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Abstract: The NEMo project aims at providing new mobility means to facilitate 

sustainable fulfillment of mobility needs in rural areas. The collection of mobility 

services provided by NEMo serve to develop mobility platforms fulfilling inter-

modal needs. In order to meet the core objectives of NEMo, the envisioned mobility 

platforms must be sustainable itself by providing flexibility in co-evolution with 

changing and novel mobility needs, services, and business models. With the overall 

objective of NEMo being sustainable, it is only appropriate to strive for it in terms 

of sustainable software design and architecture. Thus, in order to be technically sus-

tainable, the architectural provision behind a mobility platform has to be flexible 

and adaptable.  

SENSEI and DORI provide architectural support to enable sustainability on soft-

ware engineering level. They are applied to NEMo in order to achieve the aforemen-

tioned goals to create, extend and adapt a NEMo inter-modal mobility scenario. 

SENSEI provides flexibility, adaptability and long-term sustainability by utilizing 

model-driven, service-oriented and component-based concepts to provide flexible 

orchestration of NEMo’s functionality. The users of a mobility platform further 

need support for interacting with the mobility platform. To this end, the DORI ap-

proach is applied to design user interactions in NEMo. DORI intends to provide flex-

ible interaction modeling support for designing state-based interactivity models to 

describe the overall interaction by GUI states and transitions between these states. 

It defines abstract GUI widgets and their underlying implementations, separately.  

This paper summarizes the sustainable architecture of NEMo and shows the exten-

sibility and adaptability of the NEMo mobility platform. 
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1 Motivation 

The interdisciplinary research project NEMo (Jelschen et al., 2016) aims at the sus-

tainable fulfillment of mobility needs in rural areas considering social, demo-

graphic, accessibility, legal, economic, and ecological conditions and objectives. It 

intends to facilitate the provision of smart mobility services based on social self-

organization. NEMo develops novel business models (Akyol et al., 2017) that in-

crease utilization of public and private transport, while reducing the overall stream 

of vehicles on the streets (Kuryazov et al., 2019). In smarter cities, which also in-

clude rural areas, information and communication technologies (ICT) are viewed as 

the key enabler to support these objectives implementing a mobility platform that 

is accessible through various devices and media. This paper strictly focuses on de-

signing a flexible and adaptable, i.e., a sustainable software architecture to provide 

appropriate ICT support. 

Like any software system, the NEMo mobility platform needs to evolve to re-

main up to date with new or modified requirements, e.g., new business models, mo-

bility services and their implementations. Continuously adapting the mobility plat-

form leads to more complex and less maintainable software systems (Lehman 

1996). Due to the innovative nature of the NEMo mobility project, a sustainable 

software architecture plays an essential role in simple and fast development, inte-

gration and maintenance of new mobility services (Jelschen et al. 2016). Even dur-

ing the course of the project, developing the NEMo system required various revi-

sions and adaptations. 

The application domain of smart mobility services also requires highly flexible 

software support. The NEMo mobility platform should be able to support all kinds 

of mobility needs and scenarios, modes of transportation, and business models. Ac-

cording to (Combemale et al. 2016), the evolution of NEMo has to facilitate the 

recombination of existing mobility services to provide enhanced services, as well 

as completely new, unanticipated usage scenarios.  

Finally, with the overall objective of NEMo aiming at sustainability, it is only 

appropriate to strive for it in terms of software design. A rigid, monolithic software 

system would lead to high maintenance costs, and ultimately to its phaseout, close 

down, and forced replacement (Rajlich and Bennett 2000). To be sustainable, the 

NEMo mobility platform must make architectural provisions for sustainability, flex-

ibility and adaptability (Kateule and Winter 2018). In this way, a smart system can 

be continuously adapted and made smarter and smarter. 

A major use case, that is expected to play an essential role for the NEMo mobility 

platform, is inter-modal routing, combining the different modes of transportation, 

e.g., walk, bike, bus, train, carpooling, etc. The existing infrastructure and function-

ality of the ICT Platform and Services (ICTS) project (Wagner vom Berg 2015) is 

already able to support the use case of inter-modal routing to a large extent. On the 

top of this platform, the ICT Services project build another software system to com-

bine its basic software services and offer value-added services to support the desig-

nated business processes. These mobility services are reused in developing the sus-

tainable prototypical NEMo mobility platform in Section 3. 



1.1 Challenges 

Due to the fast development of early prototypes of ICTS to enable applied research 

on rural mobility at early stages, the existing infrastructure was designed and devel-

oped without a particular focus on flexibility, sustainability and adaptability. In or-

der to achieve sustainable development and maintenance of the mobility platform, 

the NEMo project addresses to several challenges considering sustainability, inno-

vation and evolution: 

• The software architecture of the mobility platform has to be developed focusing 

on flexibility, adaptability, extensibility and long-term sustainability. 

• The existing functionality of the existing mobility platforms has to be easily re-

used, enhanced and modified. 

• The realization of the mobility platform has to focus on consistent separation of 

functionality (services) and implementation (components), following the princi-

ple of separation of concerns (Dijkstra, 1982). 

