
Describing Modeling Deltas by Model Transformation

Dilshodbek Kuryazov, Jan Jelschen, Andreas Winter
Carl von Ossietzky Universität, Oldenburg, Germany

{kuryazov,jelschen,winter}@se.uni-oldenburg.de

ABSTRACT
Since large scaled software models typically exist in many
revisions, extraction and representation of differences be-
tween versions is a crucial issue of model version systems.
While handling model differences is playing an important
role in evolution of models, there is a need for appropriate
techniques to represent model differences. This paper shows
a meta-model-generic and transformation based approach
to the representation of model differences. Domain specific
language is generated to represent model differences. Dif-
ferences are mapped to a set of model transformation rules.
To demonstrate the approach, it is applied to two versions
of an activity diagram.

Keywords
metamodeling, modeling delta, model transformation

1. MOTIVATION
Software models evolve over time, undergoing correc-

tions, extensions, and updates. The evolution of software
models requires collaboration of several designers. In or-
der to provide the collaborative work of development teams
and keep track of previous versions of models, model version
control approaches have to provide several services, such as
calculating, visualizing, representing, merging, and analyzing
differences between consecutive versions of software mod-
els. During the collaboration, applying changes to models
concurrently results in having several versions which differ
from each other. This paper intends to define transforma-
tion based means to represent model differences.

Currently, most version control tools provide a text-based
approach to represent differences as plain text documents
(for instance, diff, which is applied in RCS [14], CVS [11],
SCCS [1] and subversion [6]). Models can be represented
as text, as well like XML Metadata Interchange (XMI) for-
mat [15]. Model differences are only viewed in a text-based
way, but do not refer to modeling concepts. Information
on changed modeling concepts are blurred, and can not be
used for later analyses. Text-based version control systems
do not provide detailed and complete techniques to repre-
sent differences suitable for model evolution. For example,
changing the target of a control flow in an activity diagram
is represented as changing some XMI code instead of refer-
ring to activity diagram concepts like control flows which
ends at another activity.

The information obtained from the difference calculation
process (e.g. [3], [9], [5]) needs to be properly represented in
a difference model, usually called modeling delta, so that it

can be used for subsequent analysis and manipulation. For
this reason, appropriate techniques and tool support for the
representation of version differences of software models are
required.

There have been some works proposing representations
of model differences. A meta-model-independent approach
by Cicchetti et al. [7] provides operations that can be, un-
der certain conditions, composed sequentially or in parallel,
in order to represent more complex modifications. It in-
troduces a set of model transformation rules in the ATLAS
Transformation Language [10].

A top-down difference calculation and representation al-
gorithm is the DSMDiff algorithm [3]. Models and meta-
models are considered as graphs. The modification opera-
tions conform only to their internal format. It locks model
development into a single tool restricting its exploitation
in other modeling environments. Another graph based ap-
proach for differences calculation is the SiDiff algorithm [12].
In this approach, models are represented as graphs and de-
tection of differences is based on a search algorithm.

The approach presented here is meta-model-generic, i.e.
difference operations can be generated for arbitrary meta-
models. The model modifications are carried out by means
of difference models which identify sequences of modification
operations such as add, delete and change. These opera-
tions are applicable to each of the model elements. This
introduces a transformation-based representation of model-
ing deltas by transformation rules referring to a meta-model.
Meta-models are a basic part of model transformations, as
they allow structural definitions (i.e. abstract syntax) of the
modeling language. Meta-models give a collection of con-
cepts within a certain (domain-specific) modeling language.
In this sense, applying the aforementioned basic operations
to model elements results in a sequence of operations within
a domain-specific language (DSL), which represents model
differences. This allows for representing model differences
in terms of the actual modeling concepts. Consequently, the
operations of the DSL are represented by a set of transfor-
mation rules. Sequences of these transformation rules form
an executable description of model differences.

Instead of making multiple copies of the same model ar-
tifacts, transformation-based versioning techniques only re-
quire to store an initial model and several modeling deltas.
Another version of a given model will be derived by apply-
ing these rules to a given model. To express the idea, UML
activity diagrams [2] are used as an example.

