
ModelModel--Driven Software Migration Driven Software Migration
Extending SOMAExtending SOMA

Andreas Andreas FuhrFuhr
TassiloTassilo HornHorn

Andreas WinterAndreas Winter

Nr. 16/2009Nr. 16/2009

Arbeitsberichte aus demArbeitsberichte aus dem
Fachbereich InformatikFachbereich Informatik

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen
überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik“ comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:
Der Dekan:
Prof. Dr. Zöbel

Die Professoren des Fachbereichs:
Prof. Dr. Bátori, Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr. Ebert,
Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Prof. Dr. Sure, Prof. Dr. Lämmel, Prof. Dr. Lautenbach, Prof. Dr. Müller, Prof. Dr.
Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr. Rosendahl, Prof. Dr.
Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch, Prof. Dr. von
Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zöbel

Kontaktdaten der Verfasser

Andreas Fuhr, Tassilo Horn, Andreas Winter
Institut für Softwaretechnik
Fachbereich Informatik
Universität Koblenz-Landau
Universitätsstraße 1
D-56070 Koblenz
EMail: afuhr@uni-koblenz.de, horn@uni-koblenz.de, winter@uni-koblenz.de

mailto:afuhr@uni-koblenz.de
mailto:horn@uni-koblenz.de

Model-Driven Software Migration Extending
SOMA

Andreas Fuhr, Tassilo Horn, Andreas Winter
University of Koblenz-Landau

{afuhr,horn,winter}@uni-koblenz.de

This paper proposes model-driven techniques to extend IBM’s SOMA method towards
migrating legacy systems into Service-Oriented Architectures (SOA). The proposal ex-
plores how graph-based querying and transformation techniques enable the integration of
legacy assets into a new SOA. The presented approach is applied to the identification and
migration of services in an open source Java software system.

1 Introduction

Today, almost every company runs systems that have been implemented a long time ago. These sys-
tems, and even those that have been developed in the last years, are still under adaptation and main-
tenance to address current needs. Very often, adapting legacy software systems to new requirements
needs to make use of new technological advances. Business value of existing systems can only be
preserved by transferring these legacy systems into new technological surroundings. Migrating legacy
systems, i. e. transferring software systems to a new environment without changing the functionality
[32], enables already proven applications to stay on stream instead of passing away after some suspen-
sive servicing [30].

A technological advance promising better reusability of software assets in new application areas
is provided by Service-Oriented Architectures (SOA). SOA is viewed as an abstract, business-driven
approach decomposing software into loosely-coupled services that enables reusing existing software
assets for rapidly changing business needs [20]. A service is viewed as an encapsulated, reusable
and business-aligned asset that comes with a well-defined service specification providing an interface
description of the requested functionality. The service specification is implemented by a service com-
ponent which is realized by a service provider. Its functionality is used by service consumers [2].

Migrating legacy systems to services enables both, the reuse of already established and proven soft-
ware components and the integration with newly created services, including their orchestration to sup-
port changing business needs. The work presented here is part of the SOAMIG1 project, which ad-
dresses the migration of legacy software systems to Service-Oriented Architectures, based on model
driven technologies and code transformation.

Copyright c© 2009 The authors. Permission to copy is hereby granted provided the original copyright notice is reproduced
in copies made.

1 This work is partially funded by the German Ministry of Education and Research (BMBF) grant 01IS09017C. See
http://www.soamig.de for further information.

1

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

«serviceComponent»
ResourceManagerSC

«serviceProvider»
ResourceManagerProvider

IResourceManager

+ add ()
+ getById ()
+ remove ()
+ getResources ()

«serviceSpecification»
IResourceManager

+ add (resource : ResourceManagerRequest) : Boolean
+ getById (id : Integer) : ResourceManagerResponse
+ remove (resource : ResourceManagerRequest) : Boolean
+ getResources () : ResourceManagerResponse

«facade»
ResourceManagerServiceFacade

«interface»
ResourceManagerService

+ add (resource : ResourceManagerRequest) : Boolean
+ getById (id : Integer) : ResourceManagerResponse
+ remove (resource : ResourceManagerRequest) : Boolean
+ getResources () : ResourceManagerResponse

«Java Class»
HumanResourceManager

«Java Interface»
ResourceManager

«derive»

«refine»

«refine»

1

1 - humanResourceManager

Figure 1: Target architecture of SOA

Software development and maintenance projects require a clearly defined methodology. E. g. Chicken
Little [7] provides an incremental approach. The ReMiP (Reference Migration Process) provides a
generic process model for software migration [1, 19]. Major activities in all software migration pro-
cesses, dealing with the legacy code, include legacy analysis and legacy conversion. Legacy analysis
aims at understanding legacy systems and identifying software assets worth to be transfered into the
new environment. Legacy conversion supports the technical migration of legacy assets by wrapping or
transformation.

An end-to-end method to develop SOA systems is given by the SOMA method developed by IBM [2].
Service-Oriented Modeling and Architecture (SOMA) includes seven incremental and iterative phases
describing how to identify, specify and implement services. In the first place, SOMA is designed
to develop SOAs from scratch and does not provide a direct support for integration of legacy assets.
However, SOMA is strongly focused on extensibility and allows to include additional techniques to
support specific needs. Thus, by extending SOMA with legacy analysis and conversion, SOMA will
provide a comprehensive methodology to SOA development including a broad reuse of legacy code
assets.

The extension of SOMA towards reusing legacy assets by migration is based on a model-driven
strategy. Models (including code) represent different views on software systems including business
process models, software architecture and programming code. In particular, migrating legacy systems
to SOA requires an integrated view on business processes, architecture and code [35]. Legacy analysis
and legacy conversion is based on querying and transforming models, describing appropriate views of
the legacy system.

This paper introduces the application of TGraph technology, a graph-based representation funding
on TGraphs [12]. It includes querying and transformation techniques to support legacy analysis and
legacy conversion within the appropriate SOMA phases. TGraph technology will support identification,
specification, realization and implementation of services obtained from legacy systems [16].

The integration of graph-based reengineering and migration techniques to SOMA is explained by

2

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

identifying and transforming an exemplary service in the open source software GanttProject [17]. It
will be described

• how TGraph technology is applied to represent and analyze legacy code supporting service iden-
tification and realization decisions,

• how SOMA is applied to specify and design services and

• how TGraph technology is applied to transfer legacy code into a service implementation.

Figure 1 shows the service-oriented target architecture, modeling the embedding of a service pro-
viding capabilities to manage project resources, obtained from a legacy system supporting project
schedules. The upper part of the class diagram shows the service framework that will be created during
forward engineering using the extended SOMA approach. The bottom of the diagram (gray box) shows
legacy classes and interfaces that will be transformed into the service implementation. Combining both
parts via the facade class will provide a fully executable and functional service [15, 16].

The paper is organized as follows: Section 2 describes the SOMA method in more detail and moti-
vates where SOMA has to be extended by model driven reengineering techniques. Section 3 describes
the TGraph technology to provide legacy analysis and legacy conversion. In Section 4 the integrated
method is applied to identify, to specify, to realize and to implement the resource management service
by reusing the GanttProject legacy code. Section 5 shortly, contrasts the integrated SOA migration
approach presented here, with current work in model-driven software analysis and migration. Finally,
Section 6 summarizes and reflects the obtained results.