• Development of novel, flexible interaction user interfaces has to be automated so 

that changes and new user requirements can easily be adapted in user interactions 

of the mobility platforms. 

These challenges are considered as the main engineering and technical-conceptual 

challenges that can be resolved by the novel software engineering trends, which are 

addressed in this contribution. 

 

1.2 Objectives 

In order to solve the scientific challenges described in Section 1.1, this section de-

scribes several objectives that are addressed throughout this paper. The sustainabil-

ity objectives of the NEMo project, from a software engineering point of view, are 

manifold: 

• Sustainable Software Architecture. First of all, there is a need for a flexible, 

adaptable and extensible software architecture that incorporates the existing 

functionality, but highlights flexibility, adaptability, and long-term sustainabil-

ity. A sustainable software architecture serves as a common blueprint in reusing 

existing features of mobility platforms and developing and adapting new fea-

tures.  

• Reusable Mobility Services. In case of existing mobility platforms, the existing 

functionality of the mobility platforms should be enhanced, modified and reused. 

Future changes (i.e., extensions, optimization and corrections) based on the re-

search findings within the NEMo project have to be adaptable and reusable.  

• Separation of Concerns. Sustainable software architecture and reusable mobility 

services should support novel business models, model-driven and service-ori-

ented mobility services and component-based functionality enabling consistent 

separation of functionality (services) and implementation (components), This 

allows for eased maintenance of business models, mobility services and compo-

nents. 



• Interaction Modeling. As long as users interact with mobility platforms by using 

various user interfaces and media devices, there is a need for a model-driven, 

flexible interaction modeling feature by separation of user interaction and user 

interface designs. Utilization of interaction modeling provides developing user 

interaction independent from various platforms and devices. 

These objectives remain on the central focus throughout this contribution. So far, 

some prototypical results are achieved by providing the existing mobility platform 

with the flexible, sustainable and adaptable software support based on component-

based, service-oriented software development and maintenance. This feature sup-

ports including the achieved research results in an interdisciplinary research project 

lite NEMo to its software support from a software engineering’s perspective. 

 

The remainder of this paper is outlined as follows: Section 2 introduces a reference 

architecture for sustainable mobility platform development. The same section de-

scribes the central concepts of the SENSEI and DORI approaches. Section 3 

sketches the application of SENSEI and DORI approaches to the NEMo mobility 

platform based on the reference architecture using an example. Section 4 defines 

several user requirements that have to be adapted in the running NEMo example 

throughout this paper. Section 5 presents the complete solution combining all re-

quirements defined in Section 4. Section 6 explains the core results and contribu-

tions of this research and draws conclusions about sustainable architecture and 

SENSEI in NEMo. 

 

2 Conceptual Idea 

This section sketches the theoretical foundations of the engineering technologies 

used in development of the NEMo mobility platform. These foundations consist of 

a sustainable reference architecture (explained in Section 2.1), an introduction of 

the SENSEI (Section 2.2) and DORI approach (Section 2.3). A sustainable refer-

ence architecture helps to develop an evolvable mobility platform for providing mo-

bility services.  

 

2.1 Sustainable Reference Architecture for Mobility Platforms 
One of the main objectives in NEMo is the development and application of a sus-

tainable reference software architecture. Figure 2.1 depicts the four-layer NEMo tax-

onomy (Akyol et al., 2017). This taxonomy serves as a common blueprint and foun-

dation in developing the sustainable NEMo mobility platform. The taxonomy pro-

vides clear separation of concerns by distinguishing between the mobility services, 

business models, information-technology-(IT)-services and IT-components.  



 
Figure 2.1. Four Layer NEMo-Taxonomy for Mobility Platform (Akyol et al., 2017)  

As the NEMo taxonomy depicted in Figure 2.1 enables separation of concerns, mo-

bility platforms developed based on this taxonomy can achieve higher level of sus-

tainability, adaptability and flexibility. Each level of the taxonomy can be sustained 

separately, independent from the rest. It allows for eased adaptation of changes in 

user requirements, business models, IT-services and IT-components. 

Mobility Services. In general, the mobility platform offers mobility services by 

means of transportation (vehicle) and offered by providers. A mobility service can 

also be comprised of more fine-grained mobility services which is referred to as a 

composite mobility service. This is due to the inter-modal nature of mobility ser-

vices. Any mobility service can be performed directly by transporting people, indi-

rectly by transporting things, or both by transporting people and things at once. Each 

mobility service may be associated to several business models and processes. 

Business Models and Processes. In the second column, the taxonomy describes 

business models and processes that might be related to many mobility services. The 

business models and processes consist of activities performed by the users and pro-

viders of the mobility platform. The activities can further be defined as tasks that 

the users should perform before, while and/or after using the mobility service. The 

activities are supported by IT-services. 

IT-Services. An IT-service defines a piece of functionality. It adds appropriate 

functionality to the activities focusing on human behavior (Jelschen, 2015). An IT-

service is a description of what a software component should do. In case of the 

mobility platform, each mobility service is provided by several IT-services, e.g., 

each inter-model mobility service combines several IT-services supporting the 

transportation mode. In the same vein, each IT-service provides a functionality, e.g. 

finding the nearest stations to an origin or destination, finding sub-routes with dif-

ferent transport modes, etc. These IT-services are usually implemented by IT-com-

ponents. 

