
Model-Driven Software Migration
Andreas Fuhr, Tassilo Horn Andreas Winter
University of Koblenz-Landau Carl von Ossietzky University Oldenburg
{afuhr,horn}@uni-koblenz.de winter@informatik.uni-oldenburg.de

Abstract: In this paper we propose model-driven techniques to migrate legacy systems
into Service-Oriented Architectures (SOA). The proposal explores how querying and
transformation techniques on TGraphs enable the integration of legacy assets into a
new SOA. The presented graph-based approach is applied to the identification and
migration of services in an open source Java software system.

1 Introduction
Today, almost every company runs systems that have been implemented a long time ago
and which are still adapted and maintained to meet current needs. Very often, adapting
legacy software systems to new requirements also requires their migration to new tech-
nologies. Migrating legacy systems, i. e. transferring software systems to new environ-
ments without changing its functionality [SO08], enables already proven applications to
stay on stream instead of passing away after some suspensive servicing [RB00].

A current technological advance promising better reusability of software assets is provided
by Service-Oriented Architectures (SOA). SOA is viewed as an abstract, business-driven
approach decomposing software into loosely-coupled services enabling the reuse of exist-
ing software assets for rapidly changing business needs [GKMM04]. A service is viewed
as an encapsulated, reusable and business-aligned asset coming with a well-defined service
specification that provides an interface description of the functionality. The service spec-
ification is implemented by a service component which is realized by a service provider.
Its functionality is used by service consumers [AGA+08].

Migrating legacy systems to services enables both, the reuse of already established and
proven software components and the integration with newly created services, including
their orchestration to support changing business needs. The application of model-driven
techniques to software migration, presented here, is part of the SOAMIG project1, which
addresses the migration to Service-Oriented Architectures.

Software development and maintenance projects require a well-defined methodology. Ma-
jor activities in software maintenance projects deal with legacy code. These include legacy
analysis, i.e. understanding legacy systems and identifying reusable software assets and
legacy conversion, i.e. migrating legacy assets. Current process models do not account for
these activities, although approaches to software migration (e.g. [BS95]) are known.

This paper focuses on applying model-driven techniques to migrating legacy assets to
SOAs. IBM’s SOMA method [AGA+08] provides a process model for SOA development

1SOAMIG is funded by the Ministry of Education and Research (01IS09017C) cf. www.soamig.de .

and evolution, which serves here as a methodological framework to identify and extend
migration activities and their technological support. Service-Oriented Modeling and Ar-
chitecture (SOMA) includes seven incremental and iterative phases identifying, specifying
and implementing services. In the first place, SOMA is designed to develop SOAs from
scratch and does not provide support for integrating legacy assets.

The extension of SOMA towards migration, presented here, is based on model-driven
strategies. Models represent different views on software systems including business pro-
cess models, software architecture and programming code [WZ07]. Legacy analysis and
conversion is based on queries and transformations on these models. In this paper, the
TGraph Approach [ERW08] is applied as one possible model-driven technology. By mi-
grating an exemplary service in the open source software GanttProject [Gan09], it will be
shown how SOMA can be extended by model-driven technologies to provide a compre-
hensive methodology to SOA development, including a broad reuse of legacy code assets.

The paper is organized as follows: Section 2 describes the SOMA method and motivates
where SOMA can be extended by model-driven techniques. Section 3 introduces the
TGraph Approach as one possible technological space. In Section 4, the integrated method
is applied to identify, specify, realize and implement one service by reusing GanttProject’s
legacy code. Section 5 briefly contrasts the integrated SOA migration approach presented
here with current work in model-driven software analysis and migration. Finally, Section 6
summarizes and reflects the obtained results.

2 Service-Oriented Modeling and Architecture (SOMA)
IBM’s SOMA method [AGA+08] is an iterative and incremental approach to design and
implement service-oriented systems. It describes how to plan, design, implement and
deploy SOA systems. SOMA is designed to be extensible in order to make use of ad-
ditional, specialized techniques supporting project-specific needs. The following subsec-
tions shortly describe the seven SOMA phases and outline where they can be extended
towards software migration.

Business Modeling: At the beginning of a project, the business is analyzed during this
phase. Business goals and the business vision are identified, as well as business actors and
business use cases.

SOA migration does not require to extend Business Modeling.

