the traced elements, which are stored in the
existing concrete models. To realize connections be-
tween traceability links and their traced elements over
model boundaries, unique and stable identifiers are
required for the resolution of the traced model ele-
ments [J]. Because of this technical disadvantage,

Challenge 3 avoids stable and unique identi-
fiers for each model element. Approaches creat-
ing an integrated traceability metamodel on-demand
like [9], and [II] require stable and unique identifiers.

Two general kinds exist how to represent the re-

quired traceability links [II]: The first kind allows
traceability links wunlimited between all types of el-
ements of all models. Project specific limitations,
e.g. requirements are traceable to methods, but not
to single statements, can only be realized by manu-
ally added constraints limiting the connected types,
or multiplicities. Examples for those approaches can
be found in [I2], and on reference level in [10].

The second kind comprises traceability metamod-
els which are manually created for a specific project
and purpose. Advantage is the possibility of strongly
typed traceability links with project specific defini-
tions, while the creation of these specific traceability
metamodels takes more effort [I1]. Possible traceabil-
ity links of existing approaches differ regarding type
(untyped vs. only a small number of pre-defined types
like Dependency or Refinement vs. arbitrary user-
defined types), hierarchy of allowed types, multiplici-
ties, allowed kinds of constraints, and some more [IJ.
To minimize required constraints and to maximize the
degree of adaptation to project specific needs,

Challenge 4 requires traceability links with
user-defined types and multiplicities. In this
way, the approach of this paper can be used for the
traceability of arbitrary artifacts and project settings.

3 Metamodel Integration

Central idea of this approach is to keep the ex-
isting artifacts in form of their models, conforming
to metamodels, unchanged and independent to over-
come Challenge 1. These existing metamodels (mod-
els) will be called concrete metamodels (concrete mod-
els) within this paper. The traceability links will be
stored externally within a new metamodel.

In contrast to most existing approaches which use
dedicated traceability metamodels only for traceabil-
ity content, this new metamodel contains the content
of all concrete metamodels together with meta-classes
and references describing traceability. Therefore, this
new metamodel is one Single Underlying MetaModel
(SUMM) [I3], which integrates all artifacts and their
traceability by their metamodels. The same counts
for the model level, which forms one Single Underlying
Model (SUM) [13] containing the concrete models of
each artifact together with traceability links. All ex-
isting artifacts are connected with each other by their
traceability. In contrast to [I4], SUMM and SUM are
permanently persisted. Visualizations and queries for
the traceability together with the traced entities are
straightforward (Challenge 2), because they work on
one integrated metamodel and one integrated model.

How to create such SUMM out of existing con-
crete metamodels is drafted in [7]: Starting with one
concrete metamodels, special operators are applied in
step-wise way to the current metamodel. Each op-
erator improves the existing metamodel by a small
change, like adding a new relation (AddRelation) be-
tween two classes to represent their traceability.

3.1 Traceability Scenarios

Before defining these operators in Section and
listing available operators in Section [3.3] this Section
shows how to apply these operators regarding trace-
ability of the ongoing example project.

Initially, the concrete metamodels for require-
ments, class diagrams, and source code are indepen-
dent. Therefore, these metamodels are integrated into
the SUMM using the operator IntegrateMetamodel,
which copies all three metamodels into the SUMM
and all three models into the SUM. Now, the differ-
ent artifacts are connected on technical level, but still
without traceability connections to each other.

To add traceability links between methods in
the source code and its fulfilling requirements on
model level (Scenario 1 in Section [[), on meta-
model level, a new reference between the meta-classes
MethodBinding and Requirement is required. Be-
cause this reference is currently missing in the SUMM,
it has to be added. For that, the operator AddRela-
tion adds a new relation between the two classes in
the SUMM (metamodel change). Now on content
level, traceability links can be added and stored. To
compute some initial traceability links for existing
methods and requirements (model change), project-
specific decision logic is required to determine these
traceability links (additional decisions). Because this
new relation is named and has a target type together
with multiplicities, Challenge 4 is fulfilled. Because
the complete content of all concrete models is han-
dled together with the traceability links within one
SUM, no unique and stable identifiers are required,
because links between objects are directly connected
and stored (Challenge 3). Compared with the related
work (Section7 inter traceability issues are solved by
intra traceability within the SUM.