IT-Components. IT-components are the concrete implementations of the function-

ality defined by IT- services (Jelschen, 2015). A service can be implemented by 

several combined components. For instance, a find route service might use several 

components for each transportation means, e.g., bus, walk, etc. 

Figure 2.2 depicts a sustainable reference architecture based on the NEMo 

Taxonomy in Figure 2.1. In this architecture, the mobility services on the 

top level are described by business models and processes in the second 

level. These business models are then defined as IT-services, whereas each 



activity (i.e., functionality) is defined as one abstract service in a service 

catalog. In the same vein, these services are implemented by IT-compo-

nents enabling reuse and sustainability of IT-services and IT-components. 

 

Each level of the architecture in Figure 2.2 can be sustained separately, independent 

from the rest of the taxonomy. It allows for eased adaptation of changes in user 

requirements, business models, IT-services and IT-components. 
 

 

 

 

Figure 2.2. Sustainable Reference Architecture for Mobility Platforms (Jelschen, 2015)  

 

This sustainable reference architecture in Figure 2.2. is utilized in Section 3.1 to 

develop a concrete mobility platform. As there is a need for technical support for 

realizing this reference architecture, the SENSEI approach explained in Section 2.2 

is utilized as realization technology. 

 

 
2.2 SENSEI Approach 

The sustainable reference architecture explained in Section 2.1 serves as a common 

blueprint for model-driven (Kleppe et al., 2003), service-oriented and component-

based development and maintenance of the mobility platforms (Breivold and  Lars-

son, 2007). This section explains the SENSEI approach making the sustainable ref-

erence architecture as the central architectural provisions for developing model-

driven, service-oriented and component-based mobility platform. Eventually, the 

SENSEI approach serves as main technical grounds for realizing sustainable refer-

ence architecture depicted in Figure 2.2. 



SENSEI (Software EvolutioN SErvice Integration) (Jelschen 2015, Jelschen 2020) 

provides service-oriented software design facilities (service orchestration) on an ab-

straction level close to the application domain of mobility needs. Strictly separated 

from this layer, concrete implementations of these services are realized in compo-

nent-based terms. An automated mapping from services to components bridges the 

gap between service-oriented specification and component-based realization. 

SENSEI provides a toolchain-building support framework providing flexibil-

ity, reusability, and productivity. It combines service-oriented, component-based, 

and model-driven techniques to automatically map high-level, process models (ser-

vice orchestrations) onto reusable and interoperable components possessing the re-

quired capabilities and generate code that combines and coordinates them in the 

required manner (Jelschen 2015). Using the SENSEI framework, applications are 

built sustainably by combining (and reusing) components providing clearly speci-

fied functionality (services). For this purpose, services are kept in a service catalog. 

A component registry maps this functionality to potential implementing compo-

nents (Service-Component-Matching). Based on orchestrations of the services, suit-

able components are automatically linked to the desired application by the SENSEI 

generator. SENSEI consists of the following core concepts which can easily be 

mapped to the four levels of the reference architecture in Figure 2.2. 

Service Catalog. A service catalog serves as a central repository containing service 

definitions that are described in a standardized way. The mobility services  are de-

fined in the SENSEI service catalog. All services defined in the service catalog 

have names and descriptions, along with input and output parameters, and associ-

ated data types. The implementations (IT-components in the reference architecture) 

of these services usually provide traveling information for various imaginable 

modes of transport, and the users of the service might only need a subset of them. 

At the same time, the service catalog would become extremely cluttered if a service 

were to be defined for every possible variant. SENSEI solves this issue by intro-

ducing capabilities to describe service variants concisely. Services define capability 

classes to represent aspects that can vary independently. This service catalog is uti-

lized to collect mobility services in the NEMo project. 

Component Registry. The component registry establishes relations between ser-

vices defined in the service catalog, and IT-components that provide the functional-

ity. Services are implemented by components offered by various providers. Each 

entry in the component registry refers to a component and lists one or more services 

it implements. With each service, the provided capabilities are specified in the same 

way as required capabilities for orchestrations. Existing mobility services, provided 

by the NEMo mobility platform, are wrapped for SENSEI compatibility and inter-

preted as implementations behind mobility services in orchestrations. 

Service-Component-Matching. Considering required capabilities of orchestrated 

services, provided capabilities of registered components, as well as constraints re-

sulting, e.g., from data type compatibility concerns, a suitable composition of com-

ponents will be searched for to realize the orchestrations. 

Service Orchestrations. Service orchestrations (e.g., depicted in Figure 3.3 and 

Figure 5.3) allow to instantiate and combine abstract services from the service 



catalog to create more complex functionality, using a process-oriented, graphical 

modeling language. In order to fulfill business models and processes (in the refer-

ence architecture), IT-services are orchestrated using one or many IT-services from 

the service catalog. For instance, different, single IT-services provide different rout-

ing services by different transport modes and capabilities, whereas they are orches-

trated to provide the complete inter-modal routing scenarios for developing a mo-

bility platform in the NEMo project. 

