
Extending SOMA for Model-Driven Software Migration into SOA
Andreas Fuhr, Tassilo Horn, Andreas Winter Rainer Gimnich

University of Koblenz-Landau IBM Software Group, Frankfurt/Main
{afuhr,horn,winter}@uni-koblenz.de gimnich@de.ibm.com

Abstract
This paper proposes model-driven techniques to extend
IBM’s SOMA method towards migrating legacy systems
into Service Oriented Architectures (SOA). The proposal
explores how graph-based querying and transformation
techniques enable the integration of legacy assets into the
new architecture.

1 Motivation
Today, “SOA” is a buzzword often used by IT marketing.
SOA is viewed as business-driven IT architecture and pro-
vides a software development and deployment paradigm
promising faster development by heavily enabling reuse
possibilities and the agility to adapt to changes. According
to a recent poll [7], 84% of the interviewed businesses are
actually using SOA or have planned to do so.

But until today, there is no broad consensus about how
to design and implement a SOA and many IT businesses
have been developing their own methods. One of the well
known ones is “SOMA” (Service-Oriented Modeling and
Architecture) developed at IBM [1]. SOMA intends to
identify, design, implement and deploy services and leans
to model-driven development, as there is an IBM internal
tool supporting the method based on IBM Rational Soft-
ware Architect (RSA). SOMA is strongly focused on ex-
tensibility and relies on dedicated methods for legacy soft-
ware analysis and transformations.

This paper, focuses on a MDD based extension for a
complementary method of software migration, while re-
taining the conceptual framework of SOMA for service
quality. The reminder presents an extension of the SOMA
method in order to facilitate identification of service can-
didates from legacy systems and transforming them to ser-
vices in the new SOA infrastructure. Software migra-
tion by transformation has been proven to be an effective
method to handle legacy systems [9].

2 The SOMA Method
The SOMA method is divided into the seven phases [1]
described in the following paragraphs:

1. Business Modeling analyzes the state of a company at
the beginning of a project. During this phase, business
processes are identified.

2. Solution Management adapts the SOMA method to the
actual project needs.

3. Service Identification uses three complementary meth-
ods to identify service candidates. Domain Decompo-
sition is a top-down technique analyzing business pro-
cesses. Goal-Service Modeling explores business goals
to identify service candidates. Finally, Existing Asset
Analysis is a bottom-up technique examining legacy
systems coarse-grained. During this analysis, the func-

tionality of the legacy system is explored on a high level
instead of analyzing the implementation of this func-
tionality. The objective of Existing Asset Analysis is
to identify functionality that is needed as service. It is
explored what a system does instead of how it is done.
Activities on how to analyze legacy code are not pro-
vided by SOMA and must be contributed by an addi-
tional method.

4. Service Specification designs services and service
components, along with their non functional require-
ments that are implemented in the SOA. The service
specification (interface description of the service) is
created and messages and message flows are designed.

5. Service Realization defines how services will be real-
ized by service components. In SOMA, service com-
ponents can be implemented from scratch, existing ser-
vices can be used, or legacy code can be transformed or
wrapped to implement a service. In this phase, the de-
cisions on how a service will be implemented are met.
The goal of this phase is to identify how functional-
ity can be implemented or how existing functionality
can be extracted and migrated into a service compo-
nent. SOMA itself does not provide source code analy-
sis techniques and their application for supporting ser-
vice realization decisions. Such techniques must be
complemented to SOMA.

6. During Service Implementation, the service compo-
nents implementing the required services are realized.
New code is written, legacy functionality is trans-
formed or wrapped, and services are orchestrated. Ac-
tivities to reuse legacy implementations e.g. by trans-
formations or wrapping are not described in SOMA and
must be added.

7. Service Deployment deals with bringing the system
into use.

Concluding, SOMA does not prescribe all aspects of
SOA development. But, it is designed to allow the in-
clusion of additional methods and techniques. The next
section describes how to extend SOMA for software mi-
gration.

3 Model-driven Software Migration Tech-
niques Leveraging SOMA

During software migration towards SOA, many different
artifacts are analyzed or created. To get an consolidated
view on these artifacts and enable integrated analysis,
well-defined meta-models to precisely define the required
artifacts and their interdependencies have to be defined
[11]. The following paragraphs describe our extensions
to three central SOMA phases founding on such a meta-
model. As example the open-source Java tool GanttPro-
ject [4] was chosen which consists of about 1200 classes.

GanttProject manages tasks and resources and displays the
project schedule as Gantt chart.

During Service Identification legacy systems are ana-
lyzed in a coarse-grained manner to identify functionality
needed for service. Here we propose to analyze legacy
business process models and source code by evaluating
queries on models. Applying these techniques to the ex-
ample one service candidate was identified: GanttProject’s
resource managing capabilities could be the starting point
for a ResourceManagement service and provides opera-
tions for adding, editing, and deleting resources.

After specifying the service in more detail, legacy func-
tionality which can be implemented as service is explored
during Service Realization. In our example, the existing
class HumanResourceManager (HRM in short) has been
identified to be able to implement the ResourceManage-
ment service. This class will later be transformed into a
service component implementing the service. To get ex-
ecutable code after migrating this class, all other classes
HRM depends on have to be migrated as well. Again,
we propose a model-driven approach to explore these de-
pendencies. The legacy source code is transformed into a
model conforming to a call viewpoint and needed informa-
tions are extracted by evaluating queries on the model.