2 Service-Oriented Modeling and Architecture (SOMA)

SOMA [2] is an iterative and incremental method to design and implement service-oriented systems,
developed by IBM and still under research (latest published version: 2.4). SOMA describes how to
plan, to design, to implement and to deploy SOA systems. SOMA is designed extensible to be able to
include additional, specialized techniques supporting specific project needs. The following subsections
shortly describe the SOMA phases and outline where SOMA has to be extended towards providing
software migration, as well.

2.1 Business Modeling and Solution Management

During Business Modeling the business at the beginning of a project is analyzed. Business goals and
the business vision are identified, as well as business actors and business use cases.

Solution Management adapts the SOMA method to the project needs. This includes choosing addi-
tional techniques to solve project-specific problems (like adding migration techniques in a migration
project).

SOA migration does not require to extend theses initial SOMA phases.

2.2 Service Identification

During Service Identification, SOMA uses three complementary techniques to identify service candi-
dates, i. e functionality that may be implemented as service later in the new architecture.

Domain Decomposition is a top-down method decomposing the business domain into functional
areas and analyzing the business processes to identify service candidates.

3

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

Goal-Service Modeling identifies service candidates by exploring the business goals and subgoals.
Legacy Asset Analysis finally explores the functionality of legacy systems. Documentation, APIs or

interfaces are analyzed to identify service candidates. The source code is only analyzed coarse-grained,
meaning it is analyzed which functionality exists and not how it is actually implemented.

All three techniques are performed incrementally and iteratively. For each identified candidate, an
initial service specification is created and a trace to the source of identification is established.

Extending Service Identification

SOMA does not describe how to analyze legacy systems. At this point, additional methods and tech-
niques have to be included. In Section 4.2, we extend SOMA by a model-driven technique to reverse-
engineer legacy code into an appropriate TGraph, which enables queries and transformations to identify
service candidates.

2.3 Service Specification

Service Specification deals with describing the service design in detail. The service specification is
refined, messages and message flows are designed and services are composed. At the end of this phase,
a comprehensive description of the service design exists.

SOMA uses an UML profile for Service-Oriented Architectures to describe the service design. Later,
the specification will be transformed into WSDL code for implementing the service as a Web Service
(as is proposed by SOMA).

Extending Service Specification

Service Specification describes the service in detail. To gather the information needed for the design,
messages and message parameters can be derived from legacy code. We extend SOMA to identify
useful legacy code in Section 4.3.

2.4 Service Realization

Service Realization decides which services will be implemented in the current iteration and constitutes
how to implement them. First, a Service Litmus Test (SLT) is executed to identify service candidates
that should be exposed. The SLT is a set of criteria to evaluate usefulness and value of each service.

After having chosen a set of services, the implementation strategy has to be defined. Encapsulation
of services allows to choose different ways to implement each service. Common strategies to form new
service components are (1) implementation from scratch, (2) wrapping of larger legacy components or
(3) transforming the required legacy components.

In software migration it is intended to reuse legacy functionality as far as possible. In SOMA, legacy
functions usually are wrapped and then exposed as services. This has several drawbacks. The legacy
system must still be maintained and in addition, the wrapper must be created and later be maintained,
too. A different approach is to transform legacy functionality into a service implementation.

After having decided on transformation as implementation technique, legacy systems must be ana-
lyzed fine-grained. Functionality that is able to implement services has to be identified in the legacy
code. In addition, it is important to clearly understand how this functionality is embedded in the legacy,
since it has to be separated to build a self-contained service. Finally, the implementation design spec-
ifying how to implement the service, is created. In addition, patterns are used to create a framework
which is able to integrate the service implementation into the service design.

4

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

Extending Service Realization

SOMA does not describe how to implement services by reusing legacy code. In Section 4.4, a model-
driven technique is presented to analyze legacy systems fine-grained in order to understand the im-
plementation of legacy functionality. Here, GReQL graph queries are used to retrieve the required
information.

2.5 Service Implementation

During the Service Implementation phase, services are actually implemented. According to the de-
cisions derived in the Service Realization phase in Section 2.4, services are developed, wrappers are
written, or legacy code is transformed. Finally, all services are orchestrated and message flows are
established.

Extending Service Implementation

SOMA does not include techniques to transform legacy code into services. In Section 4.5 it is demon-
strated how graph transformations are used to transform legacy code into service implementations.

2.6 Service Deployment

The last phase is Service Deployment. It deals with exposing the services to the customer’s environ-
ment. Final user-acceptance tests are performed and the SOA is monitored to verify that it performs as
expected.

In general, service deployment is not affected by the service implementation strategies. Further
extensions for the final SOMA phase are not required.

This paragraph concludes the description of the SOMA method. Four extension points to the SOMA
method have been identified. The next section will introduce the TGraph approach that is used to extend
SOMA. In Section 4, the extended SOMA method is applied to the migration of GanttProject.

3 The TGraph Approach

The TGraph Approach [12] is a seamless approach for graph-based modeling and implementation.
Most, if not all reverse engineering techniques can be based on graph analysis using graph algorithms
and/or graph querying [25]. Additionally, the representation of models as graphs facilitates the use of
graph transformation techniques.

The TGraph approach is based on a strong emphasis on metamodeling. Each graph’s nodes and edges
are typed and the querying and transformation techniques exploit the accessibility of the metamodel
information.

In the following sections, the kind of graphs used in the TGraph approach is described, including
a short overview on the metamodeling foundation. The model-driven SOMA extensions motivated
in Section 2 require reasonable model querying and transformation techniques. Section 3.2 gives an
introduction to querying TGraphs with GReQL and Section 3.3 depicts the GReTL-transformation
language.

5

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

3.1 TGraphs and TGraph Schemas

A TGraph is a directed graph where all nodes and edges are typed and may contain attributes. Ad-
ditionally, edges and nodes are ordered. Edges are first class citizens, so the navigability is always
bidirectional and does not depend on the edge’s direction. This also enables reasoning on edges di-
rectly. In sparse graphs, which usually occur in code and model representations, this also provides
more efficient graph traversal, instead of arguing on node tuples.

The graph library JGraLab (Java Graph Laboratory2) provides a convenient and efficient API for
accessing and manipulating TGraphs.

Each TGraph is an instance of a TGraph schema. In a model-driven sense, TGraph schemas form
metamodels for classes of TGraphs and define edge and node types, including their attribute bindings.
Such schemas are specified by using a UML profile called grUML (Graph UML), a tool-ready subset
of CMOF slightly more expressive than EMOF [6]. In grUML diagrams, node and edge types and their
attributes are specified with UML classes and associations (or association classes). Multiple inheritance
between both node and edge types is supported.

Among others, a schema covering the complete abstract syntax of the Java programming language
exists. Using a custom parser [4], Java source code, class and jar files can be converted to a TGraph
conforming to this schema. These graphs are subject to advanced analysis and transformation using the
query and transformation languages described in the next sections.

