
Computer Science – Research & Development (CSRD) manuscript No.
(will be inserted by the editor)

Model-Driven Software Migration into Service-Oriented Architectures

Andreas Fuhr · Tassilo Horn · Volker Riediger · Andreas Winter

Received: date / Accepted: date

Abstract This paper proposes model-driven techniques to
extend IBM’s SOMA method towards migrating legacy sys-
tems into Service-Oriented Architectures (SOA). The pro-
posal explores how graph-based querying and transforma-
tion techniques enable the integration of legacy assets into
a new SOA and how these techniques can be integrated into
the overall migration process. The presented approach is ap-
plied to the identification and migration of services in an
open source Java software system.

Keywords Software migration · Reengineering · Model-
Driven Software Development · Service-Oriented Architec-
ture

A. Fuhr
University of Koblenz-Landau
Tel.: +49 (261) 287-2705
Fax: +49 (261) 287-100-2705
E-mail: afuhr@uni-koblenz.de

T. Horn
University of Koblenz-Landau
Tel.: +49 (261) 287-2745
Fax: +49 (261) 287-2721
E-mail: horn@uni-koblenz.de

V. Riediger
University of Koblenz-Landau
Tel.: +49 (261) 287-2706
Fax: +49 (261) 287-2721
E-mail: riediger@uni-koblenz.de

A. Winter
Carl von Ossietzky University Oldenburg
Tel.: +49 (441) 798-2992
Fax: +49 (441) 798-2196
E-mail: winter@se.uni-oldenburg.de

1 Introduction

Today, almost every company runs systems that have been
implemented a long time ago. These systems, and even
those that have been developed in the last years, are still
under adaptation and maintenance to address current needs.
Adapting legacy software systems to new requirements of-
ten needs to make use of new technological advances.
Business value of existing systems can only be preserved
by transferring legacy systems into new technological sur-
roundings. Migrating legacy systems, i. e. transferring soft-
ware systems to a new environment without changing the
functionality (Sneed et al 2010), enables already proven ap-
plications to stay on stream instead of passing away after
some suspensive servicing (Rajlich and Bennett 2000).

A technological advance promising better reusability
of software assets in new application areas is provided by
Service-Oriented Architectures (SOA). SOA is viewed as an
abstract, business-driven approach decomposing software
into loosely-coupled services enabling the reuse of existing
software assets for rapidly changing business needs (Gold
et al 2004). A service is viewed as an encapsulated, reusable
and business-aligned asset with a well-defined service spec-
ification providing an interface description of the requested
functionality. The service specification is implemented by a
service component which is realized by a service provider.
Its functionality is used by service consumers (Arsanjani
et al 2008).

Migrating legacy systems to services enables both, the
reuse of already established and proven software compo-
nents and the integration with new services, including their
orchestration to support changing business needs. In order
to gain most benefit from a migration, a comprehensive ap-
proach supporting the migration process and enabling the
reuse of legacy code is required. The work presented here

is part of the SOAMIG1 project, which addresses the semi-
automatic migration of legacy software systems to Service-
Oriented Architectures, based on model-driven techniques
and code transformation.

Software development and maintenance projects require
a clearly defined methodology. In contrast to cold-turkey
approaches, Chicken Little (Brodie and Stonebraker 1995)
provides an incremental approach towards migrating com-
plete systems. Another general migration approach targeting
on outsourcing migration projects is given by the reengi-
neering factory (Borchers 1997). Data migration is sup-
ported by the butterfly approach (Wu et al 1997) and the
SMART-approach (Lewis and Smith 2008) assist in planing
migration projects. For a comprehensive overview about mi-
gration strategies, see (Sneed et al 2010). The ReMiP (Ref-
erence Migration Process) provides a generic process model
for software migration (Sneed et al 2010). Major activities
in all software migration processes dealing with legacy code
include legacy analysis and legacy conversion. Legacy anal-
ysis aims at understanding legacy systems and identifying
software assets worth to be transferred into the new environ-
ment. Legacy conversion supports the technical migration of
legacy assets by wrapping or transformation. In addition, a
strategy to design the target architecture is needed.