Application Generation. To conclude the process, the SENSEI orchestration 

model is mapped to a particular target platform providing a runtime environment, 

e.g. WSO2, the middleware used by the ICT Platform project. This step is per-

formed by a model-driven code generator. It results in a fully auto generated com-

ponent that depends on the components found in the previous step to perform the 

work specified by the orchestrated services. The result is an executable software 

application, ready to be deployed, e.g., to the WSO2 application server. After all, 

the deployed application can be called by different means of media such as mobile, 

web, desktop and other frontend clients. 

Based on the sustainable reference architecture depicted in Figure 2.2, the SENSEI 

approach is applied to the concrete NEMo mobility applications in Section 3. 

 

2.3 DORI Approach 

The mobility platform is bound to offer a wider range of functionality (e.g. route 

planning, carpooling, etc.), and is supposed to be used in an everyday context by 

people with limited technical proficiency, which creates a need for user interaction. 

The SENSEI orchestrations are based on the input-process-output principle, and 

thus not capable of interacting with the user at runtime. Thus, there is a need for 

another, complementary approach to enable users to interact with the mobility plat-

form and utilize its services in their daily routing planning activities. 

 

In order to provide such flexible, model-driven means for the development of user 

interactions with the mobility platform, the students' project group DORI (Do Your 

Own Reactive Interface) has developed a concept and tool support for modeling 

user interactions through the use of the DORI Domain Specific Language, which 

was based on UML state charts and the IFML (Interaction Flow Modeling Lan-

guage) (Brambilla and Fraternali 2014). Interaction diagrams representing the in-

teractive behavior of applications, are executed by a dedicated interpreter. Follow-

ing the SENSEI structure given in Section 2.2, abstract behavior is represented in 

the abstract widget catalog. Its platform-specific implementation is provided by the 

concrete widget catalog. 

Abstract Widget Catalog. This contains abstract Widgets and Functions. Abstract 

Widgets serve as ''blueprints'' for the actual interaction states (called Abstract 

Widget Instances - AWI), defining the set of data fields in their possession, as well 

as the events which they may react to. Conceptually, they are similar to SENSEI 

services. They may also contain Sockets, enabling composition or parallel 

https://wso2.com/
https://uol.de/en/computingscience/se/teaching/project-groups/?generated-content/lectures=generated-content/pgDori.html
https://uol.de/en/computingscience/se/teaching/project-groups/?generated-content/lectures=generated-content/pgDori.html
https://uol.de/en/computingscience/se/teaching/project-groups/?generated-content/lectures=generated-content/pgDori.html
https://uol.de/en/computingscience/se/teaching/project-groups/?generated-content/lectures=generated-content/pgDori.html


processing, albeit only on instance level. The second kind of abstract elements, Ab-

stract Functions, define a return type and a set of parameters. 

Widget Catalog. The concrete catalog consists of a list of concrete widgets for each 

of the pre-defined abstract widgets. While abstract widgets merely describe a sig-

nature, their concrete counterparts contain implementation-dependent information. 

Concrete Widgets contain a path to the implementation of the UI element which is 

supposed to represent it and Concrete Functions a path to the implementation of 

their logic (e.g., a REST endpoint). Their roles are similar to those of SENSEI com-

ponents. 

Platform Catalog. This catalog contains a list of platforms. In the context of DORI, 

a platform is a set of elements whose implementations target a common platform. 

This allows interpreters targeting different platforms to choose the appropriate con-

crete implementations from the catalog before executing a model. So far, there are 

two interpreters available; one based on Java Server Faces to enable desktop appli-

cations and the other one supporting the android platform. 

Interaction Diagram. The flow of user interactions through states (AWIs) and tran-

sitions is described by interaction diagrams. The states are instantiated from the pre-

defined abstract widgets; transitions may be supplemented with guards and Param-

eter Binding Groups (see Figure 3.2). The Parameter Binding Groups (1) define 

which events may trigger their host-transition, (2) which (abstract) functions are to 

be called once its host-transition fires, and (3) how data is transferred between the 

involved variables. Since the interaction diagrams themselves are based on abstract 

elements, they may be realized on different platforms, which makes this approach 

quite useful for multi-platform or multi-device applications, as it would be the case 

for the NEMo Mobility Platform. DORI is applied to development of the NEMo 

application in Section 3. 

 

3 NEMo application 

The sustainable reference architecture for the mobility platform in Section 2.2 is 

used as blueprint for model-driven, service-oriented and component-based devel-

opment and maintenance of the NEMo mobility platform. As the proof of the con-

cept, this section applies the SENSEI and DORI approaches to the NEMo mobility 

platform. This section depicts a simplified scenario of the mobility platform. Sec-

tion 4 defines several additional user requirements (i.e., change requests) raising a 

need for changing, adapting and sustaining the existing mobility platform. Accord-

ing to these user requirements, Section 5 describes what changes and adaptations 

are required in the user interface, orchestration and interaction model in order to 

adapt these requirements to the mobility platform. It is shown that using the 

SENSEI/DORI-approach results in a technical sustainable software evolution. 