Solution Management: This phase adapts SOMA to the project needs. This includes
choosing additional techniques to solve project-specific problems.

SOA migration requires to extend Solution Management: Customizing SOMA for migra-
tion requires the application of reengineering and migration techniques as depicted in the
reminder.

Service Identification: In this phase, SOMA uses three complementary techniques to
identify service candidates, i. e. functionality that forms a service.

Domain Decomposition is a top-down method decomposing the business domain into
functional areas and analyzing the business processes to identify service candidates. Goal-
Service Modeling identifies service candidates by exploring the business goals and sub-

goals. Legacy Asset Analysis finally explores the functionality of legacy systems. Docu-
mentation, APIs or interfaces are analyzed to identify service candidates. The source code
is only analyzed coarse-grained. It is merely evaluated which functionality exists and not
which components manifest the function. All three techniques are performed incremen-
tally and iteratively. For each identified candidate, an initial service specification is created
and a trace to the source of identification is established.

SOA migration requires to extend Service Identification: SOMA does not describe how to
analyze legacy systems. In Section 4.3, we extend SOMA by reverse-engineering legacy
code, which enables model-driven queries and transformations to identify service candi-
dates including their code base.

Service Specification: This phase deals with describing the service design in detail.
The initial service specification is refined, messages and message flows are designed and
services are composed. This phase results in a comprehensive description of the service
design. SOMA uses an UML profile for SOAs to describe the service design. Later,
the service specification will be transformed into WSDL code in order to implement the
service as a Web Service as is proposed by SOMA.

SOA migration requires to extend Service Specification: To gather the information needed
for the service design, messages and message parameters can be derived from legacy code.
We extend SOMA by queries to support design decisions in Section 4.4.

Service Realization: In this phase, it is decided which services will be implemented in
the current iteration and it is constituted how to implement them.

After having chosen a set of services, the implementation strategy must be defined. En-
capsulation of services allows to choose different ways to implement each service. Com-
mon strategies to form new service components include (1) implementation from scratch,
(2) wrapping of legacy components or (3) transforming the required legacy components.

In SOMA, legacy functions are usually wrapped and then exposed as services. This has
several drawbacks. The legacy system still requires maintenance, the wrapper needs to be
created and requires maintenance during further evolution. Transforming the legacy code
avoids this wrapping trap but requires appropriate transformation means. After deciding
on transformation as implementation technique, legacy systems must be analyzed fine-
grained. Functionality that is able to implement services has to be identified in the legacy
code. In addition, it is important to clearly understand how this functionality is embedded
in the legacy system, since it has to be separated to build a self-contained service.

SOA migration requires to extend Service Realization: SOMA does not consider how to
implement services by reusing legacy code. In Section 4.5, a model-driven technique is
presented to analyze legacy systems fine-grained in order to understand the implementa-
tion of legacy functionality.

Service Implementation: During Service Implementation, services are actually real-
ized. According to the decisions derived in the Service Realization phase, services are
developed, wrappers are written or legacy code is transformed. Finally, all services are
orchestrated and message flows are established.

SOA migration requires to extend Service Implementation: SOMA does not include tech-

niques to transform legacy code into services. In Section 4.6 it is shown how transforma-
tions are used to transform legacy code into service implementations.

Service Deployment: The final phase of SOMA is Service Deployment. It deals with
exposing services to the customer’s environment. Final user-acceptance tests are executed
and the SOA is monitored to verify that it performs as expected.

SOA migration does not require extensions of Service Deployment.

Concluding, five phases (solution management, identification, specification, realization
and implementation) have been identified where SOMA must be extended to support mi-
gration of legacy systems into SOAs. The next section will describe which role model-
driven development does play in extending SOMA. In Section 4, the extended SOMA
method is exemplarily applied to the migration of an example Java application.

3 Model-Driven Development in Software Migration
Migrating legacy systems demands an integrated view on legacy code, software architec-
ture and business processes [WZ07] to be able to identify and extract services. Therefore,
an integrated representation of all these artifacts is essential. Model-driven approaches
provide these technologies: (a) representation of models (metamodels), (b) querying mod-
els (query languages) and (c) transforming models (transformation languages).