In architecture migration projects, target architectures
try to support most characteristics of new architectural
paradigms. But economic migration requires converting of
most of the legacy system with low effort. Thus, reasonable
target architectures between optimal architectures for new
systems and best reuse of legacy assets have to be defined
incrementally (Zillmann et al 2010).

This paper focuses on applying model-driven techniques
for migrating legacy assets to SOAs. Various strategies
to design SOAs exist (Thomas et al 2010). According to
Martin (2009), one of the best-known methods is IBM’s
SOMA method. Service-Oriented Modeling and Architec-
ture (SOMA) provides a process model for SOA develop-
ment and evolution, which serves here as a methodological
framework to identify and extend migration activities and
their technological support. It includes seven incremental
and iterative phases for identifying, specifying and imple-
menting services (Arsanjani et al 2008). In the first place,
SOMA is designed to develop SOAs from scratch and does
not provide direct support for integrating legacy assets.

The extension of SOMA towards migration, presented
here, is based on model-driven strategies. Models represent
different views on software systems including business pro-
cess models, software architecture and programming code
(Winter and Ziemann 2007). Legacy analysis and conversion
is based on queries and transformations on these models. In

1 This work is partially funded by the German Ministry
of Education and Research (BMBF) grant 01IS09017C/D. See
http://www.soamig.de for further information.

Fig. 1 Goal of this paper: composition of services in the target SOA
design

this paper, the TGraph approach (Ebert et al 2008) is applied
as one possible model-driven technology. By migrating ex-
emplary services in the open source software GanttProject
(GanttProject 2009), it will be shown how SOMA can be
extended by model-driven technologies to provide a com-
prehensive methodology to SOA development, including a
broad reuse of legacy code assets.

This paper complements Fuhr et al (2010b), which
sketched the initial graph-based approach for extracting and
transforming a single service, to a capacious approach to
migrate legacy systems to SOA systems. The application of
graph-based reengineering and migration techniques to SOA
migration is explained by identifying and transforming three
exemplary services in the open source software GanttProject
(GanttProject 2009). Based on one example business pro-
cess, it will be described

– how TGraph technology is applied to represent and an-
alyze legacy code supporting service identification and
realization decisions,

– how SOMA is applied to specify and design services and
– how TGraph technology is applied to transfer legacy

code into a service implementation.

Figure 1 shows the service-oriented target architecture,
modeling the composition of a service that provides capa-
bilities to manage project resources. The composite service
uses two atomic services to provide its functionality to the
service consumer. In the remaining paper it will be described
how to identify these three services and how to implement
them by reusing legacy code (Fuhr 2009).

The remaining paper is organized as follows: Section 2
describes the SOMA method in more detail and motivates
where SOMA has to be extended by model-driven reengi-
neering techniques. Section 3 describes the TGraph technol-
ogy to provide legacy analysis and legacy conversion and
Section 4 introduces tools supporting the approach. In Sec-

Business
Modeling

Solution
Management

Service
Identification

Service
Specification

Service
Realization

Service
Implementation

Service
Deployment

Fig. 2 The seven SOMA phases

tion 5 the integrated method is applied to identify, to spec-
ify, to realize and to implement three services by reusing
the GanttProject legacy code. Section 6 contrasts the inte-
grated SOA migration approach presented here with current
work in model-driven software analysis and migration. Fi-
nally, Section 7 summarizes and reflects the obtained results.

2 Service-Oriented Modeling and Architecture (SOMA)
and Software Migration

SOMA (Arsanjani et al 2008) is an iterative and incremental
method to design and implement service-oriented systems,
developed by IBM and still under research (latest published
version: 2.4). SOMA describes how to plan, to design, to
implement and to deploy SOA systems. SOMA is designed
extensible to be able to include additional, specialized tech-
niques supporting specific project needs. In the following,
the seven SOMA phases shown in Figure 2 are introduced
briefly. Section 2.1 then highlights where SOMA must be
extended to support model-driven migration projects.