Scenario 2 in Section [I]is related to the traceability
of classes in class diagrams and source code. Trace-
ability is required, because the same class can be avail-
able as KClass in class diagrams and as TypeBinding
in source code, which leads to inconsistency. As exam-
ple, renaming of a class leads to changing two names.
Therefore, on model level, instances with the same
name are the same class, and should be related to each
other. Instead of adding traceability links between
the two meta-classes, this approach allows to remove
this duplicated information by unification. Therefore,
an operator called MergeTwoClasses will be applied
to these two meta-classes which leads to one meta-
class representing both classes from source code and
classes from class diagrams. On model level, this leads
to removed duplicated objects. Hence, traceability of
duplicates is realized by elimination instead of linking.

3.2 Properties of Operators

As indicated in Section [3.1] each operator has the
following properties:
Metamodel change The operator changes some

(often small) part of the current metamodel, e.g.
to add a new reference for traceability.

Model change Because of the change in the meta-
model, corresponding changes in the models are
required to keep models and metamodel consis-
tency. Therefore, each operator is a coupled oper-
ator introduced by [I5], coupling the metamodel
change with changes in the model to keep it con-
sistent to the changed metamodel.

Additional decisions Some operators require addi-
tional decisions, how changes on the model level
should be handled. Adding a new relation on
metamodel level (AddRelation) for traceability
leads to the question, which traceability links
on model level should be added. Because this
decision depends on the specific needs for each
project, the operator can be parameterized by in-
dividual code for this decision.

Bi-directionality of operators is achieved by com-
bining each operator with an inverse operator, so
that applying the forward operator and then the
backward operator will lead to the initial meta-
model. The inverse operator for AddRelation is
RemoveRelation, which removes an existing re-
lation on metamodel level together with all cor-
responding links on model level. This property
is required to support the transformation of con-
crete models into a SUM (forward direction), and
to divide a SUM into the concrete models (back-
ward direction) for Challenge 1, which will be
discussed in more detail in Section [4.4l

3.3 Operators

The following operators are usable for the integra-
tion of metamodels regarding traceability scenarios:
IntegrateMetamodel adds an existing metamodel

to the current metamodel by copying all classes,
relations, and generalizations. On model level,
the external model is copied into the existing
model. Therefore, SUMM and SUM are created
by adding external (meta)models to the existing
(meta)model. Additional decisions are not re-
quired. The bidirectionality is reached by delet-
ing all copied classes on metamodel level and all
their instances on model level.

AddRelation adds a new relation between two ex-
isting classes on metamodel level. On model
level, new links will be added between existing
objects, corresponding to the deposited decision.
The inverse operator is RemoveRelation, which
removes an existing relation on metamodel level
together with all corresponding links on model
level (skipped here).

MergeTwoClasses into one class is required to
unify information which is available twice. On
metamodel level, two classes are replaced by one
class which gets all attributes and references of
the two source classes. A decision is required to
determine the pairs of objects which should be re-

initial: initial:

Java ClassDiagra
initial: Integrate Add Relation Integrate Extract Merge Two Merge Two
Requirements Metamodel Metamodel Sub Class Classes Attributes

Figure 2: Applied Operators for the Traceability scenarios of the example Software development project

placed by one object on model level. The inverse
operator is SplitClass (skipped here).
MergeTwoAttributes into one attribute replaces
two attributes within the same class by one at-
tribute. On model level, a decision determines
the value of the new attribute given the values of
the old attributes. The inverse operator is Spli-
tAttribute (skipped here).
There are operators supporting the metamodel inte-
gration, but not specific for traceability issues:
ExtractSubClass creates a new sub class in the
metamodel. Depending on a decision, the type
of existing instances of the old super class will be
changed to the new sub class. The inverse oper-
ator is InlineSubClass (skipped here).