Today, many model-driven approaches are known. Metamodels can be described by using
the OMG’s Meta Object Facility (MOF [OMG06]) or INRIA’s KM3 [Ecl07]. Well-known
transformation languages include QVT (Query/View/Transformation [OMG07]) or ATL
(Atlas Transformation Language [ATL09]). All these approaches are suited for extending
SOMA. However, in this paper, a graph-based approach is used which has already been
applied in various reverse- and reengineering projects [ERW08].

The TGraph Approach is a seamless graph-based approach. Models are represented by
graphs conforming to a graph schema (a metamodel). They can be queried with the graph
query language GReQL (Graph Repository Querying Language [BE08]) and can be trans-
formed using GReTL (Graph Repository Transformation Language [EH09]).

TGraphs are typed, attributed, directed and ordered graphs. Thus, they are based on a
general graph model which allows appropriate tailoring for certain modeling purposes.
In contrast to object-oriented modeling, edges are viewed as first-class objects. Hence,
they can have attributes and traversal is always bidirectional. An API for accessing and
manipulating TGraphs is given by the graph library JGraLab2.

GReQL is a declarative graph query language and an enabling technology in reengineering,
since various analyses of legacy systems can be mapped to graph queries [KW98]. One of
GReQL’s especially powerful features are regular path expressions which can be used to
formulate queries that utilize the structure of interconnections between nodes and which
support transitive closure.

GReTL is a Java framework for programming transformations on TGraphs making heavy
use of GReQL to specify the mappings from source to target elements.

2http://jgralab.uni-koblenz.de

All these technologies are applied in Section 4 to identify, to extract and to migrate a
service candidate of a Java example application within the SOMA methodology.

4 Extending SOMA by Model-Driven Techniques
The previous sections motivated the need of extending SOMA to enable the reuse of legacy
software assets in software migration and shortly presented the TGraph approach. Our
approach extends SOMA by applying model-driven techniques when appropriate.

Picking up the structure of introducing the SOMA phases in Section 2, the integrated
approach is applied to the migration of one functionality of GanttProject into a Service-
Oriented Architecture [Fuh09, HFW09]. GanttProject [Gan09] is a project planning tool.
It manages project resources and displays project schedules as Gantt charts. GanttProject
is implemented by about 1200 classes. The required migration is exemplified by identify-
ing and migrating a service to manage project resources by transforming the appropriate
legacy code.

4.1 Business Modeling
SOMA’s first phase analyzes the current business situation. In this paper we focus on anal-
ysis and reuse of legacy software. Business modeling is not considered in detail, although
it is important to analyze legacy business processes and to define processes to be supported
by the SOA. Here, it is assumed that the business process of managing project resources
shall be realized by the new SOA and its implementation will rely on GanttProject.

4.2 Solution Management
Solution Management adapts the SOMA method to the current project needs. Since
GanttProject is a Java system, a TGraph representation for Java systems is required. Our
Java 6 metamodel contains about 90 vertex and 160 edge types and covers the complete
Java syntax. The GanttProject sources are parsed according to that metamodel, resulting
in a graph of 274.959 nodes and 552.634 edges. This graph and the implicit knowledge on
resource management, provide the foundation for service identification, service specifica-
tion, service realization and service implementation.

4.3 Service Identification
The identification of services from legacy systems requires coarse-grained analysis. Firstly,
the graphical user interface of GanttProject is explored and functionality to manage project
resources is identified as one main feature of the software. Analyzing the GUI is only one
entry point for identifying functionality and could be extended by additional explorations
(e.g. test cases or documentation). Quickly scanning the legacy code then detects func-
tionality providing the management of project resources.

Identifying pieces of functionality in legacy code is a challenging task and still an open re-
search issue [KLS+07]. GReQL queries are used to identify functionality in the graph rep-
resentation and corresponding GReTL transformations visualize the query result. String

search is used to detect possible code areas referring to “resources”. Further interconnec-
tions of code objects are specified by declarative path expressions. The resulting subgraph
is transformed by GReTL into a TGraph conforming to a simple UML schema. Further
XMI-based filters (cf. [EW06]) might be used to render these structures in UML tools.

