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ABSTRACT
To keep semantically interrelated and physically separated artifacts
consistent to each other is challenging. Consistency between such
artifacts, described by models and conforming to metamodels, tar-
gets mainly synchronizing overlapping information and additional
relations between them. This paper depicts an approach to synchro-
nize models by integrating models together with their metamodels
into an integrated (meta)model using special operators. These op-
erators are used to keep all models consistent to each other, which
is discussed for two consistency rules along three use cases.

1 MOTIVATION
In modern software systems the heterogeneity of languages de-
scribing certain aspects of systems grows. This includes models,
domain specific languages for different but overlapping concerns,
and data produced by tools in arbitrary data formats. All these
languages produce data, which are often separated technically from
each other by different data formats, different technical spaces, or
different tools, because of historical growth, or different users with
different working locations, concerns or access rights. In this paper,
all artifacts are described by models and conforming metamodels.

These technical separations rise issues, if these models describe
information which are interrelated contentwise: If two models are
overlapping and describe the same information, this information
has to be kept consistent to each other. If two models describe differ-
ent information which are related to each other, these relations have
to be described, changed and stored. These interrelations between
models are specific to each project and are called consistency rules.
If all consistency rules are fulfilled, the models are consistent to
each other. Therefore, the goal of this paper is to depict an approach
that ensures model consistency for arbitrary models conforming to
arbitrary, but appropriate metamodels, by using an integrated data
structure containing all information of all models.

As ongoing example throughout this paper (the transferability
is discussed in Section 4.3), a strongly simplified software develop-
ment project environment is depicted: Requirements are described
textually. The design is developed by class diagrams, while the
sourcecode is written in Java. These three languages are supported
by three different tools and result in three technically separated
models and metamodels. Figure 1 shows three simplified meta-
models for the ongoing example. Requirements are depicted by
a set of Requirements with an id and its requirements sentence
stored in text (top left). Class diagrams contain Classes with their
classNames and Associations which are unidirectional, have a
role name and point to one class as type (top right). Java sourcecode
depict ClassTypes representing classes with name and containing
Methods with name and calling-calledBy-relationship (bottom).
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Figure 1: Initial simplified Metamodels for Requirements
(top left), Class Diagrams (top right), and Sourcecode (below)

Since these three models describe three different concerns orig-
inating in different tools within the same project, there are the
following two illustrative consistency rules:

Consistency Rule 1: Data classes are described by class dia-
grams as well as by Java: If an instance of asgjava.ClassType
has the same value for name like an instance of umlclasses.Class
for className, these two instances describe the same information
and should be renamed in parallel. Sourcecode and class diagram
are consistent to each other, if they describe the same set of data
classes, identified by their class names.

ConsistencyRule 2: Requirements describe functionality, which
is realized by business logic written in Java. Since the manager
wants to know, which requirements are already fulfilled in Java,
requirements should be linkable with Java methods. Requirements
and sourcecode are consistent to each other, if (at least) each re-
quirement is linked with all methods whos names are contained in
the text of the requirement.

Up to now, the required consistency assurance is often done
with hand-written glue transformations or even manually. In the
latter case, even the consistency rules are not made explicit, which
causes potential misunderstandings between users and introduces
new inconsistencies. Therefore, an elaborated approach is required
to ensure consistency automatically between technically separated
models and will be presented in Section 3. As preparation, there
are the following four main challenges to overcome for model con-
sistency approaches, which are used for the design of the new
approach of Section 3 and form its main characteristics:

Formalize Consistency Rules (Challenge 1): All consistency
rules have to be specified explicitly and formally. This is required
for the automation of consistency assurance. This formalization has
to be done on metamodel level to support all conforming models.



This is done by a stakeholder called methodologist who knows the
current project like the ongoing software development example
with its consistency rules and who has modeling experience [1].

Create explicit SUM(M) (Challenge 2): An integrated model
and conforming integrated metamodel describing all information
of all initial and independent models has to be developed. This inte-
grated model is called Single Underlying Model (SUM) [1] conform-
ing to the Single UnderlyingMetaModel (SUMM). Since overlapping
models describe information twice, which leads to inconsistencies
easily, the SUM contains such information only once without pos-
sibility for inconsistencies and can be used as single point-of-truth.
SUMs are helpful for analyses, refactorings, and visualizations tar-
geting information from more than one initial model.