3.2 GReQL

GReQL (Graph Repository Query Language, [5]) is a textual language and its syntax bears some analo-
gies to SQL. One of the most commonly used language elements is the from-with-report (FWR) clause.
The from part is used to declare variables and bind them to domains. In the with part, constraints can
be imposed on the values of these variables. The report part is used to define the structure of the query
result.

A sample query for retrieving all super- and subclasses of a class with name HumanResource in a
graph conforming to the Java schema is depicted in Listing 1.

In the from part, the variable e is bound to all edges of type IsSuperClassOfClass one after the
other. The constraint defined in the with clause requires that the name attribute of the node acting as
source or target of such an edge matches the regular expression “HumanResource”. The report clause
defines the structure of the results as tuples where the entries are pairs of the names of the superclass
and subclass. For each IsSuperClassOfClass edge which satisfies the constraint, a tuple is added to the
result multiset.

from e : E{ IsSuperClassOfClass }
with startVertex (e) . name = " HumanResource " or

endVertex (e) . name = " HumanResource "
report startVertex (e) . name, endVertex (e) . name
end

Listing 1: A GReQL query to find direct superclasses and subclasses

One of GReQL’s especially powerful features are regular path expressions, which can be used to
formulate queries that utilize the interconnections between nodes and their structure. Therefore, sym-
bols for edges are introduced: −−> for directed edges and <−> if the direction should not be taken

2http://jgralab.uni-koblenz.de

6

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

into account. Additionally, an edge type written in angle brackets may follow the edge symbol. These
symbols can be combined using regular operators: sequence, iteration (∗ and +), alternative (|) and so
on.

Listing 2 shows a query for finding member classes. Two variables of type ClassDefinition are
defined.

from o , m : V{ C l a s s D e f i n i t i o n }
with o <−−{IsClassBlockOf } <−−{IsMemberOf } m
reportSet m end

Listing 2: A query using regular path expressions to find member classes

If the ClassDefinition m is a member of o (e.g. a path like the one depicted in the with clause exists),
the member class m will be reported.

3.3 GReTL

The GReTL transformation language (Graph Repository Transformation Language) is a Java frame-
work for programming transformations on TGraphs [11]. Instead of creating a new transformation
language including its own syntax from scratch, existing technologies were applied, namely JGraLab’s
Schema API for describing imperative aspects and GReQL for declarative parts. The idea of GReTL
is to build a target TGraph schema by writing transformation rules as calls to methods provided by
the transformation framework. These methods create new elements in the target schema by delegating
to methods in JGraLab’s Schema API and GReQL queries given as additional parameters in transfor-
mation rules specify declaratively which instances of this new type have to be created in the target
graph.

An example rule for creating a node class in the target schema and its appropriate instances is de-
picted in figure Listing 3.

createVer texClass (" uml . Class " ,
" from t : V{ Type } "

+ " w i th t . name =~ \ " . ∗ [Rr] esource . ∗ \ " "
+ " repor tSe t t end ") ;

Listing 3: GReTL rule for creating a node class and instances thereof

The first parameter uml.Class is the fully qualified name of the new node class to be created in the
target schema. The second parameter is a GReQL query given as string, which is evaluated on the
source graph and returns the set of Types whose name contain the substring “resource”. These types
are used as archetypes for the uml.Class nodes that are created in the target graph. For each Type in the
result set, a new uml.Class node is created in the target graph. The mapping of archetype to the newly
created node is saved and accessible in further rules.

Further methods for creating edge types (including their edge instances), attributes and generaliza-
tions between edge and node classes are realized in an analogous manner.

4 Merging SOMA and the TGraph Approach

The previous sections motivated the need of extending SOMA to enable the reuse of legacy software
assets in software migration and shortly presented graph-based modeling, analysis and transformation

7

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

protected void t rans form () {
VertexClass umlClass = createVer texClass (

" uml . Class " ,
" from t : V{ Type } "

+ " w i th t . name =~ \ " . ∗ [Rr] esource . ∗ \ " "
+ " repor tSe t t end ") ;

c r e a t e A t t r i b u t e ("name" , umlClass , createStr ingDomain () ,
" from t : keySet (img_uml$Class) "

+ " reportMap t , t . name end ") ;
createEdgeClass (

" uml . Assoc ia t ion " ,
umlClass ,
umlClass ,
" from c : keySet (img_uml$Class) , c2 : keySet (img_uml$Class) "

+ " w i th c <−−{IsBlockOf } <−−{IsMemberOf } "
+ " <−−{^IsBreakTargetOf , ^ IsCont inueTargetOf , ^ I sTypeDef in i t i onOf , ^

IsClassBlockOf , ^ I s I n te r f aceB lockO f }∗ "
+ " [<−−{ I sTypeDe f i n i t i onOf }] c2 "
+ " repor tSe t c , c2 end " ,

" from t : $ "
+ " reportMap t , nthElement (t , 0) end " ,

" from t : $$ "
+ " reportMap t , nthElement (t , 1) end ") ;

createEdgeClass (
" uml . IsA " ,
umlClass ,
umlClass ,
" from c : keySet (img_uml$Class) , c2 : keySet (img_uml$Class) "

+ " w i th c (<−−{ IsSuperClassOf } | <−−{ I s I n te r f aceOfC lass }) <−−{ I sTypeDe f i n i t i onOf }
c2 "

+ " repor tSe t c , c2 end " ,
" from t : $ "

+ " reportMap t , nthElement (t , 0) end " ,
" from t : $$ "

+ " reportMap t , nthElement (t , 1) end ") ;
}

Listing 4: GReTL transformation from Java to UML

techniques. The migration approach resulting in the extension of SOMA by TGraph-based reengineer-
ing techniques is applied to identify services from legacy code, to support specification and realization
decisions and to transform legacy code into service implementation.

Following the SOMA phases introduced in Section 2, the integrated approach is applied to the migra-
tion of Gantt project into a Service-Oriented Architecture [15]. GanttProject [17] is a project planning
tool. It manages project resources and tasks and displays project schedules as Gantt charts. GanttProject
is a Java system containing about 1200 classes. The required migration is exemplified by identifying
and migrating a service to manage project resources by transforming the legacy code.

4.1 Business Modeling and Solution Management

The first phase in SOMA analyzes the current state of the business (Business Modeling). This paper
focuses on the analysis and reuse of legacy software. Business modeling is not considered in detail,
although it is important to analyze legacy business processes and to define the processes to be supported

8

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

v1 Class

isAbstract = false
name = "HumanResourceManager"

v3 Class

isAbstract = false
name = "HumanResource"

e9: Association

v4 Class

isAbstract = true
name = "ResourceManager"

e16: IsA

e6: Association

e13: Association

v2 Class

isAbstract = false
name = "ResourceAssignmentImpl"

e4: Association

e7: Association

e10: Association
e2: Association

e15: IsA
e3: Association

e14: Association

v5 Class

isAbstract = false
name = "ProjectResource"

Figure 2: Visualization of classes and interfaces possibly providing functionality to manage resources

by the new SOA. Here, it is assumed that the business process of managing project resources has to be
realized by the new SOA and its implementation will rely on GanttProject.