During Business Modeling, the state of a company is
analyzed at the beginning of a project. As SOAs are tightly
aligned to business concerns, it is necessary to clearly un-
derstand the customer’s business. In this phase, all possible
information about the following concerns is gathered:

– Business vision
– Business actors, use cases and processes
– Business goals and key performance indicators (KPIs)

One main result of this phase is the business model which is
a formalized view on these aspects.

Solution Management adapts the SOMA method to the
project needs. This includes choosing additional techniques

to solve project-specific problems. From a SOMA perspec-
tive, this paper is located in Solution Management since it
adapts SOMA to software migration issues, using model
driven technologies.

During Service Identification, SOMA uses three com-
plementary techniques to identify service candidates, i.e.
functionality that may be implemented as service later in
the new architecture. Domain Decomposition is a top-down
method decomposing the business domain into functional
areas and analyzing the business processes to identify ser-
vice candidates. Goal-Service Modeling identifies service
candidates by exploring the business goals and subgoals.
Legacy Asset Analysis finally explores the functionality of
legacy systems bottom-up. It is analyzed, which business
processes are supported by what functionality of a legacy
system. For that purpose, documentation, APIs or interfaces
are explored to identify which functionality is provided.
The source code is only analyzed on a coarse-grained level,
meaning it is analyzed which functionality exists and not
how it is actually implemented. For each business function-
ality supporting a business process, a service candidate is
created. All three techniques are performed incrementally
and iteratively. For each identified candidate, an initial ser-
vice specification is created and a trace to the source of iden-
tification is established.

Service Specification deals with describing the service
design in detail. The initial service specification is refined,
messages and message flows are designed and services are
composed. This phase results in a comprehensive descrip-
tion of the service design. SOMA uses an UML profile for
Service-Oriented Architectures to describe the service de-
sign. Later, the specification will be transformed into WSDL
code for implementing the service as a Web Service (as it is
proposed by SOMA).

Service Realization decides which services will be im-
plemented in the current iteration and constitutes how to im-
plement them. First, a Service Litmus Test (SLT) is executed
to identify service candidates that should be exposed. The
SLT is a set of criteria to evaluate usefulness and value of
each service. After having chosen a set of services, the im-
plementation strategy has to be defined. Encapsulation of
services allows the choice of different ways to implement
each service. Common strategies to form new service com-
ponents are

1. implementation from scratch,
2. wrapping of larger legacy components or
3. transforming the required legacy components.

After having decided on an implementation technique, le-
gacy systems require fine-grained analysis. Functionality
that is able to implement services has to be identified in
the legacy code. In addition, it is important to clearly un-
derstand how this functionality is embedded in the legacy

system, since it has to be separated to build a self-contained
service. Finally, the implementation design specifying how
to implement the service, is created. In addition, patterns are
used to create a framework which is able to integrate the
service implementation into the service design.

During the Service Implementation phase, services are
actually implemented. According to the decisions derived in
the Service Realization phase, services are developed, wrap-
pers are written, or legacy code is transformed. Finally, all
services are orchestrated and message flows are established.

The last phase is Service Deployment. It deals with ex-
posing the services to the customer’s environment. Final
user-acceptance tests are performed and the SOA is moni-
tored to verify that it performs as expected.

2.1 Extending SOMA for Model-driven Migration

Although being suited for SOA development projects, the
SOMA method lacks of direct support for migrating legacy
software towards SOAs. In the following, four extension
points and their relevance to SOA migration projects are de-
fined, where SOMA must be leveraged in order to support
SOA migration projects.

Extending service identification. Service Identification
is one of the core phases in SOA development as well as in
SOA migration projects. As migration projects aim at pre-
serving functionality without adding new features, identify-
ing the functionality a legacy system provides is very im-
portant. Therefore, techniques to identify functionality in
legacy code are required. SOMA does not describe how to
analyze legacy systems. At this point, additional methods
and techniques must be included. In Section 5.3, we extend
SOMA by a model-driven technique to reverse-engineer
legacy code into an appropriate TGraph, which enables
queries and transformations to identify service candidates.