Support initial (Meta)Models (Challenge 3): Reusing existing
models and conforming metamodels is the normal case, since there
are already lots of metamodels for domain specific languages and
legacy models. In particular, already existing models have to be
reused in ongoing projects, which requires follow-up challenges:

Reuse initial Models (Challenge 3a): Initially, these models
have to be imported into the new SUM.

Fix initial Inconsistencies (Challenge 3b): Since these initial
models are synchronized by hand or even not synchronized at all,
they can contain inconsistencies, which have to be fixed.

Consistent initial Models (Challenge 3c): Since existing tools
and environments work only with these initial (meta)models due
to missing tool interoperability, they have to be kept up-to-date
and should be changable, as discussed in the next challenge.

Ensure Model Consistency after User Changes (Challenge 4):
If users, who work with the initial models or the SUM, change
something, these changes have to be propagated to all other models
to keep them consistent to the changed model. Additionally, these
user changes can lead to inconsistent models afterwards, which
have to be fixed according to the consistency rules. As result, all
models reflect the changes of the users, are consistent to each other
and fulfill all consistency rules.

Contribution of this paper is the description of a new approach
ensuring model consistency regarding explicit consistency rules,
supporting initial (meta)models, and providing an integrated (meta)
model. Section 2 discusses advantages and disadvantages of existing
model consistency approaches along the challenges. Section 3 de-
scribes the new approach, which is applied to the ongoing example
with discussion in Section 4 and summarized in Section 5.

2 RELATEDWORK
Following ISO Standard for Architecture Description 42010:2011 [5],
model synchronization approaches are split into synthetic and pro-
jectional approaches. Synthetic approaches keep the models sep-
arated from each other and introduce pair-wise transformations
between them to ensure consistency between them. Therefore,
initial models can be supported easily (Challenge 3), but no inte-
grated model is used (Challenge 2). The transformations are the
formalization of consistency rules (Challenge 1) and ensure model
consistency (Challenge 4). Here, several approaches exist using dif-
ferent transformation techniques like Triple Graph Grammars [12]
or QVT-R [11], or using explicit correspondences [3].

synthetic projectional
OSM Vitruvius

1. Formalize Consistency Rules yes yes yes
2. Create explicit SUM(M) no explicit virtual
3a. Reuse initial Models yes no yes
3b. Fix initial Inconsistencies yes – no
3c. Consistent initial Models yes – yes
4. Ensure Model Consistency yes yes yes

Figure 2: Comparison of Model Consistency Approaches

Projectional approaches introduce a new data structure contain-
ing all information of all models (Challenge 2), which is used to
synchronize all models only with this integrated data structure
(Challenge 4). Additional to the reduced amount of consistency
rules between (meta)models, another benefit of projectional ap-
proaches is the integrated data structure, which allows analyses,
refactorings, and visualizations using all information of all models
in an integrated manner (Challenge 2).

The Orthographic Software Modeling (OSM) approach [1] intro-
duced the idea of a Single Underlying Model (SUM) conforming to a
Single Underlying MetaModel (SUMM) which contains all informa-
tion of the current project without any redundancies (Challenge 2).
Users change the SUM not directly but through views which are
subsets of the SUM and which correspond to the initial models to
integrate in this paper. Since OSM is a top-down approach starting
with the development of the SUMMwith high quality, initial models
are not supported (Challenge 3). Therefore, there is no distinction
between initial views and newly created views.

The Vitruvius approach [6] follows the SUM idea, where users
change the initial views, but realizes the model consistency inter-
nally by a modular SUM which keeps the models separated and
which are synchronized (Challenge 4) by an own language for con-
sistency rules (Challenge 1). Since this language needs consistent
models as precondition, there is no build-in support to fix initial in-
consistencies (Challenge 3b). In the end, the SUM exists only virtual
and is not usable (Challenge 2). New views containing information
of several initial views are defined with ModelJoin [2].