1 VertexClass umlClass = createVer texClass (" uml . Class " ,
2 " from t : V{ Type } with t . name =~ \ " .∗ [Rr] esource .∗ \ " reportSet t end ") ;
3 c r e a t e A t t r i b u t e (" name" , umlClass , createStr ingDomain () ,
4 " from t : keySet (img_uml$Class) reportMap t , t . name end ") ;
5 createEdgeClass (" uml . Assoc ia t ion " , umlClass , umlClass ,
6 " from c : keySet (img_uml$Class) , c2 : keySet (img_uml$Class) "
7 + " with c <−−{IsBlockOf } <−−{IsMemberOf } <−−{^IsBreakTargetOf , "
8 + " ^ IsCont inueTargetOf , ^ I sTypeDef in i t i onOf , ^ IsClassBlockOf , "
9 + " ^ I s I n t e r f aceB lockO f }∗ [<−−{ I sTypeDe f i n i t i onOf }] c2 "

10 + " reportSet c , c2 end " ,
11 " from t : $ reportMap t , f i r s t (t) end " , " from t : $$ reportMap t , second (t) end ") ;
12 createEdgeClass (" uml . IsA " , umlClass , umlClass ,
13 " from c : keySet (img_uml$Class) , c2 : keySet (img_uml$Class) "
14 + " with c (<−−{ IsSuperClassOf } | <−−{ I s I n te r f aceOfC lass }) "
15 + " <−−{ I sTypeDe f i n i t i onOf } c2 "
16 + " reportSet c , c2 end " ,
17 " from t : $ reportMap t , f i r s t (t) end " , " from t : $$ reportMap t , second (t) end ") ;

Listing 1: GReTL transformation from Java to UML

Listing 1 shows a GReTL transformation supporting coarse-grained legacy code analysis.
For each legacy class or interface containing “resource” in the name, the transformation
creates an UML-class node in the target TGraph (lines 1–4). In addition, associations are
drawn between those class nodes whenever one node uses (e. g. by method calls or variable
types) another node (5–11). Inheritance is visualized by “IsA” edges (12–17). These edges
can be indirect relations since GReQL path expressions consider transitive closure. The
transitive path expression in lines 7–9 (the part with ∗) matches indirect relations between
classes. The visualized result of this GReTL transformation is shown in Figure 1a.

Looking at the result, the class HumanResourceManager implementing the interface Re-
sourceManager is identified as functionality to manage project resources. Based on this
information, an initial service specification for the service candidate IResourceManager
is created and traces to the legacy code are noted (Figure 1b). Initial service operations
for the new service are derived from the legacy interface. Only the needed functionality
is transfered into the design. In this phase, no further information about the method sig-
natures of the initial service specification is gathered. The following SOMA phases will
specify the service in more detail.

4.4 Service Specification
Service Specification refines the IResourceManager service specification. A service pro-
vider component is created which will later implement the service specification.

In addition, message flows are created to enable communication with the service. For
method parameters in the legacy interface, request messages are created that are passed

v1 Class

isAbstract = false
name = "HumanResourceManager"

v3 Class

isAbstract = false
name = "HumanResource"

e9: Association

v4 Class

isAbstract = true
name = "ResourceManager"

e16: IsA

e6: Association

e13: Association

v2 Class

isAbstract = false
name = "ResourceAssignmentImpl"

e4: Association

e7: Association

e10: Association
e2: Association

e15: IsA
e3: Association

e14: Association

v5 Class

isAbstract = false
name = "ProjectResource"

(a) Visualization of classes and interfaces possibly
providing functionality to manage resources

«serviceSpecification»
IResourceManager

+ add ()
+ getById ()
+ remove ()
+ getResources ()
+ getResourcesArray ()
+ importData ()

«Java Interface»
ResourceManager

+ create(String, int) : ProjectResource
+ add(ProjectResource) : void
+ getById(int) : ProjectResource
+ remove(ProjectResource) : void
+ remove(ProjectResource, GPUndoManager) : void
+ getResources() : List
+ getResourcesArray() : ProjectResource[]
+ save(OutputStream) : void
+ clear() : void
+ addView(ResourceView) : void
+ importData(ResourceManager) : Map
+ getCustomPropertyManager() : CustomPropertyManager

«Java Class»
HumanResourceManager

«refine»

(b) IResourceManager service identified from
legacy source code

Figure 1: Service Identification results

to the service. For return types in the legacy system, response messages are defined that
will be returned by the new service. Request and response messages can be derived from
legacy code.

Listing 2 shows a GReQL query taking an interface or class name as input and returning
method parameters (lines 2–5) and return types (lines 6–9) as output. This information is
used to derive message parameter types from legacy code.