Solution Management adapts the SOMA method to the current project needs. Since GanttProject is
a Java system, a TGraph representation for Java systems is required. The TGraph Java 6 metamodel
contains about 90 vertex and 160 edge types and covers the complete Java syntax. The GanttProject
sources are parsed according to that metamodel, resulting in a graph of 274.959 nodes and 552.634
edges. This graph and the implicit knowledge on resource management provide the foundation for
service identification, service specification, service realization and service implementation.

4.2 Service Identification

The identification of services from legacy systems requires a coarse-grained analysis. The graphical
user interface of GanttProject is explored first and functionality to manage project resources is identified
as one main feature of the software. Looking at the legacy code identifies the functionality providing
the management of project resources.

Identifying functionality in legacy code is a challenging task and still an open research issue [24].
A GReQL query is used to identify this functionality in the GanttProject-TGraph and a corresponding
GReTL transformation visualizes the query result. String search on TGraphs is used to detect possible
code areas referring to “resources” and further interconnections of code objects are specified by declar-
ative path expressions. The resulting subgraph is transformed by GReTL into a TGraph conforming to
a simple UML schema. Further XMI-based filters (cf. [13]) might be used to render these structures in
UML tools.

Listing 4 shows the GReTL transformation supporting coarse-grained legacy code analysis. For each
legacy class or interface named “resource” (name =~ \".∗[Rr]esource.∗\"), this transformation creates

9

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

«serviceSpecification»
IResourceManager

+ add ()
+ getById ()
+ remove ()
+ getResources ()
+ getResourcesArray ()
+ importData ()

«Java Interface»
ResourceManager

+ create(String, int) : ProjectResource
+ add(ProjectResource) : void
+ getById(int) : ProjectResource
+ remove(ProjectResource) : void
+ remove(ProjectResource, GPUndoManager) : void
+ getResources() : List
+ getResourcesArray() : ProjectResource[]
+ save(OutputStream) : void
+ clear() : void
+ addView(ResourceView) : void
+ importData(ResourceManager) : Map
+ getCustomPropertyManager() : CustomPropertyManager

«Java Class»
HumanResourceManager

«refine»

Figure 3: IResourceManager service identified from legacy code

one UML-class-node in the target TGraph. In addition, associations are drawn between those class-
nodes whenever one node uses (e. g. by method calls or variable types) another node. Inheritance is
visualized by “IsA” edges. For interfaces and abstract Java classes, their UML class counterparts are
marked by appropriate attributes. The visualized result of this GReTL transformation is shown in the
TGraph in Figure 2.

Looking at the result, the class HumanResourceManager implementing the interface ResourceM-
anager can be identified as functionality to manage project resources. Based on this information, an
initial service specification for the service candidate IResourceManager is created and traces to the
legacy code are noted (Figure 3). In this phase, no further information about the method signatures of
the initial service specification is gathered.

The following SOMA phases specify the IResourceManager service in more detail.

4.3 Service Specification

Service Specification refines the IResourceManager service specification. A service provider compo-
nent is created which will later implement the service specification.

In addition, message flows are created to enable communication with the service. For method pa-
rameters in the legacy interface, request messages are created that are passed to the service. For return
types in the legacy system, response messages are defined that will be returned by the new service.
Request and response messages can be derived from legacy code.

Listing 5 shows a GReQL query taking an interface or class name as input and returning method
parameters and return types as output. This information is used to derive message parameter types
from legacy code.

The result of the specification phase is shown in the class diagram in Figure 4. The service specifi-
cation now contains information about parameters (They are hidden in the ResourceManagerProvider
component since they are already shown in the service specification). In addition, request and response

10

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

l e t classname := " HumanResourceManager " in tup (
from hrmClass : V{ C l a s s D e f i n i t i o n } ,

usedType : V{ Type , Bu i l t I nType }
with / / method parameters o f type usedType

hrmClass . name = classname and hrmClass
<−−{IsClassBlockOf}<−−{IsMemberOf }
<−−{IsParameterOfMethod }
<−−{IsTypeOfParameter }
[<−−{ I sTypeDe f i n i t i onOf }] usedType

reportSet (hasType (usedType , " Bu i l t I nType ")) ?
usedType . type :
theElement (usedType<−−&{ I d e n t i f i e r }) . name :
" E r ro r "

end , from hrmClass : V{ C l a s s D e f i n i t i o n } ,
usedType : V{ Type , Bu i l t I nType }

with / / r e t u r n types o f type usedType
hrmClass . name = classname and hrmClass
<−−{IsClassBlockOf } <−−{IsMemberOf }
<−−{IsReturnTypeOf } [<−−{ I sTypeDe f i n i t i onOf }]
usedType

reportSet (hasType (usedType , " Bu i l t I nType ")) ?
usedType . type :
theElement (usedType<−−&{ I d e n t i f i e r }) . name :
" E r ro r "

end)

Listing 5: GReQL query retrieving method parameters and return types for message specification

«serviceProvider»
ResourceManagerProvider

IResourceManager

+ add ()
+ getById ()
+ remove ()
+ getResources ()

«serviceSpecification»
IResourceManager

+ add (resource : ResourceManagerRequest) : Boolean
+ getById (id : Integer) : ResourceManagerResponse
+ remove (resource : ResourceManagerRequest) : Boolean
+ getResources () : ResourceManagerResponse

«message»
ResourceManagerRequest

- resource : HumanResourceType

«message»
ResourceManagerResponse

- resources : HumanResourceType [*]

«parameterType»
HumanResourceType

«Java Class»
HumanResource

«Java Interface»
ResourceManager

«refine»

«derive»

Figure 4: Detailed design of IResourceManager service

11

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

«Java Interface»
ResourceManager

«Java Class»
HumanResourceManager

«Java Class»
ProjectResource

«Java Class»
GanttDaysOff

«Java Interface»
CustomPropertyManager

«Java Class»
GanttCalendar

«Java Class»
PropertyTypeEncoder

«Java Interface»
CustomProperty

«Java Interface»
Role

«Java Interface»
CustomPropertyDefinition

«Java Interface»
GPUndoManager

«Java Class»
CustomPropertyDefinitionImpl

«Java Class»
ResourceEvent

«Java Class»
HumanResource

«Java Interface»
ResourceView

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 5: Service Realization: Dependencies of HRM class

messages are defined and one parameter type (HumanResourceType) for these messages has been de-
rived from legacy code.

At the end of this phase, the design of the service itself is mostly completed. The next step is now to
decide how the service will be implemented.

4.4 Service Realization

The first decision to make during Service Realization is how to implement the IResourceManager
service. Model transformation approaches are also suited for code transformation. Thus, the legacy
code here is transformed into a service implementation to provide the business functionality. If service
realization by wrapping is decided, wrappers can be generated analogously.