Figure 2 summarizes the main characteristics of the mentioned
approaches. Since OSM does not support initial separated mod-
els, while Vitruvius and all synthetic approaches have no explicit
SUMs, which are helpful for analyses, refactorings, and visualiza-
tions targeting information from more than only one model, this
paper describes a new projectional approach with explicit SUM and
support for the initial models, presented in Section 3. This includes
fixes of inconsistencies in the initial models (Challenge 3b) shown
in Section 3.2 and support for changing the SUM directly by users
in contrast to OSM and Vitruvius depicted in Section 3.3.

3 METAMODEL INTEGRATION
The new approach of this paper follows the idea of having a pro-
jectional and explicit SUM [1] (Challenge 2) which takes the initial
models into account (Challenge 3). The main challenges, motivated
in Section 1, are fulfilled by this new approach, which will be pre-
sented along three use cases applying this approach to the ongoing
example. This approach is operator-based, since operators are used
to describe transformations between the initial models and the SUM
(Use Case 1). Chains of operators are executed to initialize the SUM
(Use Case 2) and to keep all initial models and the SUM consistent
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Figure 3: Chain of configured Operators for integrating Requirements, Class Diagrams, and Sourcecode

to each other (Use Case 3). Operators split long transformations
into clear and manageable steps or mini transformations, which
allows for iterative development and simplifies debugging, because
the models before and after have to be consistent. As shown in
detail later, the SUMM can be developed and improved step by step.
Additionally, the consistency rules can be assigned explicitly to
single operators and are therefore distinguished from each other.

3.1 Use Case 1: Configuration of Operators
The challenges overcome by this first use case are the formalization
of consistency rules (Challenge 1) and the bottom-up definition of
the SUMM (Challenge 2). Therefore, preconditions for this use case
are the initial metamodels and the consistency rules. Initial meta-
models are reused as starting points. After that, the methodologist
selects step-wisely special operators which are provided by the
approach, and applies them to the current metamodel to form an
improved metamodel. After selecting and configuring enough oper-
ators, the current metamodel is used as final SUMM (Challenge 2).

A possible chain of configured operators for the example is
shown in Figure 3: Starting with the metamodels for Requirements
and Java , the first step is to include the two metamodels 1 . This
is done only for technical reasons and results in a new container
class ProjectData, but changed nothing regarding the contentwise
integration. The same counts for ClassDiagram included at 3 . Op-
erators are selected and configured, which are denoted along the
edges of the operator chain and introduce 2 , 5 , and 6 . Each sign
i describes one stable and consistent metamodel with one con-
forming model, which is created by executing all previous operators
starting with the initial metamodels.

Themethodologist selected the operator AddAssociation 1 → 2
to fulfill the second consistency rule (Section 1), which requires
to link requirements and methods fulfilling them. Since links are
represented by an association on metamodel level, which is missing
in the initial metamodels (Figure 1), a new association between
Requirement and Method has to be created. This new association
is drawn in red in the final SUMM in Figure 8. Conforming to the
consistency rule, on model level links have to be created between
each requirement and that methods whose names are contained in
the text of the requirement.

The operator ChangeMultiplicity is applied twice 5 ( 4 is
hidden because of space) which change the multiplicities for the as-
sociations asg and diagram (red in Figure 8). They change nothing
in the model and provide the basis for the next operator.

The methodologist selected the operator MergeClasses 5 → 6
to fulfill the first consistency rule (Section 1), which requires the
same set of data classes described by class diagrams and in Java.
Since data classes are described by two different classes (ClassType
and Class), in the SUMMonly one class should be used (ClassType,
marked red in Figure 8). Doing the same on model level unifies

duplicated instances representing the same data classes and pre-
vents inconsistencies in the SUM. After applying the last operator
MergeAttributes, the final SUMM is available in Figure 8.

Operator

MM

M

Metamodel
Decisions

Model
Decisions

MM’

M’

Figure 4: Signature of Operators

To support this, the used operators have the following five char-
acteristics, depicted along the signature of operators in Figure 4.
To create a new association into the metamodel for the first con-
sistency rule along the operator AddAssociation 1 → 2 , each
operator executes a small (1) change in the metamodel on the
given input metamodelMM and changes it in-place withMM ′ as
result. Thus the initial metamodels are changed step by step along
the operator chain resulting finally in the SUMM.