1 l e t classname := " HumanResourceManager " in tup (
2 from hrmClass : V{ C l a s s D e f i n i t i o n } , usedType : V{ Type , Bu i l t I nType }
3 with hrmClass . name = classname and hrmClass <−−{IsClassBlockOf}<−−{IsMemberOf }

<−−{IsParameterOfMethod } <−−{IsTypeOfParameter } [<−−{ IsTypeDefOf }] usedType
4 reportSet (hasType (usedType , " Bu i l t I nType ")) ?
5 usedType . type : theElement (usedType<−−&{ I d e n t i f i e r }) . name end ,
6 from hrmClass : V{ C l a s s D e f i n i t i o n } , usedType : V{ Type , Bu i l t I nType }
7 with hrmClass . name = classname and hrmClass <−−{IsClassBlockOf } <−−{IsMemberOf }

<−−{IsReturnTypeOf } [<−−{ IsTypeDefOf }] usedType
8 reportSet (hasType (usedType , " Bu i l t I nType ")) ?
9 usedType . type : theElement (usedType<−−&{ I d e n t i f i e r }) . name end)

Listing 2: GReQL query retrieving method parameters and return types

The result of the specification phase is shown in the class diagram in Figure 2. The ser-
vice specification now contains information about parameters (They are hidden in the Re-
sourceManagerProvider component since they are already shown in the service specifi-
cation). In addition, request and response messages are defined and one parameter type
(HumanResourceType) for these messages is derived from legacy code.

«serviceProvider»
ResourceManagerProvider

IResourceManager

+ add ()
+ getById ()
+ remove ()
+ getResources ()

«serviceSpecification»
IResourceManager

+ add (resource : ResourceManagerRequest) : Boolean
+ getById (id : Integer) : ResourceManagerResponse
+ remove (resource : ResourceManagerRequest) : Boolean
+ getResources () : ResourceManagerResponse

«message»
ResourceManagerRequest

- resource : HumanResourceType

«message»
ResourceManagerResponse

- resources : HumanResourceType [*]

«parameterType»
HumanResourceType

«Java Class»
HumanResource

«Java Interface»
ResourceManager

«refine»

«derive»

Figure 2: Detailed design of IResourceManager service

At the end of this phase, the design of the service itself is mostly completed. The next step
will be to decide how the service should be implemented.

4.5 Service Realization
The first decision to make during Service Realization is how to implement the IResource-
Manager service. Model transformation approaches are also suited for code transforma-
tion. Thus, in this paper, the legacy code is transformed into a service implementation
to provide the business functionality. If service realization by wrapping would have been
decided on, wrappers could be generated analogously.

Service Identification has already identified one class in the legacy code that may provide
functionality to the IResourceManager service: the class HumanResourceManager (short:
HRM). The complete but minimal code realizing this functionality has to be determined
and extracted, including all of the HRM dependencies. These include

• HRM calls methods of other classes (HRM→calls method→isMemberO f class),
• variables, parameters or return types (e.g. HRM→de f ines variable→hasAsType class),
• inheritance hierarchy (HRM→specializes class or HRM→implements interface).

Listing 3 describes the GReQL query retrieving these dependencies. The core part of the
query is the path expression in lines 4–9, defining how a dependency relation between
caller and callee looks like in the Java metamodel. The query returns a list of all classes
and interfaces that HRM depends on. In this example, only the directly related classes are
retrieved. However, GReQL could retrieve the transitive closure of dependencies analo-
gously. Figure 3a shows a (manually created) visualization of the query result.

Next, the business functionality must be integrated into the overall service design. This is
done according to patterns proposed by Wahli [Wah07].

Figure 3b shows the application of these patterns to create a framework to integrate the
legacy code which will be transformed in the next phase. The service component Re-
sourceManagerSC implements the service specification. A facade pattern is used to im-

1 from hrmClass :V{ C l a s s D e f i n i t i o n } , hrmMethod :V{ MethodDef in i t i on } , usedType :V{ Type }
2 with hrmClass . name = " HumanResourceManager "
3 and hrmClass <−−{IsClassBlockOf } <−−{IsMemberOf } hrmMethod
4 and (hrmMethod ((<−−{ IsBodyOfMethod } <−−{IsStatementOfBody } <−−{^ReverseEdge }∗
5 <−−{IsDeclarat ionOfInvokedMethod } −−>{IsMemberOf } −−>{IsClassBlockOf }
6) | (<−−{IsParameterOfMethod } <−−{IsTypeOf }+ <−−{IsTypeDefOf }
7) | (<−−{IsBodyOfMethod } <−−{IsStatementOfBody } <−−{^ReverseEdge }∗
8 <−−{IsTypeOfVar iab le } <−−{IsTypeDefOf }
9) | (<−−{ IsReturnTypeOf } <−−{IsTypeDefOf })) usedType