Service Identification already identified one class in the legacy code that may provide functionality
to the IResourceManager service: the class HumanResourceManager (short: HRM). The complete
but minimal code realizing this functionality has to be determined and transformed into executable
code. Slicing these code fragments also requires to consider dependencies of HRM. These dependencies
include

• HRM calls methods of other classes (HRM→calls method→isMemberO f class),

• variables, parameters or return types of HRM (e.g. HRM→de f ines variable→hasAsType class),

• inheritance hierarchy (HRM→specializes class or HRM→implements interface).

Listing 6 describes the GReQL query retrieving these dependencies. It returns a list of all classes
and interfaces that HRM depends on. Figure 5 shows a (manually created) visualization of the query
result.

Next, the business functionality must be integrated into the overall service design. This is done
according to the patterns proposed by Wahli [34].

12

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

from hrmClass : V{ C l a s s D e f i n i t i o n } ,
hrmMethod : V{ MethodDef in i t i on } ,
usedType : V{ Type }

with
hrmClass . name = " HumanResourceManager "
and hrmClass <−−{IsClassBlockOf}<−−{IsMemberOf } hrmMethod
and
(

hrmMethod ((<−−{IsBodyOfMethod } <−−{IsStatementOfBody }
(<−−{At t r ibutedEdge , ^ IsBreakTargetOf , ^ IsCont inueTargetOf , ^ I sTypeDe f i n i t i onOf }) ∗
& { MethodInvocat ion } <−−{IsDeclarat ionOfInvokedMethod } & { MethodDef in i t i on }
−−>{IsMemberOf } −−>{IsClassBlockOf }) |
(<−−{IsParameterOfMethod } <−−{IsTypeOf }+ <−−{ I sTypeDe f i n i t i onOf }) |
(<−−{IsBodyOfMethod } <−−{IsStatementOfBody }
(<−−{At t r ibutedEdge , ^ IsBreakTargetOf , ^ IsCont inueTargetOf , ^ I sTypeDe f i n i t i onOf }) ∗
<−−{IsTypeOfVar iab le } <−−{ I sTypeDe f i n i t i onOf) |
(<−−{ IsReturnTypeOf } <−−{ I sTypeDe f i n i t i onOf })) usedType

or
hrmClass ((

<−−{IsClassBlockOf } <−−{IsMemberOf } <−−{ I sF ie l dCrea t i onOf } <−−{IsTypeOfVar iab le }
<−−{ I sTypeDe f i n i t i onOf }) |
((<−−{ IsSuperClassOfClass } | <−−{ I s I n te r f aceOfC lass })
<−−{ I sTypeDe f i n i t i onOf }) |
((<−−{ IsClassBlockOf } <−−{IsMemberOf }) +)) usedType

)
reportSet theElement (usedType <−− & { I d e n t i f i e r }) . name end

Listing 6: GReQL query retrieving dependencies

Figure 6 shows the application of these patterns to create a framework to integrate the legacy code
which will be transformed in the next phase. The service component ResourceManagerSC implements
the service specification. A facade pattern is used to implement the service component. The facade class
delegates service requests to the appropriate service implementation, in this example the HRM class,
and all its dependencies revealed by the GReQL query.

This phases finishes the design of the service. The next step is to implement this design.

4.5 Service Implementation

Service Implementation realizes the IResourceManager service, e. g. as Web Service (as is supposed by
SOMA). Migrating identified source code (cf. Section 4.4) to realize the resource management service
combines functionality provided by the IBM Rational Software Architect for WebSphere Software
V7.53 (RSA) and TGraph technology.

First, the code generation capabilities of the RSA are used to create WSDL code (interface descrip-
tion language for Web Services) from the service specification. WSDL is later used to specify the
service interface. Next, the design of the service framework (UML diagram in Figure 6 which includes
service component, facade pattern and facade interface) is transformed into Java.

So far, the service lacks of business functionality, which will be added by transforming legacy code
into a service implementation. The GReQL query described in Listing 6 (Section 4.4) is used to mark
the HRM class and all legacy software components it depends on. The Java code-generator of JGraLab

3IBM, Rational and WebSphere are trademarks of International Business Machines Corporation.

13

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

«serviceComponent»
ResourceManagerSC

«serviceProvider»
ResourceManagerProvider

IResourceManager

+ add ()
+ getById ()
+ remove ()
+ getResources ()

«serviceSpecification»
IResourceManager

+ add (resource : ResourceManagerRequest) : Boolean
+ getById (id : Integer) : ResourceManagerResponse
+ remove (resource : ResourceManagerRequest) : Boolean
+ getResources () : ResourceManagerResponse

«facade»
ResourceManagerServiceFacade

«interface»
ResourceManagerService

+ add (resource : ResourceManagerRequest) : Boolean
+ getById (id : Integer) : ResourceManagerResponse
+ remove (resource : ResourceManagerRequest) : Boolean
+ getResources () : ResourceManagerResponse

«Java Class»
HumanResourceManager

«Java Interface»
ResourceManager

«derive»

«refine»

«refine»

1

1 - humanResourceManager

Figure 6: Implementation design of IResourceManager service

is used to generate Java code for all marked classes of the TGraph. This results in Java classes imple-
menting the business functionality of the IResourceManager service. These classes are connected to
the service framework. For this purpose, the facade class must be edited manually to delegate service
requests to the HRM class. In addition, the facade class translates message parameters into objects
known by the HRM class.

Finally, the Web Service Wizard of RSA was used to generate a fully functional Web Service. This
wizard takes the WSDL interface description and the Java classes of the service framework and the
service implementation and creates the Java EE Web Service implementation.

4.6 Service Deployment

The Web Service created in the last subsection is deployed to the customer. Figure 7 shows a screenshot
of RSA’s Web Service Explorer (WSE). The WSE provides a simple web interface to test the Web
Service. The WSE allows to simulate service requests and to visualize the response of the Web Service.
Figure 7 shows the adding of a new project resource. As result, the IResourceManager service returned
true, signaling that the project resource has successfully been added.

5 Related Work

Model-driven technologies are widely applied in software reengineering activities. Various approaches
representing code and higher level system information, including comprehensive analysis techniques
already exist. Here, relational structures, object oriented structures and graphs provide most appro-
priated formal foundations, which in general can be mapped to graph-based structures (cf. e. g. the
GXL graph-based interchange format for reengineering data [21]). The presented SOMA extension is
strongly based on TGraph modeling, which — in contrast to object oriented approaches — views edges
as first class citizens that can be addressed directly and provide more efficient graph traversal means

14

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

Figure 7: Visualization of functional Web Service

[12].
OMG´s Model-Driven Architecture [28] is one way to realize model-driven approaches. In addition,

the Architecture-Driven Modernization (ADM, [23]) initiative applied model-driven approaches for
representing programing code in software reengineering. But, an integrated representation for code and
more abstract view on software systems is missing so far. The extended SOMA approach presented
here, funds on a (currently implicitly) represented model combining business process models and code
models. Further efforts in the SOAMIG project will address an explicitly defined (cf. [22]) integrated
model.