Java code is transformed into a TGraph [2] conform-
ing to a Java 6 meta-model. GReQL (Graph Repository
Query Language [6]) is used as query language. It is a
declarative language featuring regular path expressions to
describe relations between vertices. The GReQL query
in Listing 1 retrieves all interfaces and classes which are
used by the HRM either by method calls (methods of HRM
call methods of other classes), types of fields, local vari-
ables and method parameters, and type hierarchy depen-
dencies (HRM derives from another class or implements
interfaces).

Finally, during Service Implementation legacy function-
ality identified during Service Realization has to be mi-
grated into a service component. In our approach, we use
model transformations to migrate legacy code into service
components. The transformation language GReTL (Graph
Repository Transformation Language [8]) uses GReQL
queries (like in Listing 1) to capture the elements which
are transformed. The transformation rule itself is opera-
tionally specified which is aligned to our meta-meta-model
and slightly comparable to QVT Operational Mappings
[10].

4 Conclusion
Summarizing, SOMA is a powerful method to develop
SOAs. It can easily be extended by graph-based re-
verse engineering and transformation techniques to enable
model-driven software migration. In the SOAMIG project,
these methods and extensions will be used to realize real-
world migrations into a SOA [11].

References
[1] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapa-

thy, K. Holley. SOMA: A method for Developing Service-

from hrmC : V{ C l a s s D e f i n i t i o n } ,
hrmM : V{ MethodDef in i t i on } ,
dep : V{ Type }

with hrmC . name = " HumanResourceManager "
and hrmC <−−{IsClassBlockOf }<−−{IsMemberOf } hrmM
and (

hrmM (/ / method invoca t i ons
<−−{IsBodyOfMethod } <−−{IsStatementOfBody }
<−−{At t r ibutedEdge , ^ IsBreakTargetOf ,

^ IsCont inueTargetOf , ^ I sTypeDe f i n i t i onOf }∗
& { MethodInvocat ion }
<−−{IsDeclarat ionOfInvokedMethod }
& { MethodDef in i t i on }
−−>{IsMemberOf } −−>{IsClassBlockOf }

) | (/ / method parameters
<−−{IsParameterOfMethod } <−−{IsTypeOf }+
<−−{ I sTypeDe f i n i t i onOf }

) | (/ / l o c a l v a r i a b l e s
<−−{IsBodyOfMethod } <−−{IsStatementOfBody }
<−−{At t r ibutedEdge , ^ IsBreakTargetOf ,

^ IsCont inueTargetOf , ^ I sTypeDe f i n i t i onOf }∗
& { Var iab leDec la ra t i on }
<−−{IsTypeOfVar iab le } <−−{ I sTypeDe f i n i t i onOf }

) dep
or hrmC (/ / member f i e l d s
<−−{IsClassBlockOf } <−−{IsMemberOf }
& { F ie l d } <−−{ I sF ie l dCrea t i onOf }
<−−{IsTypeOfVar iab le } <−−{ I sTypeDe f i n i t i onOf }

) | (/ / superc lass & i n t e r f a c e s
(<−−{ IsSuperClassOfClass } |
<−−{ I s I n te r f aceOfC lass }) <−−{ I sTypeDe f i n i t i onOf }

) dep
)

reportSet theElement (dep <−−&{ I d e n t i f i e r }) . name end

Listing 1: GReQL query retrieving dependencies

Oriented Solutions. IBM Systems Journal, 47(3):377–396,
2008.

[2] J. Ebert, V. Riediger, A. Winter. Graph Technology in Re-
verse Engineering, The TGraph Approach. In [5], 67–81.

[3] A. Fuhr. Model-driven Software Migration into a Service-
oriented Architecture, Bachelor Thesis, Universität Mainz,
2009.

[4] GanttProject. The GanttProject, 2009.
http://ganttproject.biz/.

[5] R. Gimnich, U. Kaiser, J. Quante, A. Winter (ed.). 10th
Workshop Software Reengineering (WSR 2008), GI Lec-
ture Notes in Informatics, Bonn, 2008.

[6] K. Marchewka. Entwurf und Definition der Graphanfrage-
sprache GReQL2. Diploma Thesis, Universität Koblenz-
Landau, Institut für Softwaretechnik, 2006.

[7] W. Martin. SOA Check 2008: Status Quo und Trends
im Vergleich zum SOA Check 2007. TU Darmstadt, itre-
search, 2008.

[8] F. Rheindorf. Herleitung eines operationalen Ansatzes zur
Modelltransformation im Kontext modellgetriebener Soft-
wareentwicklung. Diploma Thesis, Universität Koblenz-
Landau, Institut für Softwaretechnik, 2006.

[9] W. Teppe, R. Eppig. Das ARNO Projekt, Heraus-
forderungen und Erfahrungen in einem großen indus-
triellen Software-Migrationsprojekt. In [5], 99–113.

[10] The Object Management Group. Meta Object Facility 2.0:
Query/View/Transformation Specification, 2008.

[11] A. Winter, J. Ziemann. Model-based Migration to Service-
oriented Architectures: A Project Outline. In H. Sneed
(ed.) CSMR 2007 Workshops, 107–110, 2007.