10 or hrmClass ((<−−{ IsClassBlockOf}<−−{IsMemberOf}<−−{ I sF ie l dCrea t i onOf }
11 <−−{IsTypeOfVar iab le } <−−{IsTypeDefOf }
12) | ((<−−{ IsSuperClassOfClass } | <−−{ I s I n te r f aceOfC lass }) <−−{IsTypeDefOf }
13) | ((<−−{ IsClassBlockOf } <−−{IsMemberOf }) +)) usedType)
14 reportSet usedType end

Listing 3: GReQL query retrieving dependencies

«Java Interface»
ResourceManager

«Java Class»
HumanResourceManager

«Java Class»
ProjectResource

«Java Class»
GanttDaysOff

«Java Interface»
CustomPropertyManager

«Java Class»
GanttCalendar

«Java Class»
PropertyTypeEncoder

«Java Interface»
CustomProperty

«Java Interface»
Role

«Java Interface»
CustomPropertyDefinition

«Java Interface»
GPUndoManager

«Java Class»
CustomPropertyDefinitionImpl

«Java Class»
ResourceEvent

«Java Class»
HumanResource

«Java Interface»
ResourceView

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

(a) Dependencies of legacy HRM class

«serviceComponent»
ResourceManagerSC

«serviceProvider»
ResourceManagerProvider

IResourceManager

+ add ()
+ getById ()
+ remove ()
+ getResources ()

«serviceSpecification»
IResourceManager

+ add (resource : ResourceManagerRequest) : Boolean
+ getById (id : Integer) : ResourceManagerResponse
+ remove (resource : ResourceManagerRequest) : Boolean
+ getResources () : ResourceManagerResponse

«facade»
ResourceManagerServiceFacade

«interface»
ResourceManagerService

+ add (resource : ResourceManagerRequest) : Boolean
+ getById (id : Integer) : ResourceManagerResponse
+ remove (resource : ResourceManagerRequest) : Boolean
+ getResources () : ResourceManagerResponse

«Java Class»
HumanResourceManager

«Java Interface»
ResourceManager

«derive»

«refine»

«refine»

1

1 - humanResourceManager

(b) Implementation design of IResourceManager

Figure 3: Service Realization: Designing the service implementation

plement the service component. The facade class will delegate service requests to the
appropriate service implementation — in this example the HRM class and all its depen-
dencies revealed by the GReQL query.

This phase finishes the design of the service. In the next step, this design will be imple-
mented.

4.6 Service Implementation
Service Implementation realizes the IResourceManager service, e. g. as Web Service (as
suggested by SOMA). Migrating identified source code (cf. Section 4.5) to realize the
resource management service combines functionality provided by the IBM Rational Soft-
ware Architect for WebSphere Software V7.53 (RSA) and TGraph technology.

Firstly, the code generation capabilities of the RSA are used to create WSDL code from
the service specification which is later used to specify the service interface. Then, the
design of the service framework (Figure 3b) is transformed into Java.

3IBM, Rational and WebSphere are trademarks of International Business Machines Corporation.

So far, the service lacks of business functionality, which is added by transforming legacy
code into a service implementation. The GReQL query described in Listing 3 (Section 4.5)
is used to mark the HRM class and all legacy software components it depends on.

The Java code generator of JGraLab is used to extract Java code for all marked classes of
the TGraph. This results in Java classes implementing only the business functionality of
the IResourceManager service. These classes are not connected to the service framework
currently and so the facade class must be edited manually to delegate service requests to
the HRM class. In addition, the facade class translates message parameters into objects
known by the HRM class.

Finally, the Web Service Wizard of RSA is used to generate a fully functional Web Ser-
vice. This wizard takes the WSDL interface description, the Java classes of the service
framework and the service implementation and creates a Java EE Web Service.

4.7 Service Deployment
The Web Service created in the last subsection is deployed to the customer. This phase
does not have to be extended by our approach. It concludes the migration.