Furthermore, techniques for analyzing and transforming models are also established. In the model
driven vein, e. g. ATLAS Transformation Language (ATL, [3]) and OMG´s Query/View/Transforma-
tion Specification (QVT, [29]) reflect the current MDA state-of-the-art. Transformation techniques
based on grammars and/or term systems are provided by the TXL [8] or by Stratego [33]. These ap-
proaches are most applicable to the transformation of code, whereas application to graphical modeling
languages requires extensive mappings to textual languages. Query- and transformation techniques
used in this work, are directly based on TGraphs (instead of object networks) which view edges as first
class citizens. TGraph technology has shown their applicability to both, visual models [10] and code,
in reengineering [25] activities.

Whereas a plethora on publication on the development of Service-Oriented Architectures exists,
migrating legacy systems to SOA is only addressed in a few papers. The SMART approach [31] deals
with the planning of SOA migration projects, but does not provide concrete migration or migration
tool support. Correia et al. [9] and Fleurey et al. [14] describe general approaches of model-driven
migration into a new technology not especially focused on SOA. Correia et al. describe a graph-
based approach which mentions SOA as possible target architecture [27]. In contrast to SOAMIG,

15

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

this approach focuses on annotating functionality in legacy code instead of directly identifying services
from source code. Marchetto and Ricca [26] propose an approach to migrate legacy systems into a SOA
step by step. However, this approach does not focus on model-driven techniques and uses wrapping as
general migration strategy. Another approach focusing on wrapping is described in [18].

In contrast to these approaches, the work presented here provides a coherent model-driven approach
to software migration by integrating an established SOA forward-engineering approach with graph-
based reengineering technologies. In addition, in SOAMIG software systems are viewed at all levels
of abstraction including business processes and code.

6 Conclusion and Future Work

In this paper, we described a model-driven approach to migrate legacy systems, extending IBM’s
SOMA method. The approach was applied to the migration of GanttProject towards a Service-Oriented
Architecture. This example demonstrated the identification and specification of services by analyzing
legacy code, the identification of responsible functionality in legacy code and the transformation of
legacy code into a service implementation. As result, a fully functional Web Service was generated,
whose business functionality was implemented by transforming legacy code.

As part of the SOAMIG project, we will continue research on model-driven migration into SOA.
The results of this first proof-of-concept will have to be confirmed on larger examples and additional
research is needed to enable automation of the process. In collaboration with industrial project partners,
their Java and COBOL systems will be migrated into Service-Oriented Architectures.

Acknowledgements

We want to express our thanks to Rainer Gimnich, IBM Software Group, Frankfurt/Main, Germany for
his support in understanding SOMA and various fruitful discussions on applying SOMA in software
migration.

About the Authors

Andreas Fuhr

Andreas Fuhr studied computer science (B. Sc.) at Johannes-Gutenberg University of Mainz (Ger-
many). In his bachelor thesis, he explored the potential of extending IBM’s SOMA method by model-
driven migration techniques. Since April 2009, he is studying computer science (M. Sc.) at the Univer-
sity of Koblenz-Landau (Germany). In addition, he is working as research assistant at the Institute for
Software Technology on the SOAMIG project. His main research interests are software engineering,
model-driven software development and software architectures.

Tassilo Horn

Tassilo Horn studied computer science at the University of Koblenz-Landau. In his diploma thesis, he
developed an optimizer for the graph query language GReQL, which performs transformations on the
syntax graph of the query. Some transformations, such as “selection as soon as possible” are also well
known in other domains like databases, while others are special to the domain of GReQL and TGraphs.
Since June 2008 he works as a scientific staff member and PhD student at the Institute for Software

16

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

Technology. His main research interests include graph querying and transformation techniques and
their application in software maintenance.

Dr. Andreas Winter

Andreas Winter acts as senior researcher and teacher of Software Engineering at the Institute of Com-
puter Science of University of Koblenz-Landau. Current research topics include software engineering,
metamodeling and transformation, service-oriented tool interoperability, software migration and soft-
ware-(re-)engineering processes.

From April 2006 to September 2008 Andreas acted as a substitute for the chair of Software Engi-
neering at the Institute for Computer-Science of Johannes-Gutenberg-University, Mainz. Prior to his
appointment in Mainz, he was already affiliated with University of Koblenz-Landau and University of
Waterloo, Canada.

Andreas served in committees of various software engineering and reengineering conferences and
workshops and co-organized various national and international events. He served as program-chair of
the 12th and 13th European Conference on Software Maintenance and Reengineering. He is chair-
person of the software-reengineering interest group of the German computer society and member in
the Steering Committees of the International Conference on Software Language Engineering and the
European Conference on Software Maintenance and Reengineering.

References

[1] E. Ackermann, “Ein Referenz-Prozessmodell zur Software-Migration,” University of Koblenz-
Landau, Koblenz, Diploma Thesis, 2005.

[2] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and K. Holley, “SOMA: A method
for Developing Service-Oriented Solutions,” IBM Systems Journal, vol. 47, no. 3, pp. 377–396,
2008.

[3] ATLAS Group. (2009) ATL: User Guide. [Online]. Available: http://wiki.eclipse.org/ATL/User_
Guide

[4] A. Baldauf and N. Vika, “Java-Faktenextraktor für Gupro,” University of Koblenz-Landau,
Koblenz, Studienarbeit, 2009.

[5] D. Bildhauer and J. Ebert, “Querying Software Abstraction Graphs,” in Working Session on Query
Technologies and Applications for Program Comprehension (QTAPC), collocated with ICPC,
2008.

[6] D. Bildhauer, H. Schwarz, S. Strauss, V. Riediger, and T. Horn, “grUML – A UML based mod-
elling language for TGraphs,” 2009, Project Report, unpublished.

[7] M. L. Brodie and M. Stonebraker, Migrating Legacy Systems, Gateways, Interfaces & The Incre-
mental Approach. San Francisco: Morgan Kaufmann, 1995.

[8] J. R. Cordy, “TXL: A Language for Programming Language Tools and Applications,” in Proc.
LDTA, ACM 4th International Workshop on Language Descriptions, Tools and Applications
Barcelona, 2004, pp. 1–27.

17

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/ATL/User_Guide

[9] R. Correia, C. Matos, R. Heckel, and M. El-Ramly, “Architecture Migration Driven by Code
Categorization,” in Software Architecture, First European Conference, ECSA, Aranjuez, Spain,
September 24-26, Proceedings, ser. Lecture Notes in Computer Science, Flávio Oquendo, Ed.,
vol. 4758. Springer, 2007.

[10] J. Ebert, R. Süttenbach, and I. Uhe, “Meta-CASE in Practice: a Case for KOGGE,” in Advanced
Information Systems Engineering, 9th international Conference, CAiSE’97, ser. LNCS. Springer,
1997, vol. 1250, pp. 203–216.

[11] J. Ebert and T. Horn, “The GReTL Transformation Language,” 2009, Project Report, unpublished.

[12] J. Ebert, V. Riediger, and A. Winter, “Graph Technology in Reverse Engineering: The TGraph
Approach,” in 10th Workshop Software Reengineering: Bad Honnef, ser. GI-EditionProceedings,
vol. 126. Bonn: Ges. f. Informatik, 2008, pp. 67–81.