4 Application

This Section applies the presented approach for
metamodel integration of Section [3|to the ongoing ex-
ample. The application is implemented using Java,
reusing some coupled operators [I5], and parts of
the model migration infrastructure from the EDapt
project (https://www.eclipse.org/edapt/).

ECore [16] was chosen as language to describe all
metamodels. As precondition, each artifact has to be
available as model conforming to a metamodel: The
textual requirements are managed in CSV tables (Fig-
ure |3 top), from which the metamodel in Figure
(bottom) was derived. For modeling class diagrams,

D Author Text
rg-1 Johannes Meier The system has to support universities, students, and lectures.
rg-2 Andreas Winter The student must be able to register for an event.
rg-4 Johannes Meier A lecture must be able to be published.

requirements/

Requirement

+rowNumber : EInt[0..1]
+id : EString[0..1]
+author : EString[0..1]
+text : EString[0..1]

RequirementsSpecification | container[1]
content[*]

Figure 3: Requirements: View (top), Metamodel (bottom)

a collaborative editor for UML class diagrams [17]
was used. Java source code is represented using a
metamodel, which bases on transformations from the
Eclipse JDT to ECore [5].

For showing how to deal with traceability in this ex-
ample, four main activities in traceability approaches,
slightly adapted from [I], will be shown: Representa-

tion (4.1)), Identification (4.2), Use (4.3), and Mainte-
nance (4.4) of traceability links.

4.1 Representation

During this activity, the project setup regarding
traceability issues defines, in particular, how to repre-
sent and store traceability links. Following the meta-
model integration approach of Section[3] the operators
depicted in Figure [2| will be applied to get a SUMM
supporting the required traceability scenarios: The
integration is started with the metamodel for require-
ments as initial metamodel. After loading the meta-
model for Java, the operator IntegrateMetamodel @)
integrates it on technical level into the Java meta-
model by copy. The model containing the Java source
code is copied into the model already containing all
requirements. The current SUMM contains now el-
ements to describe Java and requirements, while the
current SUM contains all available requirements next
to the complete Java source code.

The operator AddRelation @ solves the traceabil-
ity Scenario 1 by adding a new reference between the
meta-classes Requirement and MethodBinding (Chal-
lenge 3+4), shown in Figure[5] On model level, trace-
ability links can be added between requirements and
methods. The new traceability links, roughly depicted
in Figure {4} are created by decision logic, which links
requirements to those MethodBindings, whose Name is
contained in the Requirement’s text. Requirements
and methods are integrated and traceable now.

Using the operator IntegrateMetamodel @), the
metamodel to describe class diagrams and the model
containing a class diagram are integrated. As re-
sult, the current SUMM contains concepts for Java,
requirements, and class diagrams, while the current
SUM contains the available Java source code, the ex-
isting requirements, and a class diagram. All three
artifacts are now part of one artifact. While Java and
requirements are already integrated, the class diagram
is still without traceability links.

As preparation for its integration, the operator Ex-
tractSubClass @ specializes the class TypeBinding
into ClassTypeBinding. Because TypeBindings rep-
resent also enums, primitive types, null and so on,
instances which represent classes are migrated to the
new sub class. Parts of the resulting SUMM are de-
picted in Figure[6] The new class with its generaliza-
tion is marked in red. For brevity, some more used
operators are skipped in this paper.