Since initial models should be reused and transferred into the
SUM (Challenge 3a), additional (2) changes in the model are
required to migrate the input model M in-place into the output
model M ′. These model changes keep the model conform to the
changed metamodel and solve the model-co-evolution problem.
Additionally, these model changes reflect the consistency rules. As
example, the operator AddAssociation has to do nothing regarding
model-co-evolution, but could create links following consistency
rules 1 → 2 (discussed later). These two characteristics are the
same as in coupled operators introduced in [4].

Since theses operators should be provided as library by the ap-
proach and reused by methodologists for arbitrary projects, the
operators are designed in generic way to work with arbitrary meta-
models and models. Therefore, they provide (3) metamodel deci-
sions which describes the metamodel changes in more detail. The
operator AddAssociation provides metamodel decisions to control
source and target class of the new association together with wanted
role names and multiplicities. In the example for the second con-
sistency rule, the methodologist configures AddAssociation with
Requirement as source class and Method as target class ( 1 → 2 ).

The (4)model decisions describe, how the corresponding change
on model level look like in detail regarding degrees of freedom dur-
ing model-co-evolution and consistency rules. Here in the strongly
simplified example, a link should be created automatically between
one requirement and one method, if the name of the method is
contained in the text of the requirement. Therefore, the method-
ologist adds a model decision to AddAssociation 1 → 2 which
checks all methods and links them with requirements according to



this consistency rule. While the metamodel decisions are also used
in [4], the model decisions are newly introduced in this approach.
Both decisions allow the methodologist to create individual con-
figurations fulfilling the specific consistency rules of the current
project, while the operators are designed in general only once.

The last characteristic, (5) bidirectionality is required to keep
the initial models up-to-date (Challenge 3c): Up to now, the oper-
ators are configured by the methodologist, while these operators
are executed later to keep all models consistent to each other (Sec-
tions 3.2, 3.3). While the operator chain of Figure 3 shows, how the
initial (meta)models are transferred into the SUM(M), also changes
in the SUM has to be propagated into the initial models.

To support this “backward direction”, bidirectionality is required
for all operators, which is realized by supplemented each operator
by an inverse operator. As example, AddAssociation is supple-
mented by the operator DeleteAssociation which removes one
configurable association from the current metamodel and removes
all links conforming to this association from the current model.
After executing one operator and then its inverse operator, the
current metamodel should be the same as before both executions.
An inverse operator is always configured together with its forward
operator. This bidirectionality is requested only for the metamodel,
but not for the model to allow repairing model inconsistencies, as
described in Section 3.2 in more detail. Regarding these five char-
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Add/DeleteClass creates / deletes a class
Add/DeleteAssociation creates / deletes an association
Add/DeleteAttribute creates / deletes an attribute
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RenameClassifier renames a class
RenameFeature renames an association or attribute
ChangeAttributeType exchanges the type of an attribute
ChangeMultiplicity changes the multiplicity of an attribute or

association
MakeClass(Non)Abstract adds / removes abstract to / from a class
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g

Merge/SplitClasses merges two classes into one / splits one
class into two

Merge/SplitAssociations merges two associations into one / splits
one association into two

Merge/SplitAttributes merges two attributes into one / splits one
attribute into two

Extract/InlineSubClass extracts /inlines a sub-class

Figure 5: Current Set of Operators

acteristics, the approach provides several operators. The currently
available operators are depicted in Figure 5 and are still increasing.

Summarizing, in this use case the methodologist specifies by
configuring operators, how the SUMM is created out of the initial
metamodels. Thereby, the consistency rules for the current project
are specified explicitly within the decisions of the used operators.
The result is a chain of configured operators in form of a tree, as
shown exemplary in Figure 3. Therefore, postconditions for this
use case are having the operator chain containing the formalized
consistency rules, and the derived SUMM.

3.2 Use Case 2: Initialization of SUM
The challenges overcome by this second use case are to create the
SUM (Challenge 2) reusing the initial models (Challenge 3a) and to
fix inconsistencies within the initial models (Challenge 3b), both
corresponding to the operator chain containing the consistency

rules. Therefore, preconditions for this use case are the initial models
and the operator chain (Section 3.1). Since this is done automatically,
this use case is started by either the methodologist or users.