[13] J. Ebert and A. Winter, “Using Metamodels in Service Interoperability,” in Postproceedings
of 13th Annual International Workshop on Software Technology and Engineering Practice
(STEP’05), Y. Zou and M. DiPenta, Eds. IEEE Computer Society, 2006, pp. 147–156.

[14] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jezequel, “Model-driven Engineering
for Software Migration in a Large Industrial Context,” in Model Driven Engineering Languages
and Systems: 10th international conference, MODELS, Nashville, USA; proceedings, ser. Inter-
national Conference on Model Driven Engineering Languages and Systems, vol. 4735. Berlin:
Springer, 2007, pp. 482–497.

[15] A. Fuhr, “Model-driven Software Migration into a Service-oriented Architecture,” Johannes-
Gutenberg University, Mainz, Bachelor Thesis, 2009.

[16] A. Fuhr, T. Horn, A. Winter, and R. Gimnich, “Extending SOMA for Model-Driven Software
Migration into SOA,” in 11. Workshop Software-Reengineering, Bad Honnef, 2009.

[17] GanttProject. (2009) The GanttProject. [Online]. Available: http://ganttproject.biz/

[18] R. Gimnich, “SOA Migration: Approaches and Experience,” Softwaretechnik-Trends, vol. 27,
no. 1, 2007.

[19] T. Gipp and A. Winter, “Applying the ReMiP to Web Site Migration,” in Proceedings Ninth IEEE
International Symposium on Web Site Evolution, Paris, France (WSE). IEEE Computer Society,
2007, pp. 9–13.

[20] N. Gold, C. Knight, A. Mohan, and M. Munro, “Understanding Service-Oriented Software,” IEEE
Softw., vol. 21, no. 2, pp. 71–77, 2004.

[21] R. C. Holt, A. Schürr, S. Elliott Sim, and A. Winter, “GXL: A graph-based standard exchange
format for reengineering,” Science of Computer Programming, vol. 60, no. 2, pp. 149–170, 2006.

[22] D. Jin, J. R. Cordy, and T. R. Dean, “Where’s the Schema? A Taxonomy of Patterns for Software
Exchange,” in 10th International Workshop on Program comprehension. Los Alamitos: IEEE
Computer Society, 2002, pp. 65–74.

[23] V. Khusidman and W. Ulrich, “Architecture-Driven Modernization: Transforming the Enterprise,”
2007.

18

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

http://ganttproject.biz/

[24] K. Kontogiannis, G. A. Lewis, D. B. Smith, M. Litoiu, H. Müller, S. Schuster, and E. Stroulia,
“The Landscape of Service-Oriented Systems: A Research Perspective,” in Proceedings of the
International Workshop on Systems Development in SOA Environments. IEEE Computer Society,
2007.

[25] B. Kullbach and A. Winter, “Querying as an Enabling Technology in Software Reengineering,”
in Proceedings of the 3nd European Conference on Software Maintenance and Reengineering.
Los Alamitos: IEEE Computer Society, 1998, pp. 42–50.

[26] A. Marchetto and F. Ricca, “Transforming a Java application in a equivalent Web-services based
application: Toward a Tool Supported Stepwise Approach,” in Proceedings Tenth IEEE Inter-
national Symposium on Web Site Evolution, Beijing, China (WSE). IEEE Computer Society,
2008.

[27] C. Matos, “Service Extraction from Legacy Systems,” in Graph Transformations: 4th Inter-
national Conference, ICGT, Leicester, United Kingdom; proceedings, D. Hutchison, H. Ehrig,
R. Heckel, T. Kanade, and J. Kittler, Eds., vol. 5214. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 505–507.

[28] OMG, “MDA Guide Version 1.0.1,” 2003.

[29] ——, “Meta Object Facility (MOF) 2.0: Query/View/Transformation Specification: Final
Adopted Specification,” 2007.

[30] V. T. Rajlich and K. H. Bennett, “A Staged Model for the Software Life Cycle,” Computer, vol. 33,
no. 7, pp. 66–71, 2000.

[31] D. B. Smith, “Migration of Legacy Assets to Service-Oriented Architecture Environments,”
in Companion to the proceedings of the 29th International Conference on Software
Engineering. IEEE Computer Society, 2007, pp. 174–175. [Online]. Available: http:
//dx.doi.org/10.1109/ICSECOMPANION.2007.48

[32] H. M. Sneed and S. Opferkuch, “Training and Certifying Software Maintainers,” in 12th Euro-
pean Conference on Software Maintenance and Reengineering, CSMR, Athens, Greece. IEEE
Computer Society, 2008, pp. 113–122.

[33] E. Visser, “Stratego: A Language for Program Transformation based on Rewriting Strategies.
System Description of Stratego 0.5,” in Rewriting Techniques and Applications (RTA’01), LNCS
2051, Berlin, A. Middeldorp, Ed., 2001, pp. 357–361.

[34] U. Wahli, Building SOA Solutions Using the Rational SDP, ser. IBM Redbooks. IBM Interna-
tional Technical Support Organization, 2007.

[35] A. Winter and J. Ziemann, “Model-based Migration to Service-oriented Architectures: A Project
Outline,” in CSMR, 11th European Conference on Software Maintenance and Reengineering,
Workshops, H. M. Sneed, Ed., 2007, pp. 107–110.

19

Model-Driven Software Migration Extending SOMA, Fachbereich Informatik Nr. 16/2009

http://dx.doi.org/10.1109/ICSECOMPANION.2007.48
http://dx.doi.org/10.1109/ICSECOMPANION.2007.48

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte)

Andreas Fuhr, Tassilo Horn, Andreas Winter, Model-Driven Software Migration Extending
SOMA, Arbeitsberichte aus dem Fachbereich Informatik 16/2009

Eckhard Großmann, Sascha Strauß, Tassilo Horn, Volker Riediger, Abbildung von grUML
nach XSD soamig, Arbeitsberichte aus dem Fachbereich Informatik 15/2009

Kerstin Falkowski, Jürgen Ebert, The STOR Component System Interim Report,
Arbeitsberichte aus dem Fachbereicht Informatik 14/2009

Sebastian Magnus, Markus Maron, An Empirical Study to Evaluate the Location of
Advertisement Panels by Using a Mobile Marketing Tool, Arbeitsberichte aus dem
Fachbereich Informatik 13/2009

Sebastian Magnus, Markus Maron, Konzept einer Public Key Infrastruktur in iCity,
Arbeitsberichte aus dem Fachbereich Informatik 12/2009

Sebastian Magnus, Markus Maron, A Public Key Infrastructure in Ambient Information and
Transaction Systems, Arbeitsberichte aus dem Fachbereich Informatik 11/2009

Ammar Mohammed, Ulrich Furbach, Multi-agent systems: Modeling and Virification using
Hybrid Automata, Arbeitsberichte aus dem Fachbereich Informatik 10/2009

Andreas Sprotte, Performance Measurement auf der Basis von Kennzahlen aus betrieblichen
Anwendungssystemen: Entwurf eines kennzahlengestützten Informationssystems für einen
Logistikdienstleister, Arbeitsberichte aus dem Fachbereich Informatik 9/2009