There are a number of model transformation languages,
such as FUJABA [16], ATL [10], AGG [13], and VIATRA2
[8]. Here, the VIATRA2 (VIsual Automated model TRAns-



Figure 1: Example representing a simple implementation of the approach.

formation) rule- and pattern-based framework is used as
concrete implementation, chosen for its general-purpose model
transformations. It provides a model specification space
for model manipulation, including a model editor, import-
/export facilities, and visualization features. All of the other
tools mentioned provide some of these features, but none of
them provide all, at least not to the same extent.

The paper is structured as follows: Section 2 gives a brief
overview of the approach, describing an example as motiva-
tion and illustration. Then, an agenda for future work is
given in Section 3.

2. APPROACH
Graphs are defined to represent the abstract syntax of

modeling languages, and applied to the representation of
visual languages [4]. They are well suited to use for mod-
els to represent all kinds of artifacts. Additionally, graphs
are accompanied by meta-model-based technologies to de-
fine, manipulate, analyze, and transform graphs. However,
external representation of meta-models and models are de-
fined by directed graphs in VIATRA2 framework.

Models (meta-models and instance models) consist of a
set of connected elements. In the UML standard, meta-
models are defined using class diagrams, that may include
attributes with types, generalizations and associations. In
terms of graphs, classes are nodes and relations between
classes are edges of a graph. In the sense of instance models,
the standard notation of activity models are viewed as nodes

(action, initial, final, control, object, fork, merge, join, flow
final, control flow, object flow) of the graph including at-
tributes and associations between nodes are edges. In this
sense, nodes and edges can be modified.

To generate the operations of the DSL, basic operations
(add, delete, and change) are applied to the concepts.

In general, the following basic definitions are specified
regarding the difference operations of the DSL:

• Additions: new nodes are added to the new version of
a graph that did not exist in the old version.

• Deletions: existing nodes are deleted from the new
version of a graph that existed in the old version.

• Changes: attributes of nodes are changed during the
evolution from the old graph to the new one.

As an example, Figure 1 shows the simplified view of the
meta-model for activity diagrams, and graph representations
of two versions of an activity diagram. On the left-hand side,
the initial version of the graph view of a simple activity di-
agram (OrderSystemV1 ) is shown. It has a start node, two
activity nodes, and a final node, connected by control flows.
It then evolved into the second, right-hand version (Order-
SystemV2 ), in which one activity node (”pay invoice”) has
been added between the two original ones, i.e. one control
flow was re-targeted and a new one was added, as well.

In this example, both activity diagrams conform to the
same meta-model. The operations of the DSL are specified



based on the fundamental operations. An instance of that
DSL is depicted in the center, representing the differences
between the two activity model versions. These difference
operations conform to the meta-model, generated from the
activity meta-model and the three basic operations. A meta-
model describes common properties of its instances, and by
applying the basic operations to the each of its concepts, the
syntax of the DSL can be derived (e.g. for activity nodes:
addActivity, deleteActivity, changeActivityName). On the
bottom, the figure shows a simple set of VIATRA2 rules im-
plementing the operations expressed using the DSL.

While the sample delta includes a simplified view of the
model manipulation operations, such as add, delete, and
change, in the same way, the VIATRA2 implementation
also provides rules to add, delete, and change model ele-
ments. Consequently, the delta clearly is implemented with
model transformation rules.

The set of rules have a main rule including call operators
on the left side of Figure 1, and the set of rules addActivi-
tyNode, addControlFlow, changeControlFlowTarget on the
right side corresponding each operation of the DSL.

In terms of activity models, the change operation exists
only for attributes. The other elements of the model can
only be created or deleted.

In this case, a meta-model is needed 1) as basis for defin-
ing the delta DSL and 2) as domain and range for the trans-
formations implementing the delta operations.

In VIATRA2 framework, the model elements can be
called directly by the rules to manage modifications of the
model. The names of the models and meta-models need
to be defined at the beginning of the model manipulation
module. In order to execute model transformation rules,
the concepts of UML 2 are adapted to the VIATRA2 frame-
work and placed in the uml.metamodels package. Instance
models themselves are created in the model editor in model
space.