 

The inter-modal routing finds routes to connect a point of origin and a destination 

(Brake and Vechta in this example). Combining different modes of transport, e.g., 

walking, riding a bike, taking a bus or train, driving a private car, or joining a car-

pool, makes this inter-modal routing. 



Figure 3.1. depicts the user interface of this simple inter-modal routing use case 

representing two different states of user interaction with the mobility platform. In 

the first window, origin and destination of a route, and time of departure are entered 

for searching possible routes between these places.  

 
Figure 3.1. Mobility Service UI. mapdata ©2019 GeoBasis-DE/BKG (©2009), Google 

Once the Add Tour button is clicked (left side of Figure 3.1), all possible routes, 

regardless of the transport mode, are calculated and added to the list of routes visible 

on the dashboard (right side of Figure 3.1). Upon selection of a route, it is drawn on 

the map below the list. In this example, the user interface is based on Java Server 

Faces, using a slightly modified dialect to access the data of the DORI interaction 

states from the .xhtml sources describing their corresponding UI counterparts. 

 

Interaction Model 

The DORI-Interaction Diagram behind this example makes use of seven abstract 

widget instanced (AWI) in total (see Figure 3.2), although only four of them are of 

immediate interest for the use case. The Dashboard-AWI (centermost in Figure 3.2) 

serves as a hub for the application. Depending on the incoming events it allows for 

switching to other widgets (e.g., Login, Profile and RouteFinder). It also grants ac-

cess to a list of pre-calculated routes (or tours). A map is used to depict the selected 

route. For this purpose, both RouteList- and RouteMap widgets are nested within 

the Dashboard through the use of sockets. The RouteList widget possesses three 

data fields: a list of route-objects, an ID determining which of the routes is to be 

removed once the event removeRoute is received, and finally the navigation data of 

the route which supposed to be sent to the RouteMap widget for depiction once the 

user triggered the showRoute event. The RouteMap widget itself does nothing but 

contains a field to store the route-data received by the RouteList widget. Via the 

gotoRouteFinder event on the Dashboard, a user can switch to the RouteFinder 

widget, which is coupled to the route planning dialog as shown in Figure 3.1. The 

RouteFinder widget allows a user to define new routes to be added to the Dash-

board's RouteList, and possesses one data field for each of the input fields visible in 

the form of Figure 3.1. The event findRoute starts the process meant to calculate 

routes, afterwards stores the calculated routes within the user's list, and finally re-

turns to the Dashboard. This is done with the help of two subsequent transitions 

with a pseudo-state between them: the first transition calls the function meant to 



calculate the new routes (navigational) data, ultimately referencing to a WSO2 ser-

vice, which in turns executes the SENSEI orchestration (Figure 3.3) used in this 

example. Necessary parameters are prepared beforehand using Parameter Bindings 

(longitude, latitude, etc.). Parameter Binding is also used to store the resulting 

route-data within the intermediate pseudo-state. 

 
Figure 3.2. Simplified Interaction Model for Calculating Inter-modal Routes 

 

IT-Services 

According to the sample mobility scenario explained above, the following IT-ser-

vices are needed: 

• Converter: As shown in Figure 3.1, origin and destination locations are initially 

given by coordinates. But all locations and routes are processed by their identifi-

ers within the already existing implementation. Thus, a converter service is 

needed to convert coordinates to identifiers of these locations. 

• Route Finder: This service is utilized for finding all possible routes between 

origin and destination. It finds all routes by combining different transport modes. 

• Route Details: In the existing ICT mobility platform, mobility services return the 

sub-set of route data, i.e., the identifiers of locations connecting subroutes. De-

tailed information including stops (i.e., coordinates, names, etc.) between the 

given two locations is then extracted by this additional service. 

These three services are defined in the SENSEI service catalog. All services defined 

in the service catalog have names and descriptions, along with input and output 

parameters, and associated data types, also modeled in the catalog as data structures. 

These pre-defined services are implemented by IT-components already existing in 

the previous ICT-implementation (Wagner vom Berg et al., 2010). Within the gen-

eration step, these components are linked to manifest the SENSEI orchestration. 

 

 

 



IT-Components 

IT-components are the concrete implementations of the functionality defined by IT- 

services. As long as some mobility functionality is already developed as the out-

come of the Electric Mobility Showcase program (Wagner vom Berg et al., 2010), 

these existing functionality of ICT are invoked as components in the context of 

NEMo. Existing mobility services provided by the ICTS are wrapped for SENSEI 

compatibility and interpreted as implementations behind mobility services in the 

SENSEI orchestrations. These components are published as REST Web services 

and made available to reuse in the framework of NEMo. 

Various route planning algorithms are used in the NEMo project. For instance, 

new route planning services come with their own planer algorithms in the form of 

further IT-components. To include those, a service implementation can firstly be 

embedded behind its sole routing service, which has to be combined with a global 

one. This allows for early adaptation of the new mobility services in an unoptimized 

way. Later, the routing services can be implemented in a global routing component 

to provide an optimized routing in Section 5. 