Now the traceability Scenario 2 regarding the con-
sistency issues of KClasses and ClassTypeBindings
is addressed by the operator MergeTwoClasses @),

https://www.eclipse.org/edapt/

260ff5b7 : JavaASG

fulfilledReqGirementsto ‘conterft2HReg
0]

[2c271689 - i ion |

‘content[1]

-
:container :Container
:con

24189b6b

54dd6160 3977¢7e4 : Requirement

[4ds286c4 : ing | [4etcedd: inding |
[[Name - EString (0,11 = "publish” | [Name : EString [0..1] = "register” |

rowNumber : EInt [0..1] = 3
EString [0..1] = "rg-4"

author : EString [0..1] = "Johannes Meier”
text : EString [0..1] = A lecture must be able o be published."

row!

id

author : EString [0..1] = "Andreas Winter"
text : EString [0..1] = "The student must be able to register for an event."

Number : EInt [0..1] = 2 rowNumber : EInt [0..1] = 1
EString 2" EString [0..1] = "rg-1"

id =
author : EString [0..1] = "Johannes Meier"
text : EString [0..1] = "The system has to support universities, students, and lectures."

[0..1] ="rq:

Figure 4: Model after applying Operator AddRelation @ with new traceability links in red

data)
RequirementsSpecification!

MethodBInding | pegiaringClassfo..1]| TYPeBinding

+Name : String[1] [Methods[*] +Name : String[1]
—— ——

fulfilledBy[*]
allMe

container[1]

allTypeBindingsl’

content[*]

Requirement

+rowNumber : EInt[0..1]
+id : EString[0..1]
+author : EString[0..1]
+text : EString[0..1]

Figure 5: Integrated Metamodel after Operator 9

[data)
[ReauirementsSpecification]
——
container(1] integrator(0..1]
content(']
- ¥ containsKClass(’]
fulflledBy["] jass

Tuliling[*]

o[Trmesnams]
[Name : Stingr1] |
L |

[oino9Bm75 | postarngcs
[*Name - Sting(1] | Methods[']
t |

¥l
asg[N, asg[1]

Figure 6: Integrated Metamodel after Operator 9

which moves all features and generalizations of
KClass to ClassTypeBinding, and removes KClass
afterwards. Asresult in Figure[7} ClassTypeBindings

data/

ClassTypeBinding

+kname : EString[1]
——

RequirementsSpecification!

m integrator[0..1]
——1* containsKClass[']

fulfilledBy{

container[1]

content(*]

Requirement

TypeBinding

+rowNumber : EInt[0..1]
+id : EString[0..1]
+author : EString[0..1]
+text : EString[0..1]

DeclaringClass[0..1] | MethodBinding
Methods[*] | +Name : String[1]
—

+Name : String[1]

allTypeBindings*] allMethodBindings[

Figure 7: Integrated Metamodel after Operator 9
can now be contained by Models, too. The changes
on model level are depicted in Figure [9] in which
the top line represents the model before executing
the operator, and the bottom line shows the re-
sult afterwards. Each instance of KClass became
an instance of ClassTypeBinding and get slots for
the new features. The decision logic to determine
which KClass instance should be merged into which
ClassTypeBinding checks, whether the values of the
attributes kname and Name are the same. As final re-
sult, each instance of ClassTypeBinding contains all
information of both initial instances. The traceability
is solved by merging two related instances into one
instance which saves one traceability link. The prob-
lem of inconsistency because of duplicated content is
solved by elimination of the duplication and ensuring
a single point-of-truth. In the final step (shortened
for this paper), the two attributes Name and kname
representing the same content are merged into one at-
tribute using the operator MergeTwoAttributes (@.
Now, renaming of a class is done by changing only its
Name value without inconsistencies.

As result of the representation activity, a chain of
operators is defined. The execution of this operator
chain leads to the SUM conforming to the SUMM,
while traceability information is part of the SUM it-
self. Comparing with the related work (Section ,
the traceability metamodel is part of the SUMM.

4.2 Identification

The identification of traceability can be done dur-
ing the execution of operators as well as afterwards
using the SUM. During the execution of operators,
decisions can be used to handle the traceability on
model level. As example, the AddRelation operator
allows to specify, which traceability links should be
added (Section [4.1). This case is important to create
traceability links for already existing artifacts.