The transformation-based specification of the DSL im-
proves the applicability and integrability of the approach.
Moreover, only initial model versions and several applicable
rules need to be stored. Other, older or newer versions can
be retrieved by applying corresponding modeling deltas to
an initial model.

3. OUTLOOK
This paper discussed the issue of representing model dif-

ferences. A meta-model-generic transformation-based ap-
proach, allowing to retrieve model versions for graph struc-
tured models, was presented. To demonstrate the operations
of the DSL, they were implemented using a model transfor-
mation language.

Applying the basic operations (add, delete, and change)
to model elements leads to a representation of model differ-
ences. These delta operations are generated from the meta-
models of modeling languages. In this case, UML activity
diagrams were used as an example to illustrate the viability
of the approach. In the same way, the meta-model-generic
approach can be applied to other meta-models to generate
appropriate domain-specific languages, as well.

As mentioned, the model version and management which
intended to provide collaborative work consists of several is-
sues like calculating, visualizing, representing, merging, and
analyzing model differences. The approach presented in this
paper has demonstrated the idea to the representation of

model differences. Future work will aim at realizing the ap-
proach for other transformation approaches. Furthermore,
it is intended to elaborate appropriate approach and extend
the DSL including other issues of the collaborative work.

4. REFERENCES
[1] Alan L. Glasser. The evolution of a Source Code

Control System. ACM SIGMETRICS Performance
Evaluation Review, Volume 7:Issue 3–4, November
1978.

[2] James Rumbauch, Ivar Jacobson, and Grady Booch.
The Unified Modeling Language Reference Manual.
USA, July, 2004.

[3] Y. Lin; J. Gray; and F. Jouault. DSMDiff: a
differentiation tool for domain-specific models.
European Journal of Information Systems, pages
16(4):349—-361, August 2007.

[4] Ebert, Jürgen; Riediger, Volker; Winter, Andreas.
Graph Technology in Reverse Engineering, The
TGraph Approach, GI, In: Gimnich, Rainer; Kaiser,
Uwe; Quante, Jochen; Winter, Andreas (eds):. 10th
Workshop Software Reengineering (WSR 2008), vol.
126(3):pp. 67–81, 2008.

[5] M. Alanen and I. Porres. Difference and Union of
Models. In P.Stevens, J.Whittle, and G. Booch,
editors, Proc. 6th Int. Conf. on the UML, volume 2863
of LNCS:pages. 2–17, October 2003.

[6] Ben Collins-Sussman, Brian W. Fitzpatrick, C.
Michael Pilato,. Version Control with Subversion.
O’Reilly Media, June 2004.

[7] Cicchetti, Antonio; Ruscio, Davide Di; Pierantonio,
Alfonso. A Metamodel Independent Approach to
Difference Representation. Journal of Object
Technology 6:9, 2:165–185, October 2007.

[8] D. Varro, A. Balogh. The model transformation
language of the VIATRA2 framework, July 2007.

[9] M. Herrmannsdoerfer. Operation-based Versioning of
Metamodels with COPE. Vancouver, Canada, May 17
2009.

[10] F. Jouault and I. Kurtev. Transforming Models with
ATL. Springer-Verlag, In MoDELS Satellite Events,
volume 3844 of LNCS:pages 128—-138, September
5-9, 2005.

[11] T. Mens and S. Demeyer. Concurrent Versions
Systems. Springer, 2008.

[12] P. Pietsch. The SiDiff Framework. Technical report.
University of Siegen, Germany, March 13, 2009.

[13] G. Taentzer. AGG: A Tool Environment for Algebraic
Graph Transformation. Springer, 1779:333–341, 2000.

[14] W. F. Tichy. RSC — a system for version control.
Software—Practice Experience, Volume 15:Issue 7,
July 1985.

[15] Timothy J. Grose, Gary C. Doney, Stephen A.
Brodsky,. Mastering XMI. OMG Press, 2002.

[16] U. A. Nickel AND J. Niere AND A. Zündorf. Tool
demonstration: The FUJABA environment. Proc. of
the 22nd International Conference on Software
Engineering (ICSE), Limerick, Ireland, 2000.