Gwendolin Garbe, Tobias Hausen, Process Commodities: Entwicklung eines
Reifegradmodells als Basis für Outsourcingentscheidungen, Arbeitsberichte aus dem
Fachbereich Informatik 8/2009

Petra Schubert et. al., Open-Source-Software für das Enterprise Resource Planning,
Arbeitsberichte aus dem Fachbereich Informatik 7/2009

Ammar Mohammed, Frieder Stolzenburg, Using Constraint Logic Programming for Modeling
and Verifying Hierarchical Hybrid Automata, Arbeitsberichte aus dem Fachbereich Informatik
6/2009

Tobias Kippert, Anastasia Meletiadou, Rüdiger Grimm, Entwurf eines Common Criteria-
Schutzprofils für Router zur Abwehr von Online-Überwachung, Arbeitsberichte aus dem
Fachbereich Informatik 5/2009

Hannes Schwarz, Jürgen Ebert, Andreas Winter, Graph-based Traceability – A
Comprehensive Approach. Arbeitsberichte aus dem Fachbereich Informatik 4/2009

Anastasia Meletiadou, Simone Müller, Rüdiger Grimm, Anforderungsanalyse für Risk-
Management-Informationssysteme (RMIS), Arbeitsberichte aus dem Fachbereich Informatik
3/2009

Ansgar Scherp, Thomas Franz, Carsten Saathoff, Steffen Staab, A Model of Events based on
a Foundational Ontology, Arbeitsberichte aus dem Fachbereich Informatik 2/2009

Frank Bohdanovicz, Harald Dickel, Christoph Steigner, Avoidance of Routing Loops,
Arbeitsberichte aus dem Fachbereich Informatik 1/2009

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte

Stefan Ameling, Stephan Wirth, Dietrich Paulus, Methods for Polyp Detection in Colonoscopy
Videos: A Review, Arbeitsberichte aus dem Fachbereich Informatik 14/2008

Tassilo Horn, Jürgen Ebert, Ein Referenzschema für die Sprachen der IEC 61131-3,
Arbeitsberichte aus dem Fachbereich Informatik 13/2008

Thomas Franz, Ansgar Scherp, Steffen Staab, Does a Semantic Web Facilitate Your Daily
Tasks?, Arbeitsberichte aus dem Fachbereich Informatik 12/2008

Norbert Frick, Künftige Anfordeungen an ERP-Systeme: Deutsche Anbieter im Fokus,
Arbeitsberichte aus dem Fachbereicht Informatik 11/2008

Jürgen Ebert, Rüdiger Grimm, Alexander Hug, Lehramtsbezogene Bachelor- und
Masterstudiengänge im Fach Informatik an der Universität Koblenz-Landau, Campus
Koblenz, Arbeitsberichte aus dem Fachbereich Informatik 10/2008

Mario Schaarschmidt, Harald von Kortzfleisch, Social Networking Platforms as Creativity
Fostering Systems: Research Model and Exploratory Study, Arbeitsberichte aus dem
Fachbereich Informatik 9/2008

Bernhard Schueler, Sergej Sizov, Steffen Staab, Querying for Meta Knowledge,
Arbeitsberichte aus dem Fachbereich Informatik 8/2008

Stefan Stein, Entwicklung einer Architektur für komplexe kontextbezogene Dienste im
mobilen Umfeld, Arbeitsberichte aus dem Fachbereich Informatik 7/2008

Matthias Bohnen, Lina Brühl, Sebastian Bzdak, RoboCup 2008 Mixed Reality League Team
Description, Arbeitsberichte aus dem Fachbereich Informatik 6/2008

Bernhard Beckert, Reiner Hähnle, Tests and Proofs: Papers Presented at the Second
International Conference, TAP 2008, Prato, Italy, April 2008, Arbeitsberichte aus dem
Fachbereich Informatik 5/2008

Klaas Dellschaft, Steffen Staab, Unterstützung und Dokumentation kollaborativer Entwurfs-
und Entscheidungsprozesse, Arbeitsberichte aus dem Fachbereich Informatik 4/2008

Rüdiger Grimm: IT-Sicherheitsmodelle, Arbeitsberichte aus dem Fachbereich Informatik
3/2008

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik 2/2008

Markus Maron, Kevin Read, Michael Schulze: CAMPUS NEWS – Artificial Intelligence
Methods Combined for an Intelligent Information Network, Arbeitsberichte aus dem
Fachbereich Informatik 1/2008

Lutz Priese,Frank Schmitt, Patrick Sturm, Haojun Wang: BMBF-Verbundprojekt 3D-RETISEG
Abschlussbericht des Labors Bilderkennen der Universität Koblenz-Landau, Arbeitsberichte
aus dem Fachbereich Informatik 26/2007

Stephan Philippi, Alexander Pinl: Proceedings 14. Workshop 20.-21. September 2007
Algorithmen und Werkzeuge für Petrinetze, Arbeitsberichte aus dem Fachbereich Informatik
25/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS – an Intelligent Bluetooth-
based Mobile Information Network, Arbeitsberichte aus dem Fachbereich Informatik 24/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS - an Information Network for
Pervasive Universities, Arbeitsberichte aus dem Fachbereich Informatik 23/2007

Lutz Priese: Finite Automata on Unranked and Unordered DAGs Extented Version,
Arbeitsberichte aus dem Fachbereich Informatik 22/2007

Mario Schaarschmidt, Harald F.O. von Kortzfleisch: Modularität als alternative Technologie-
und Innovationsstrategie, Arbeitsberichte aus dem Fachbereich Informatik 21/2007

Kurt Lautenbach, Alexander Pinl: Probability Propagation Nets, Arbeitsberichte aus dem
Fachbereich Informatik 20/2007

Rüdiger Grimm, Farid Mehr, Anastasia Meletiadou, Daniel Pähler, Ilka Uerz: SOA-Security,
Arbeitsberichte aus dem Fachbereich Informatik 19/2007

Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte
aus dem Fachbereich Informatik 18/2007

Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics,
Arbeitsberichte aus dem Fachbereich Informatik 17/2007

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007

Rüdiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Björn Pelzer, Christoph Wernhard: System Description:“E-KRHyper“, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Björn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitäten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jürgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jörg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauß, „grUML – Eine UML-
basierte Modellierungssprache für T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaël Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

„Gelbe Reihe“
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop ''Reengineering Prozesse'' –
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 – Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 – Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jürgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eißen: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jürgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jürgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms –
 Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_st.pdf
	Impressum
	extendingSOMA_final
	Introduction
	SOMA
	Business Modeling and Solution Management
	Service Identification
	Service Specification
	Service Realization
	Service Implementation
	Service Deployment

	The TGraph Approach
	TGraphs and TGraph Schemas
	GReQL
	GReTL

	Merging SOMA and the TGraph Approach
	Business Modeling and Solution Management
	Service Identification
	Service Specification
	Service Realization
	Service Implementation
	Service Deployment

	Related Work
	Conclusion and Future Work

	Bisher erschienen
	Bisher erschienen