After creating the SUM, traceability links, e.g. be-
tween requirements and methods, can be added di-
rectly to the SUM, because all existing methods and
requirements are together available in the SUM. To

D Text Fulfilling Metheds
rg-1 The system has to support universities, students, and lectures.
rg-2 The student must be able to register for an event. Student.register()
rg-4 A lecture must be able to be published. Lecture. publish{)

Figure 8: New Viewpoint for Traceability Management

ease the manipulation of the huge SUM, new view-
points can be defined on top of the SUMM, showing
the user views like in Figure This case should be
used since SUMM and SUM were set up.

In both cases, arbitrary methods and techniques
for the identification of traceability links can be used.
Because all available information are together in the
SUM, this identification is eased.

4.3 Use

Using the identified traceability links is possible by
analyzing the SUM. Because all information of all ar-
tifacts of the project, including traceability links with
all traced elements, is integrated within one model
conforming to one metamodel, existing modeling tech-
niques and tools like querying [18] and versioning can
be reused for traceability. In the same way, arbitrary
visualizations can be defined using the SUM (Chal-
lenge 2). Another case is the creation of new view-
points on top of the SUMM to show only selected
parts of the SUM. Figure [§] contains an example.

4.4 Maintenance

The maintenance regarding updates of the traceabil-
ity links is realized by updating, adding, or deleting
them using the SUM, in the same way like described
in the identification activity in Section [£.2]

260ff5b7 : JavaASG

[)
;@89 asg| :asg
:allTypeBindings[0] :allTypeBindings|[5] :allTypeBindings[8]

664d3e18 : Model

:containsKClass|0]

238bfd6c : ClassTypeBinding 7139bd31 : ClassTypeBinding

27b45ea : ClassTypeBinding

32755827 : KClass 3e28c8a0 : KClass

Name : EString [1] = "Lecture" Name : EString [1] = "University"

Name : EString [1] = "Student"

kname : EString [1] = "University" kname : EString [1] = "Student"

[260f5b7 : JavaASG | [664d3e18 : Model |

:asg asg| :asg
:allTypeBindings[0] :allTypeBindings[5]

:allTypeBirdings[8]
238bfdéc : ClassTypeBinding 7139bd31 : ClassTypeBinding

27b45ea : ClassTypeBinding

Name : EString [1] = "Lecture"
kname : EString [1] =

Name : EString [1] = "University"
kname : EString [1] = "University"

Name : EString [1] = "Student"
kname : EString [1] = "Student"

Figure 9: Model before (1st line) and after (2nd line) applying Operator MergeTwoClasses @ with changes in red

For the example of classes represented in class di-
agrams and source code, the maintenance is solved
directly and without additional effort, because the
SUMM contains classes only once. Changing names
of classes can not lead to inconsistency, because there
is no duplicated information anymore.

The maintenance regarding updates of the initial
artifacts is solved by the design of the used opera-
tors as bi-directional (Section. While Section
focuses on integration of separated artifacts into the
SUM (forward direction), each operator can be exe-
cuted also in backward direction. Therefore, the cur-
rent SUM will be taken and the defined chain of oper-
ators will be executed the other way round. As result,
the SUM will be divided into the separated artifacts
again. But the re-created single artifacts contain all
the updates executed on the SUM. Therefore, changes
in the SUM are submitted into the initial artifacts,
which are kept up-to-date to overcome Challenge 1.

5 Conclusion

This paper shows how the integration of meta-
models overcomes traceability challenges. Along re-
lated work, the integration of all software artifacts
with their traceability into one Single Underlying
MetaModel (SUMM) was motivated. To create such
SUMMs supporting the traceability between sepa-
rated artifacts, chains of operators combining changes
on metamodel and model level with additional deci-
sion logic and bi-directionality were introduced. The
approach was demonstrated for a software project us-
ing requirements, class diagrams, and source code.