For creating the SUM reusing the initial models, the config-
ured operators are executed in forward direction one after an-
other, in the order shown in Figure 3. The edges without oper-
ator names include the additional model into the current model
technically. The contentwise integration is done using the opera-
tors AddAssociation 2 which adds links between requirements
and Java methods (more details in Section 3.3), MergeClasses and
MergeAttributes, which are described in more detail later. The
final SUM is reached after executing all operators and conforms to
the SUMM depicted in Figure 8. Since all information of all initial
models are stored in the explicit SUM, the initial models can be
thrown away, because they are reconstructable always out of the
SUM, or can be kept for performance issues.

The other challenge, fixing inconsistencies within the initial mod-
els following the consistency rules, is fulfilled during the execution
of operators andwill be described using the operator MergeClasses
5 → 6 , whose changes are depicted in Figure 6: The input for
MergeClasses (top left) has the data classes “University” and “Stu-
dent” of the current software development project in the Java source-
code (column “Java”, ClassType), but only “University” as part
of the class diagram (column “ClassDiagram”, Class). Therefore
“Student” is missing in the class diagram and should be fixed re-
garding the consistency rule, that class diagram and sourcecode
should contain the same data classes (Section 1). This inconsistency
is solved in the output of MergeClasses (column “SUM(M)”, top
“Model Changes”), because there is no distinction between data
classes in class diagrams and sourcecode any more. Therefore, the
output model contains only two objects, one for “University” and
another one for “Student”, since the model decisions specified, that
University : ClassType and University : Class describe
the same information and should be merged. Since the resulting
model contains now the name of the class twice in the slots name
and className, this duplicated information is removed using the
operator MergeAttributes 6 → 7 (details skipped). This is done
during the execution in forward direction to create the SUM.

To solve this inconsistency also in the initial models, the complete
operator chain is executed in backward direction from SUM to all
initial models using the inverse operators afterwards: Now, the
inverse operator SplitClass (bottom part of Figure 6) takes the
current model stemming from the SUM as input (bottom right)
and produces the output (bottom left). This output now contains
“University” and “Student”, both for the sourcecode and the class
diagram, because themethodologist specified for themodel decision
of SplitClass, that each input data class should be used both in
class diagram and sourcecode. Therefore, the additional object is
created (marked in red in Figure 6) and makes the model consistent.

In general, inconsistencies are fixed during themodel-co-evolution
following the consistency rules, which are specified within the
model decisions by the methodologist. These fixes of inconsisten-
cies are possible, because bidirectionaly is requested only for meta-
models, but not for models (Section 3.1). Therefore, postconditions
for this use case are having the fixed initial models and the newly
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Figure 6: Operator MergeClasses 5 → 6 fixes Inconsistencies during the Initialization

created SUM. After executing these first two use cases only once,
users change the SUM and the models often in the last use case.

3.3 Use Case 3: Consistency Assurance
After configuration (Section 3.1) and initialization (Section 3.2)
of the SUM once, this use case is triggered by users who change
one of the models or the SUM itself, which might introduce new
inconsistencies in both cases. Therefore, the challenges overcome
by this third use case are to propagate the changes into all other
models and to fix new inconsistencies according to the operator
chain and its consistency rules (Challenge 4). This includes the SUM
as well as all initial models to keep them up-to-date (Challenge 3c).
Preconditions for this use case are current versions of initial models
and SUM and the operator chain.

The user changes are propagated into the SUM and all other
models automatically by executing the chain of operators. This
execution is done in both directions, because all operators including
inverse operators can have model decisions which ensure model
consistency. Since changes in the initial models can be mapped to
changes in the SUM by executing the operators between this model
and the SUM, only the case of changes in the SUM is discussed here.
Since the SUM provides all information of all initial models in an
integrated way, the SUM itself form a model which can be seen as
new view containing all information and which can be changed by
users as they are changing the initial models.