5 Related Work
Whereas a plethora on publication on the development of Service-Oriented Architectures
exists, migrating legacy systems to SOA is only addressed in a few papers. The SMART
approach [Smi07] deals with the planning of SOA migration projects, but does not provide
concrete migration or migration tool support. Correia et al. [CMHER07] and Fleurey et al.
[FBB+07] describe general approaches of model-driven migration into a new technology
not especially focused on SOA. Correia et al. describe a graph-based approach which men-
tions SOA as possible target architecture [Mat08]. In contrast to SOAMIG, this approach
focuses on annotating functionality in legacy code instead of directly identifying services
from source code. Marchetto and Ricca [MR08] propose an approach to migrate legacy
systems into a SOA, step by step. However, this approach does not focus on model-driven
techniques and uses wrapping as general migration strategy. Another approach focusing
on wrapping is described in [Gim07].

In contrast to these approaches, the work presented here provides a coherent model-driven
approach to software migration by integrating an established SOA forward-engineering
approach with graph-based reengineering technologies. In addition, in SOAMIG software
systems are viewed at all levels of abstraction including business processes and code.

6 Conclusion and Future Work
In this paper, we described a model-driven approach to migrate legacy systems, extending
IBM’s SOMA method. The approach was applied to the migration of a functionality of
GanttProject towards a Service-Oriented Architecture. This example demonstrated the
identification and specification of services by analyzing legacy code, the identification
of responsible functionality in legacy code and the transformation of legacy code into a
service implementation. As result, a fully functional Web Service was generated whose

business functionality was implemented by transforming legacy code.

The example presented in this paper should be understood as first technical proof-of-
concept and not as fully developed method. The approach must be extended and the
techniques must be improved. E.g. one issue is the replacement of the string-based ser-
vice identification technique (which fails when source code does not follow some naming
conventions) by a dynamic approach. As part of the SOAMIG project, we are currently
exploring the possibility of simulating the execution of business processes while tracing
source code execution. Based on these traces, source code might be mapped to processes,
supporting service identification.

Another issue is the application of the approach on systems that are not written in Java.
In addition to plain architectural migrations as presented in this example, languages (e.g.
COBOL→ Java) must be migrated in language migration projects, too. All TGraph tech-
niques explained in this paper are generic and will work for other languages if metamodels
are provided. Currently, a metamodel for COBOL is being developed and will enable our
approach to cope with legacy COBOL systems as soon as it is finished. Research will also
address code transformation based on these metamodels.

In contrast to “transformation capabilities” of modern tools like IBM’s Rational Software
Architect or Borland’s Together Architect, the TGraph approach offers an integrated view
on all models and allows to process all needed queries on one repository. This will allow
us to create one homogeneous workflow instead of handling different types of results from
different sources leading to compatibility issues.

The results of this ongoing research will have to be confirmed on larger examples in future.
In collaboration with our industrial project partners, their Java and COBOL systems will
be migrated into Service-Oriented Architectures.

Summarizing, the presented approach already showed first interesting results and promises
to improve model-driven migration in future.

Acknowledgements
We want to express our thanks to Rainer Gimnich, IBM Software Group, Frankfurt/Main,
Germany for his support in understanding SOMA and various fruitful discussions on ap-
plying SOMA in software migration.

References

[AGA+08] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and K. Holley.
SOMA: A Method for Developing Service-Oriented Solutions. IBM Systems Jour-
nal, 47(3):377–396, 2008.

[ATL09] ATLAS Group. ATL User Guide, 2009.
[BE08] D. Bildhauer and J. Ebert. Querying Software Abstraction Graphs. In Working Session

on Query Technologies and Applications for Program Comprehension, 2008.
[BS95] M. L. Brodie and M. Stonebraker. Migrating Legacy Systems, Gateways, Interfaces

& The Incremental Approach. Morgan Kaufmann, 1995.
[CMHER07] R. Correia, C. Matos, R. Heckel, and M. El-Ramly. Architecture Migration Driven

by Code Categorization. In Software Architecture, First European Conference, Spain:

Proceedings, volume 4758 of Lecture Notes in Computer Science. Springer, 2007.
[Ecl07] Eclipse. KM3. http://wiki.eclipse.org/KM3, 2007.
[EH09] J. Ebert and T. Horn. The GReTL Transformation Language. Projectreport, Koblenz,

2009.
[ERW08] J. Ebert, V. Riediger, and A. Winter. Graph Technology in Reverse Engineering: The

TGraph Approach. In R. Gimnich, U. Kaiser, J. Quante, and A. Winter, editors, 10th
Workshop Software Reengineering, volume 126 of GI-Edition Proceedings, pages
67–81, Bonn, 2008. Ges. f. Informatik.