Extending service specification. In plain development
projects, Service Specification is a straight forward engi-
neering phase. In migration projects, Service Specification
combines forward engineering (design of the target architec-
ture and orchestration of services) with reverse-engineering
tasks (derive service operations and message design from le-
gacy code). Therefore, techniques to support the forward de-
sign by analyzing legacy systems are needed. Service Spec-
ification describes the service in detail. To gather the infor-
mation needed for the design, messages and message param-
eters can be derived from legacy code. We extend SOMA to
identify useful legacy code in Section 5.4.

Extending service realization. In SOA Migration
projects, it is important to identify which of the services can
actually be implemented by reusing legacy code and how
the code can be reused. In SOMA, legacy functions usu-
ally are wrapped and then exposed as services. This has sev-
eral drawbacks. The legacy system must still be maintained

and in addition, the wrapper must be created and maintained
later, too. A different approach is to transform legacy func-
tionality into a service implementation. However, code may
not be suited to form a self-contained and loosely-coupled
service and might therefore require a re-implementation of
the functionality (Nasr et al 2010). SOMA does not describe
how to implement services by reusing legacy code. In Sec-
tion 5.5, a static and a dynamic approach are presented to
analyze legacy systems fine-grained in order to understand
the implementation of legacy functionality.

Extending service implementation. In migration
projects, service implementation is influenced by the choice
of migration strategy (re-implementation, wrapping of trans-
formation). In contrast to implementation in development
projects, this phase focuses more on reusing existing code.
Therefore, techniques are needed to extract legacy code and
to make it available to the target implementation. SOMA
does not include techniques to transform legacy code into
services. In Section 5.6 it is demonstrated how graph trans-
formations are used to transform legacy code into service
implementations.

This concludes the description of the SOMA method.
The next section introduces the TGraph approach that
is used as technological foundation of our extensions to
SOMA. In Section 4, the integration of the TGraph approach
into the overall migration tools environment is described and
in Section 5, the extended SOMA method is then applied to
the migration of GanttProject.

3 Model-Driven Migration: The TGraph Approach

The extension of SOMA towards migration, presented in
this paper, is based on model-driven strategies. Models (in-
cluding code) represent different views on software sys-
tems including business process models, software architec-
ture and program source code. In particular, migrating le-
gacy systems to SOA requires an integrated view on busi-
ness processes, architecture and code (Winter and Ziemann
2007) to be able to identify and extract services. Therefore,
an integrated representation of all these artifacts is essential.
Model-driven approaches provide these technologies:

1. formal definition of valid models (metamodels),
2. querying of models (query languages) and
3. transformation of models (transformation languages).

Today, many model-driven approaches are known.
Metamodels can be described by using the OMG’s Meta Ob-
ject Facility (MOF (OMG 2006)) or INRIA’s KM3 (Eclipse
2007). Well-known transformation languages include QVT
(Query/View/Transformation (OMG 2007)) or ATL (Atlas
Transformation Language (ATLAS Group 2009)). All these
approaches are suited for extending SOMA. However, in this

paper, a graph-based approach is used that has already been
applied in various reverse- and reengineering projects (Ebert
et al 2008). The TGraph approach is a seamless graph-
based approach. Models are represented by graphs conform-
ing to a graph schema (a metamodel). They can be queried
with the graph query language GReQL (Graph Repository
Querying Language (Bildhauer and Ebert 2008)) and can be
transformed using GReTL (Graph Repository Transforma-
tion Language (Ebert and Horn [To appear])).

Following the three model-driven technologies men-
tioned above (metamodels, query languages and transforma-
tion languages) their realization in the TGraph approach is
described in the following subsections. Section 3.1 describes
the kind of graphs used in the TGraph approach, includ-
ing a short overview about the metamodeling foundations.
Section 3.2 gives an introduction to querying TGraphs with
GReQL and Section 3.3 depicts the GReTL transformation
language.

3.1 Metamodeling: TGraphs and Metamodels

Migration projects require the exploration of various sources
like business processes, legacy architecture or legacy code.
For integrated analyses, it is necessary to store all data in an
integrated model, the repository. Metamodeling deals with
describing the structure of this repository.