The ideas of this model change propagation are depicted along
the operator AddAssociation 1 → 2 and Figure 7. Fulfilling the
consistency rule, that methods should be linked with requirements,
if the text of the requirement contains the name of the method,
the execution of AddAssociation during the initialization (Sec-
tion 3.2) integrates Requirements (left column “Requirements”)
and Methods (column “Java”) by adding a new association between

them in the SUMM (right column “SUM(M)”, marked in red) on the
metamodel level (row “Metamodel Changes”). In the model (row
“Model Changes”), one link between requirement R1 and method
M1 is created in the SUM due to the keyword “register” (marked in
red in row “1. Initialization”). Now the user does two changes the
SUM (depicted in row “2. Run” and column “SUM(M)”, in red), with
following expected impacts due to the consistency rule:

1. The user creates a new and additional link between re-
quirement R2 and method M2 in the SUM. Since these links
conform to the new association which exists only in the SUM, no
changes will appear the initial models for Java and Requirements .

2. The user renames themethodM1 from “register” to “en-
role” in the SUM. Since Methods are part of the initial model for
Java , the method should be renamed also in this initial model (col-
umn “Java”, marked in red). To realize that, the operator chain has to
be executed in backward direction, here with the inverse operator
DeleteAssociation. According to the consistency rule inside the
model decision of AddAssociation, the SUM should be enriched
by a link between requirement R2 and the renamed method M1 due
to the “enrole” keyword (row “3. Run”, column “SUM(M)”, marked
in red). At the same time, the existing link between R1 and M1
has to be deleted in the SUM , since there is no match regarding
the methods name anymore. To realize that, the operator chain is
executed again in forward direction, now using AddAssociation.

In general, to handle changes in the SUM, the operator chain has
to be executed in backward direction using the inverse operators
to update the initial model. Since also the operators in forward
direction realize consistency rules, the operator chain has to be
executed in forward direction afterwards. This rises the problem
not to loose information, which is persisted only in the SUM, but not in
the initial models: An example is the manually added link between
R2 and M2. During the 2. Run, it is deleted by DeleteAssociation.
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Figure 7: Operator AddAssociation 1 → 2 ensures Model Consistency during Consistency Assurance

During the 3. Run, is is not recreated directly, since this link does
not base on a keyword triggering the consistency rule and is not
contained within the initial models. To solve this problem, missing
information which is stored only in the SUM and not in the current
model has to be added again. This missing information is calculated
by comparing the model differences which are recorded during
the previous execution of DeleteAssociation (2. Run) and the
current execution of AddAssociation (3. Run). In the example,
this recreates the link between requirement R2 and method M2,
which was added manually to the SUM and was temporary gone.

Additionally, it also recreates the link between R1 and M1, which
should be deleted, since it was introduced automatically basing on
the keyword “register”, which was changed to “enrole” now. This
problem is caused by the design of the operators to work with com-
plete models and not only with model differences, which is required
for the initial creation and clean-up of the SUM (Section 3.2). That
means, the operators react only on existing and added information,
but not on changed and removed information. To solve this prob-
lem, the execution of operators is more complex as suggested up
to now: After executing AddAssociation the second time (row “3.
Run”) and recreating missing information (see paragraph before),
the model differences of the current execution of AddAssociation
(3. Run) are compared with the model differences of the previous
execution of AddAssociation (1. Initialization). Changes of the
previous run of this operator in this direction which are not created
again by the current run of this operator, are not valid any more.
Therefore, these differences have to be inverted. For this example,

the old creation of that link between R1 and M1 leads now to a
deletion of that inconsistent link.

In general, after executing the operator, adding missing infor-
mation and reverting previous changes which are invalid now, the
resulting model is consistent and complete, so that the next opera-
tor can be executed. Since the SUM contains all information, the
step to add missing information is required only on the way from
models to the SUM. In the end, postconditions for this use case are
updated versions of initial models and the SUM.

4 APPLICATION
To solve the motivated consistency problems in the ongoing soft-
ware development example, the methodologist selected and con-
figured the operators depicted in Figure 3 according to Section 3.1.
Linking requirements and methods with each other is supported
by the operator AddAssociation 1 → 2 , as described in more
detail in Section 3.3. Since the two meta-classes describing data
classes are merged by the operator MergeClasses 5 → 6 (detail
in Section 3.2), possible inconsistencies between class diagram and
sourcecode are fixed. Additionally, this prevents new inconsisten-
cies in the SUM, because this information is stored only once.