 

Service Orchestrations 

In order to fulfill this particular mobility services, IT-services defined above are 

orchestrated selecting from the service catalog. Figure 3.3 depicts a SENSEI or-

chestration model for the initially simple mobility platform above. Services are in-

stantiated from the catalog by selecting the required capabilities. In the orchestra-

tions, the invocation order of services defined by the control flows (gray arrows) 

and the flow of data among these services is defined by the data flows (green ar-

rows) connecting the inputs and outputs (green boxes) of the services. Services are 

marked with an encircled "S" ahead their names. The input parameters of the overall 

orchestration are defined by bigger green boxes, e.g., three boxes on the most left 

side of Figure 3.3 with names origin, destination and tripRequest, and one green 

box named route on the most right side. 

 
Figure 3.3. Service Orchestration before changes 

The orchestration consists of applying two instances of the service Coordinator-

ToID. As the origin and destination locations of the searched route are given in the 



form of the coordinates, these services convert the coordinates to identifiers. Then, 

the converted identifiers are sent to the RouteFinder service as startLocation and 

endLocation, whereas it also receives the third parameter tripRequest. The latter 

consists of the time of departure and the modes of transportation. In this case, the 

RouteFinder service provides the capability PUBLIC, meaning the service searches 

for all possible combination of transport modes including bus, train, walk, bike, etc. 

After finding an optimal route, the route finder service sends its identifier to the 

RouteDetails service, where further details about the found route are extracted. 

Eventually, the result of this orchestration is displayed in the second user interface 

depicted in Figure 3.1. 

 
4 User Stories (Change Requests) 
Section 3 has explained a simplified mobility service example. This mobility service 

is the subject to various changes such as extensions, improvements and optimization 

because of evolving user requirements over time. In this sense, the mobility plat-

form must be sustainable, easy to adapt and flexible to meet new and changed user 

requirements. In order to demonstrate sustainability of the reference architecture 

and associated technical support explained in Section 2, this section introduces sev-

eral user requirements (i.e., change requests) for the mobility platform explained in 

Section 3. 

• Text-based Location Information. While route planning, the user wants to be 

able to give the names of the origin and destination locations instead of their ge-

ographic coordinates. 

• Points of Interest. The users want to spend their spare time (waiting time be-

tween the changes of transport modes) meaningfully. For instance, if a traveler 

should change transport from train to train, from train to bus, or vice versa, there 

might be waiting time more than one hour. Then, travelers like to travel to points 

of interest (PoI), i.e., coffee shops, restaurants, ATMs, museums, gardens, fast 

food chains, etc. Thus, they want to see recommended points of their interest on 

the map in the second UI of the mobility platform. 

• Biking. The user wants to travel any subsection of a given route by bike if that 

subsection is less than five kilometers. For example, if there are subsections of 

the given route which is less than five kilometers and using bus, all of such sub-

sections should be replaced by the bike transport mode. Suppose, in these cases 

rental bikes are available as a new mobility service. Travelers use these rental 

bikes instead of any other transport means. 

These user requirements are defined as extensions, optimization and improvements 

for the simple mobility platform. They must be adapted in the existing mobility 

platform. The following subsections explain what to do in the user interface, service 

orchestration and interaction model of the mobility platform in order to extend the 

simple initial NEMo platform. The compete graphical descriptions for all adapta-

tions are given in Section 5. 

 

 

 



4.1 Text-based Location information 

This section depicts what changes have to be made to change location coordinates 

to location names. 

User Interface. On the first graphical user interface, four input fields (Longitude 

(Origin), Latitude (Origin), Longitude (Destination), Latitude (Destination)) are re-

moved from the user interface. New input fields (Origin and Destination) are added 

in order to allow the user to specify origin and destination locations by their names 

instead of their geo-coordinates. The RouteList is also extended by the columns 

Origin and Destination. The changes made to the graphical user interface are re-

flected in Figure 5.1. 

Interaction Model. Analogously, the RouteFinder widget's data fields for longi-

tude and latitude are removed and two new ones, origin and destination, are added. 

The same changes are also reflected in the parameter sets of the abstract functions 

calculateRoute and addRoute, as well as in the parameter bindings. The last change 

is to actualize the (one) parameter binding used to initialize the data fields of 

RouteFinder with default values just before it becomes the active state by adding 

the origin and destination fields as targets. The changes related to the first user story 

are depicted in Figure 5.2.  

Orchestration. In order to support textual location names, a new IT-service called 

Geocoder is entered to the service catalog and its implementation is registered in 

the component registry. In this case, the implementation of the Geocoder service 

invokes a ready-to-use geocoding service of Google Inc. This service provides con-

version of location names to location coordinates. The rest of the process remains 

unchanged These changes are depicted in the left part of Figure 5.3. 

 

4.2 Points of Interest 

This section explains what changes have to be made on the UI, orchestration and 

interaction model in order to add support for bridging waiting time. 