The presented approach uses TGraphs for storing arti-
facts. A TGraph is a directed graph where all nodes and
edges are typed and may contain attributes. Additionally,
edges and nodes are ordered globally and all incident edges
of a node have a local order. Edges are first class citizens,
so the navigability is always bidirectional and does not de-
pend on the edge’s direction. This also enables reasoning on
edges directly. In sparse graphs, which usually occur in code
and model representations, this also provides more efficient
graph traversal, compared to approaches considering edges
as tuples of start and end node.

The graph library JGraLab (Java Graph Laboratory2)
provides a convenient and efficient API for accessing and
manipulating TGraphs.

Each TGraph is an instance of a TGraph schema. In a
model-driven sense, a TGraph schema is a metamodel for a
class of TGraphs and defines edge and node types, includ-
ing their attributes. Additionally, both node as well as edge
types can specialize other node and edge types and multi-
ple inheritance is supported. Such schemas are specified by
using a UML profile called grUML (Graph UML), a tool-
ready subset of CMOF slightly more expressive than EMOF
(Bildhauer et al 2009). In grUML diagrams, node and edge
types and their attributes are specified with UML. Classes

2 http://jgralab.uni-koblenz.de

Fig. 3 Small extract of the Java metamodel

are used to define node types and associations (or associa-
tion classes) are used to define edges. GrUML schemas can
be created with basically any UML editor. There are tools
to convert such schemas from XMI to the internal format of
JGraLab. Given a TGraph schema, JGraLab generates Java
source code for an object-oriented API for accessing and
modifying TGraphs conforming to that schema.

Among others, a schema covering the complete abstract
syntax of the Java programming language exists.

Figure 3 shows a small extract of the Java metamodel
specifying class members

ClassDe f inition
IsClassBlockO f→ Block

IsMemberO f→ Member

and the superclass hierarchy

ClassDe f inition
IsSuperClassO fClass→ TypeSpeci f ication

All examples in Section 3 are based on this extract.
Using a custom parser (Baldauf and Vika 2009), Java

source code, class files and jar files can be converted into a
TGraph conforming to this Java schema. These graphs are
subject to advanced analysis and transformation using the
query and transformation languages described in the next
subsections.

3.2 Query Language: GReQL

For exploring the information stored in the repository, a
querying language is needed. GReQL (Graph Repository
Query Language, (Kullbach and Winter 1998; Bildhauer and
Ebert 2008)) is a textual, schema-aware querying language
for TGraphs. One of the most commonly used language ele-
ments is the from-with-report (FWR) clause. The from part
is used to declare variables and bind them to domains. In the
with part, constraints can be imposed on the values of these
variables. The report part is used to define the structure of
the query result.

A sample query for retrieving all super- and subclasses
of a class with name HumanResource in a graph conform-
ing to the Java schema in Figure 3 is depicted in Listing 1. In
migration projects, such queries help to identify the class hi-
erarchy in object-oriented legacy systems (in Figure 11 this
query will be used as one part to identify static dependencies
of classes).

1 from e : E{ I s S u p e rC l a s sO fC l a s s }
2 with s ta r tVer tex (e) . name = "HumanResource" or

3 endVertex (e) . name = "HumanResource"
4 r epor t s ta r tVer tex (e) . name , endVertex (e) . name
5 end

Listing 1 A GReQL query to find direct superclasses and subclasses

In the from part, the variable e is bound to all edges
of type IsSuperClassOfClass one after the other (Looking
at Figure 3 these edges are modeled by the IsSuperClasOf-

Class association between ClassDe�nition and TypeSpeci�-

cation). The constraint defined in the with clause requires
that the name attribute of the node acting as source or target
of such an edge matches the string “HumanResource”. The
report clause defines the structure of the results as tuples
where the entries are pairs of the names of the superclass
and subclass. For each IsSuperClassOfClass edge which sat-
isfies the constraint, a tuple is added to the result multiset
(bag).

One of GReQL’s especially powerful features are reg-
ular path expressions, which can be used to formulate
queries that utilize the interconnections between nodes and
their structure. Therefore, symbols for edges are introduced:
−−> and <−− for directed edges and <−> if the direc-
tion should not be taken into account and <>−− or−−<>
for edges modeling containment relationships. Additionally,
an edge type written in angle brackets may follow the edge
symbol. These symbols can be combined using regular op-
erators: sequence, iteration (∗ and +), alternative (|) and so
on.