The resulting SUMM is shown in Figure 8 and represents the
complete content of the three initial metamodels shown in Fig-
ure 1. Additionally, it contains the new association between Method
and Requirement, and the two classes umlclasses.Class and
asgjava.Class are merged into data.ClassType which repre-
sents now data classes both in sourcecode and class diagrams.



data

RequirementsSpecifcation

Requirement

+rowNumber : EInt[0..1]

+id : EString[0..1]

+author : EString[0..1]

+text : EString[0..1]

JavaASG

ClassType

+name : EString[1]

Method

+name : EString[1]

ProjectData

ClassDiagram

Association

+name : EString[1]

+lowerBound : EInt[0..1]

+upperBound : EInt[0..1]

content[*]

container[1]

fulflled[*]

fulflledBy[*]

associations[*]

class[1]

usedBy[*]

type[1]

integrator[0..1]

containsRequirements[*]

integrator[0..1]

containsJavaASG[*]

integrator[0..1]

containsDiagrams[*]

methods[*]

class[1]

calledBy[*]

calling[*]

asg[0..1]

classes[*]

diagram[0..1]

classes[*]

Figure 8: Single Underlying MetaModel (SUMM) integrating Requirements, Class Diagrams and Sourcecode

Now the user can change the models for Requirements , Java
and ClassDiagram as well as the SUM : The SUM and all models
will be updated and possible inconsistencies will be fixed according
to Section 3.3, like discussed along Figure 7.

4.1 New Viewpoints
If the user want to change information which is new in the SUM
and represented in none of the initial models, he has to change
the SUM directly. Although that is possible as shown, it is not
very feasible, since the SUM contains all information and not only
the information the user is interested in. As example, the links
between requirements and methods are neither contained in the
requirements model nor in the Java model, but only in the SUM.
Since the SUM contain also all information about classes and class
diagrams, which are not required here, the user wants to use a new
view like exemplary depicted in Figure 9: It lists all requirements

Figure 9: New View to manage Requirement-Method-Links

together with their linked methods as subset of the SUM. Now,
users can easily change links between requirements and methods.

Therefore, new viewpoints have to be specified by the methodol-
ogist showing parts of the SUMM, in particular, information stem-
ming from more than one initial model. This new viewpoint is
specified again by selecting and configuring some more operators
on top of the SUMM, which defines an additional chain of opera-
tors to describe SUM(M)←→New View(Point) . The same set of
operators can be reused and configured according to the concerns
for the viewpoints here again. The users change the corresponding
new views and the changes are synchronized with the SUM and all
other models by executing the operators (Section 3.3).

4.2 Evolution of Metamodels
Up to now, only the evolution of models by user changes was
discussed roughly in Section 3.3. Additionally, the metamodels of

Requirements , Java and ClassDiagram as well as of the SUMM
could change [9]. The methodologist handles this evolution of the
metamodels by updating the existing operator chain accordingly.

Reasons for changes in the SUMM can be fixes for found bugs,
refactorings or new information to store. As before, where the
SUMM was created bottom-up in step-wise way by applying oper-
ators, these changes can be realized by selecting and configuring
additional operators. Finally, the methodologist describes with oper-
ators the relationship SUMM←→ SUMM’ , resulting in an explicit
SUMM’ and further consistency rules.

Changes in the metamodels of the initial artifacts arise because
of updates of the tools providing these metamodels or because
of new versions for Java or UML. The realization effort for the
methodologist depends on the amount of changes and its impact on
already integrated structures: If the changes contain only additional
elements in the metamodel without any additional consistency
rules, the current operator chain stays the same. If the changes can
be mapped to the old version of the metamodel, the methodologist
can describe this mapping by additional operators, for example
Java’←→ Java . More advanced changes require changes of the
configured operator chain, which means in the worst case, that the
complete integration has to be specified again.

4.3 Transferability
The approach was demonstrated using only one simplified example
stemming from a software development project. This section dis-
cusses, why the complete approach is transferable to other software
development projects and even to other application domains.

Different software development projects will have different con-
sistency rules or different initial metamodels. This issue is handled
by the methodologist, who specifies different chains of configured
operators for different projects, with different SUMMs as result.
The model decisions are substantiated regarding project-specific
consistency rules. As example, in another project with the same set
of initial metamodels as in the ongoing example, no links between
requirements andmethods should be created automatically 1 → 2 :
Then the methodologist specifies the corresponding model decision
to create no links automatically. As contrast, arbitrary complex al-
gorithms stemming from research of the requirements community



can be included into model decisions. Another case, same consis-
tency rules with slightly different initial metamodels, is discussed
in Section 4.4.