[EW06] J. Ebert and A. Winter. Using Metamodels in Service Interoperability. In Postproceed-
ings of 13th Annual International Workshop on Software Technology and Engineering
Practice (STEP’05), pages 147–156, 2006.

[FBB+07] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J. M. Jezequel. Model-driven
Engineering for Software Migration in a Large Industrial Context. In G. Engels,
B. Opdyke, D. C. Schmidt, and F. Weil, editors, Model Driven Engineering Languages
and Systems, volume 4735 of International Conference on Model Driven Engineering
Languages and Systems, pages 482–497, Berlin, 2007. Springer.

[Fuh09] A. Fuhr. Model-driven Software Migration into a Service-oriented Architecture.
Bachelorthesis, Mainz, 2009.

[Gan09] GanttProject. The GanttProject. http://ganttproject.biz/, 2009.
[Gim07] R. Gimnich. SOA Migration: Approaches and Experience. Softwaretechnik-Trends,

27(1), 2007.
[GKMM04] N. Gold, C. Knight, A. Mohan, and M. Munro. Understanding Service-Oriented Soft-

ware. IEEE Software, 21(2):71–77, 2004.
[HFW09] T. Horn, A. Fuhr, and A. Winter. Towards Applying Model-Transformations and

-Queries for SOA-Migration. In Workshop MDD, SOA und IT-Management, 2009.
[KLS+07] K. Kontogiannis, G. A. Lewis, D. B. Smith, M. Litoiu, H. Müller, S. Schuster, and

E. Stroulia. The Landscape of Service-Oriented Systems: A Research Perspective. In
Proceedings of the International Workshop on Systems Development in SOA Environ-
ments. IEEE Computer Society, 2007.

[KW98] B. Kullbach and A. Winter. Querying as an Enabling Technology in Software Reengi-
neering. In Proceedings of the 3nd European Conference on Software Maintenance
and Reengineering, pages 42–50. IEEE Computer Society, Los Alamitos, 1998.

[Mat08] C. Matos. Service Extraction from Legacy Systems. In D. Hutchison, H. Ehrig,
R. Heckel, T. Kanade, and J. Kittler, editors, Graph Transformations, volume 5214,
pages 505–507, Berlin, Heidelberg, 2008. Springer-Verlag.

[MR08] A. Marchetto and F. Ricca. Transforming a Java Application in a Equivalent Web-
Services Based Application: Toward a Tool Supported Stepwise Approach. In Pro-
ceedings Tenth IEEE International Symposium on Web Site Evolution, Beijing, China
(WSE). IEEE Computer Society, 2008.

[OMG06] OMG. Meta Object Facility (MOF) 2.0: Core Specification – formal/06-01-01, 2006.
[OMG07] OMG. Meta Object Facility (MOF) 2.0: Query/View/Transformation Specification –

Final Adopted Specification ptc/07-07-07, 2007.
[RB00] V. T. Rajlich and K. H. Bennett. A Staged Model for the Software Life Cycle. Com-

puter, 33(7):66–71, 2000.
[Smi07] D. B. Smith. Migration of Legacy Assets to Service-Oriented Architecture Environ-

ments. In Companion to the proceedings of the 29th International Conference on
Software Engineering, pages 174–175. IEEE Computer Society, 2007.

[SO08] H. M. Sneed and S. Opferkuch. Training and Certifying Software Maintainers. In 12th
European Conference on Software Maintenance and Reengineering (CSMR), Athens,
Greece, pages 113–122. IEEE Computer Society, 2008.

[Wah07] U. Wahli. Building SOA Solutions Using the Rational SDP. IBM Redbooks. 2007.
[WZ07] A. Winter and J. Ziemann. Model-based Migration to Service-oriented Architectures:

A Project Outline. In H. M. Sneed, editor, CSMR 2007, 11th European Conference
on Software Maintenance and Reengineering, Workshops, pages 107–110, 2007.