User Interface. NEMo supports bridging waiting time by finding the points of in-

terest (e.g., ATMs, coffee shops, etc.), if a traveler has to wait more than one hour 

while changing the means of transportation. In order to adapt this user story, several 

types of point of interest are added to the graphical user interface, so that the user 

can choose where she/he wants to visit during that spare time. The changes made 

on the graphic user interface can be seen in Figure 5.1. Here, the user can tick dif-

ferent types of PoIs, he is interested in.  

Interaction Model. A new data field stores the list of types of PoI which a user 

wants to spend spare time and thus to be included in the resulting route data. A new 

Parameter Binding prepares the parameter accordingly. Due to the types of data 

fields (List of Strings) and the current technical limitations of the DORI-Editor, a 

new Function initPOIModes is used to initialize the (empty) list when transitioning 

from the Dashboard to the RouteFinder widget. The changes related to the second 

user story are depicted in Figure 5.2. 

Orchestration. The chosen types of PoI are then given to the overall orchestration 

as poiModes. To find the PoI locations, a new service called PoIFinder is added to 



the service catalog. This service receives the route identifier and the PoI types as 

input and returns the PoI locations. This service is instantiated on the service or-

chestration to find point of interest locations based on the user request. This service 

can be invoked together with the SubrouteExtractor service in parallel which is ex-

plained below. This parallel invocation of services helps to improve the runtime 

performance of the overall orchestration. The changes in the service orchestration 

are displayed in Figure 5.3. 

 

4.3 Biking 

This section presents the changes made in the user interface, interaction model and 

service orchestration in order to fulfill adding biking as an new mobility service for 

short distances. 

User Interface. Bike transport mode has to be used to travel sub-routes less than 

five kilometers. This does not request changing the graphical user interface and only 

requires adapting the orchestration. 

Interaction Model. In the same vein neither the user interface nor the signature of 

the WSO2 endpoint are modified to adapt this request. No changes have to be made 

to the DORI interaction model, as well. 

Orchestration. The orchestration has to be extended with several changes to add 

the additional mobility service. A new service called SubrouteExtractor extends the 

service catalog. This service receives a route identifier and extracts all sub-sections 

within that route which are less than five kilometers. These sub-sections are then 

processed to a loop as a map, where the route finder service is invoked for each with 

the bike transport mode. There, the route finder service has to be associated with the 

capability BIKE. In the same loop in the orchestration in Figure 5.3 the route details 

are also extracted for each sub-section. After finding all sub-routes that can be trav-

eled by bike, these results are sent to the RouteCombiner service to combine all bike 

sections, public sections and point of interest locations. Finally, the result is as-

signed to the variable route and returned to the second graphical user interface (Fig-

ure 5.1) of the mobility scenario. These changes are depicted in Figure 5.3. 

 

5 Complete Solution 

This section presents the complete extension of the mobility platform explained in 

Section 3 combining all extensions depicted in Section 4. 

User Interface after Changes. Figure 5.1. depicts the screenshot of the extended 

graphical user interface of the mobility scenario. The graphical user interface dis-

plays two states; the left window to search routes and the right window to show 

results. 



 
Figure 5.1. UI after Changes. Mapdata ©2019 GeoBasis-DE/BKG (© 2019), Google 

The routes may be searched based on the names of their respective origin and des-

tination location, which initially required input of their geocoordinates. Addition-

ally, the route planner user interface provides a list of PoI Types in order to enable 

travelers to visit their favorite points of interest, if they are expecting longer waiting 

time. In the search results, the map depicts several indicators to show points of in-

terest based on the PoI requests of travelers. Finally, there is no change in both 

graphic interfaces to provide biking for short distances. 

Interaction Model. Figure 5.2 shows the relevant parts of the interaction diagram 

in its original state (left) and the final version (right) incorporating all the necessary 

changes to fulfill the three change requests. 

 
Figure 5.2. Interaction model before (left) and after (right) the changes 

The changes are not very complex. Adding location names requires the deletion (or 

transformation) of some simple elements (four variables of the RouteFinder, the 

four parameters for each of the functions calculateRoute and addRoute and the eight 

bindings used to prepare their parameters) and subsequent addition of further ele-

ments (inserting the fields for origin and destination across widget, functions and 

bindings). Adding PoIs is handled by adding one function for initializing the list of 



PoI types, as well as adding the list itself to the RouteFinder widget, the calcu-

lateRoute function (as a parameter) and finally a new Parameter Binding in order to 

transfer it from the widget to the function itself. Adding the bike mobility service 

does not require any changes to the interaction model. 

IT-Services. To adapt the user stories, several new IT-services are added to the 

SENSEI service catalog. These services are: Geocoder which converts location 

names to location coordinates, SubrouteExtractor which finds sub-routes less than 

five kilometers, and extension of the RouteFinder service with the BIKE capability, 

and PoIFinder which finds the points of interest for the given types and on the given 

route. As long as different services deliver different outputs, these results are com-

bined by the RouteCombiner service, eventually. 