Other application scenarios are traceability issues, solvable by
this approach [10]: Traceability links between, for example, meth-
ods and requirements can be stored and maintained within the SUM
by new associations, introduced by operators like AddAssociation.

The approach is intended to work even in application domains
outside of software development. This is possible, since the op-
erators to specify the integration are independent from concrete
metamodels, because the metamodel decisions of the operators are
designed to be generic for reuse and to be substantiated regarding
the predefined degrees of freedom. Therefore, precondition for the
approach are not specific application domains, but the representa-
tion of artifacts in form of models and conformingmetamodels. This
technical issue can be overcome by developing adapters realizing
the transformation of artifacts into models and vice-versa.

4.4 Integration on Reference Level
The example integrates requirements and Java by supporting links
between Java methods and textual requirements. If another project
uses C++ instead of Java with the same consistency rules, the result
is the same operator chain like in Figure 3, but with C++ instead
of Java , since the current integration uses Java methods and not
C++ methods. Now the methodologist spends again effort to realize
the same consistency rules for similar models.

Instead of integrating concrete Java methods or C++ methods,
Java methods and C++ methods are shifted to “reference” methods
representing methods written in arbitrary programming languages.
Instead of using concrete metamodels (CMM) for Java or C++, a
reference metamodel (RMM) describing object-oriented general
purpose programming languages is required. An example reference
metamodel is the Dagstuhl Middle Model [7], because it describes
only essential elements like packages, classes and methods, but
ignores specific aspects like pointer handling.

Instead of integrating concrete metamodels (CMM) into the
SUMM like in Figure 3, reference metamodels (RMM) are integrated
into a Reference SUMM (RSUMM) using operators, resulting in a
similar operator chain. Instead of linking textual requirements with
Java methods, now arbitrary requirements are linked with methods
of arbitrary programming languages. The methodologist describes
the required mappings CMM←→ RMM again by configuring op-
erator chains with the CMM like Java as starting point and the
RMM like the Dagstuhl Middle Model as end point.

To get the SUMM , for each RMM one mapped CMM is selected.
Since the integration of the RSUMM is defined on reference level
using the RMM, the integration is executable again using the map-
ping between CMM and RMM and the wanted SUMM is created
automatically together with its consistency rules.

In general, for similar integration projects, the integration should
be done once on reference level using reference metamodels and
not on concrete level using concrete metamodels as before. There-
fore, the integration on reference level eases the configuration of
SUMMs for the methodologist compared to Section 3.1 [8], while
their use for initializing the SUM (Section 3.2) and for ensuring
model consistency (Section 3.3) is the same as for regularly created

SUMMs for the users. This is another example, where the generic
operators can be reused and applied even to different levels on
abstraction.

5 CONCLUSION
To ensure the consistency of technical independent and separated
models conforming to different metamodels, which are overlapping
and have relations to each other contentwise, a new bottom-up
approach was depicted in this paper. The central idea is to create a
Single Underlying (Meta)Model containing all information of all ini-
tial (meta)models as single point-of-truth. Additionally, the initial
(meta)models are not thrown away, but migrated to projectional
view(points) on this SUM(M) and kept up-to-date. This is reached
by introducing operators which, formed as chain, define, how the
SUMM is created out of the initial metamodels, and which executes
transformations to ensure consistency between all initial models
and the SUM. Since these operators are generic regarding meta-
model and model changes and support arbitrary consistency rules
explicitly, these operators are reusable for new viewpoints on top
of the SUMM, for integrations on reference level and for ensuring
model consistency in different application domains.

A prototypical framework to support this approach for model
consistency ensured by metamodel integration is currently under
development with Java, ECore as language to describe metamodels,
reuse of parts of the model migration structure of Eclipse EDapt
and extension of coupled operators described by [4]. Currently, the
configuration of the operator chain is supported by a Java API and
model decisions are implemented in Java. In future work, both steps
could be supported by domain specific languages.
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