As summary, for adding additional traceability
links, operators like AddRelation are useful. For han-
dling the consistency of duplicated content, duplica-
tions are reduced by operators like MergeTwoClasses.
The elimination of duplicated content prevents incon-
sistency, introduces a single point-of-truth, and re-
duces traceability links. In the end, traceability in-
formation is stored and updated together with the in-
formation of all artifacts in an integrated manner.

References

[1] S. Winkler and J. von Pilgrim, “A survey of traceability in
requirements engineering and model-driven development,”
Software and Systems Modeling, vol. 9, no. 4, 2010.

2]

(3]

(5]

[6]

[10]

[11]

[12]

O. Gotel and C. Finkelstein, “An analysis of the
requirements traceability problem,” in Int. Conference on
Requirements Engineering. IEEE Comput. Soc., 1994.

P. Lago, H. Muccini, and H. van Vliet, “A scoped approach
to traceability management,” Journal of Systems and
Software, vol. 82, no. 1, pp. 168-182, 2009.

B. Ramesh and M. Edwards, “Issues in the development of
a requirements traceability model,” IEEE Int. Symposium
on Requirements Engineering, vol. 27, no. 1, 1993.

A. Meyer, “A Framework for Abstract Semantic Graphs,”
Bachelor Thesis, University of Oldenburg, 2016.

F. Heidenreich, J. Johannes, M. Seifert, and C. Wende,
“Closing the Gap between Modelling and Java,” Software
Language Engineering, LNCS 5969, pp. 374-383, 2009.

J. Meier and A. Winter, “Towards Metamodel Integration
Using Reference Metamodels,” VAO 2016, 2016.

I. Galvao and A. Goknil, “Survey of traceability ap-
proaches in model-driven engineering,” Proceedings -
IEEE International Enterprise Distributed Object Com-
puting Workshop, EDOC, pp. 313-324, 2007.

D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “On-
Demand Merging of Traceability Links with Models,”
ECMDA 2006 - 8rd European Conference on Model-
Driven Architecture: Traceability Workshop, 2006.

H. Schwarz, J. Ebert, and A. Winter, “Graph-based
traceability: a comprehensive approach,” Software &
Systems Modeling, vol. 9, no. 4, pp. 473-492, 2010.

N. Drivalos, D. S. Kolovos, R. F. Paige, K. J. Fernandes,
“Engineering a DSL for Software Traceability,” Software
Language Engineering, vol. LNCS 5452, 2009.

A. Espinoza Limén and J. Garbajosa Sopena, “The Need
for a Unifying Traceability Scheme,” ECMDA Traceability
Workshop, 2005.

C. Atkinson, D. Stoll, and P. Bostan, “Supporting View-
Based Development through Orthographic Software Mod-
eling,” Evaluation of Novel Approaches to Software Engi-
neering (ENASE), pp. 71-86, 2009.

M. E. Kramer, E. Burger, and M. Langhammer, “View-
centric engineering with synchronized heterogeneous mod-
els,” VAO 20183, 2013.

M. Herrmannsdoerfer, S. D. Vermolen, and
G. Wachsmuth, An FEzxtensive Catalog of Operators
for the Coupled Ewvolution of Metamodels and Models,
Software Language Engineering, LNCS 6563, 2011.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework, Second Edition.
Boston: Addison Wesley, 2009.

D. Kuryazov and A. Winter, Collaborative Modeling Em-
powered By Modeling Deltas, ACM SIGWEB Int. Sympo-
sium on Document Engineering, ACM, 2015.

B. Kullbach and A. Winter, “Querying as an enabling
technology in software reengineering,” in Eu. Conf. on
Software Maintenance and Reengineering, IEEE, 1999.

	Motivation
	Related Work
	Metamodel Integration
	Traceability Scenarios
	Properties of Operators
	Operators

	Application
	Representation
	Identification
	Use
	Maintenance

	Conclusion