IT-Components. The implementations of these IT-services are provided by the IT-

components registered in the SENSEI component registry. For providing the im-

plementations of the newly defined IT-services, the component registry is also ex-

tended with respective components. A new component for the Geocoder service is 

added to the component registry, whereas it invokes the geocode service of Google 

API. A new component for the SubrouteExtractor service is locally implemented, 

and a new component implementing the existing RouteFinder service is extended 

which invokes the route finder service of ICTS with the BIKE transport mode. The 

latter requires to add a new capability to the RouteFinder service. 

Service Orchestrations. All IT-services in the service catalog are defined as ab-

stract services. These abstract services are then instantiated as concrete services 

whenever they are utilized in the orchestration model. Figure 5.3 shows the service 

orchestration model for the mobility scenario, which takes into account all change 

requests. 

 
Figure 5.3. Service Orchestration after Changes 

The orchestration is extended by the new services Geocoder, SubrouteExtractor, 

PoIFinder, RouteCombiner and RouteFinder with new capability to adapt the afore-

mentioned change requests. The two instances of the Geocoder service, two in-

stances of the CoordinatorToID service, SubrouteFinder and PoIFinder are placed 

in the concurrency container to accomplish higher runtime performance of the over-

all orchestration. As the SubrouteExtractor service instance returns the map of sub-

routes, this value is processed in the map to find the bike routes for each sub-section 

by the RouteFinder service (with bike capability) and their details by the RouteDe-

tails service. Finally, all bike sections, public sections and PoI sections are com-

bined into a single result route by the RouteCombiner service instance. 



These changes and extensions are made in the orchestration model without af-

fecting the underlying implementations and any other artifacts. This allows for sus-

tainable evolution of the mobility platform. Modeling service orchestrations allows 

to remain abstract from technical implementation and does not require program-

ming skills or expert knowledge of the diverse technologies used by components. 

 

6 Evaluation and Contributions 

This section evaluates the objectives on sustainable software development and evo-

lution, validates the reference architecture and discusses the application of SENSEI 

and DORI in the context of the NEMo mobility platform. 

The NEMo mobility platform is subject to software evolution and has to remain 

up to date with new or modified mobility requirements, e.g., new business models, 

mobility services and implementations. Continually adapting the mobility platform 

leads to more complex and less maintainable software systems. Due to the innova-

tive nature of the NEMo project, a sustainable and adaptable software architecture 

plays an essential role in providing simple and fast development, integration and 

maintenance of new features, i.e., sustainable software development. 

The reference architecture explained in Section 2.1 serves as architectural pro-

visions for developing the NEMo-like mobility platforms focusing on sustainability, 

flexibility and adaptability. The architectural provision covers the major use case; 

inter-modal routing combining the different modes of transportation, e.g., walk, 

bike, bus, train, carpooling, etc. The ICT mobility infrastructure, which was devel-

oped in advance to NEMo, is already able to support the use case of inter-modal 

routing. However, it has not been designed with a focus on software sustainability, 

which makes it hard to evolve. 

Sustainability objectives defined in Section 1.2 are entirely achieved by the ref-

erence architecture (Section 2.1), and the application of the SENSEI (Section 2.2) 

and the DORI approach (Section 2.3). 

• Sustainable Mobility Platform by Sustainable Reference Architecture: A flexible, 

adaptable and extensible reference software architecture serves as a common un-

derlying blueprint for developing mobility platforms highlighting flexibility, 

adaptability, and long-term sustainability. This architecture provides clear exten-

sion points for services and components to enable software adaptations easily. 

• Reusability: The existing mobility services and their implementaions (compo-

nents) can be reused, enhanced and modified, and future changes (i.e., extensions, 

optimization and corrections) based on the research findings within the NEMo 

project can be incorporated within the mobility platform without much technical 

knowledge and effort. 

• Separation of Concerns: The sustainable reference architecture and its associated 

technical support (SENSEI and DORI) provides consistent separation of novel 

business models, model-driven, service-oriented mobility services, and compo-

nent-based functionality enabling separation of functionality (services) and im-

plementation (components).  



• Interaction Modeling: It provides a model-driven, flexible interaction modeling 

feature for separation of user interaction and user interface designs. 

This paper has demonstrated the application of the SENSEI and DORI approaches 

to develop a sustainable and flexible mobility platform based on the sustainable 

reference architecture in the framework of the NEMo project. The clear separation 

of concerns, i.e., services and components in SENSEI allows to specify application 

behavior on a non-technical level, close to the application domain. Service orches-

trations are comparatively easy to adapt or extend, and the corresponding software 

application can be re-generated, allowing for fast turnarounds, and resulting in a 

high degree of flexibility. The use of SENSEI reduces the effort required to develop 

and maintain the mobility platform, particularly when sustainability raises. 

The only prerequisite of applying the proposed approach, is the provision of basic 

functionality, as in the NEMo case already available in the form of components pro-

vided by the existing ICT Platform. The component-based structure supported by 

SENSEI promotes building up the catalog of both services and components, so that 

over time existing functionality can be readily reused, adapted, extended or new 

ones can be added. Both aspects potentially increase productivity and serve as the 

basis for sustainable mobility platforms. 
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