Listing 2 shows a query for finding member classes. In
migration projects, migrating member classes makes it nec-
essary to identify in which class the member class is nested.
In addition, member classes must be migrated in order to
preserve functionality. Such a query can help identifying
these member classes.

1 from o , m : V{ C l a s s D e f i n i t i o n }
2 with o <−−{I sC l a s sB l o c kO f } <−−{IsMemberOf} m
3 reportSet m end

Listing 2 A query using regular path expressions to find member
classes

Two variables of type ClassDe�nition are defined. If
the ClassDe�nition m is a member of o (e.g. a path like the
one depicted in the with clause exists), the member class m
will be reported. Looking at Figure 3, this path is modeled
in the metamodel as follows:

ClassDe f .
IsClassBlockO f→ Block

IsMemberO f→ ClassDe f .

3.3 Transformation Language: GReTL

Up to now, the data structure has been defined by meta-
models and information can be retrieved by GReQL queries.
Now, a technique to transform (change) models is needed. In
migration projects, such transformations play an important
role and are used for various activities like

– Reverse engineering (transformation of models into
more abstract representations, e.g. code to architectural
views)

– Conversion (transformation of source models into differ-
ent target models, e.g. legacy code into a SOA service)

– Forward engineering (transformation of models into a
more detailed representations, e.g. design model into
class stubs)

The GReTL transformation language (Graph Repository
Transformation Language) is a Java framework for pro-
gramming transformations on TGraphs making use of the
TGraph related GReQL language (cf. Section 3.2) (Ebert
and Horn [To appear]).

Instead of creating a new transformation language in-
cluding its own syntax from scratch, existing technologies
were applied, namely JGraLab’s Schema API for describing
imperative aspects and GReQL for declarative parts.

The idea of GReTL is to build a target TGraph schema
by writing transformation rules as calls to methods pro-
vided by the transformation framework. These methods cre-
ate new elements in the target schema by delegating to meth-
ods in JGraLab’s Schema API. GReQL queries given as ad-
ditional parameters in transformation rules specify declara-
tively which instances of this new type have to be created in
the target graph.

An example rule for creating a node class in the target
schema and its appropriate instances is depicted in Listing 3.

1 from t : V{Type}
2 with t . name =~ ' . ∗ [Rr] e s ou r c e .∗ '
3 reportSet t end

4 ==> Cr e a t eVe r t e xC l a s s uml . C l a s s ;

Listing 3 GReTL rule for creating a node class and instances thereof

The parameter uml.Class to the transformation opera-
tion CreateVertexClass is the fully qualified name of the

new node class to be created in the target schema. The query
given before the ==> is a GReQL query, which is evaluated
on the source graph and returns the set of Types whose name
contains the substring “resource” (specified by a regular ex-
pression). These types are used as archetypes for the uml.

Class nodes that are created in the target graph, i. e., for each
of the selected Type nodes, a new uml.Class node is created
in the target graph. The mapping of archetypes to the newly
created nodes is saved and accessible in further rules. Fur-
ther methods for creating edge types (including their edge
instances), attributes and generalizations between edge and
node classes are realized in an analogous manner.

The following section will describe how the TGraph ap-
proach introduced in this section is integrated into the over-
all migration tool set environment.

4 Migration Tool Set Environment

The previous section introduced the implementation of
model-driven techniques by the TGraph approach. Com-
bining tools implementing graph schemas as metamodels,
GReQL as query language and GReTL as transformation
language, the TGraph approach can be used for model-
driven development. This section describes which tools are
used in the overall SOA migration environment and how the
TGraph tools fit into it.

4.1 Modeling Tools

For modeling, IBM’s Rational Software Architect for Web-
Sphere Software v7.5.4 (RSA) is used as it supports SOMA
by predefined model building-blocks, SOA patterns and a
SOA UML profile (IBM Corporation 2009). The RSA is an
integrated modeling and development tool supporting mod-
eling with UML 2 and development of Java or C++ applica-
tions. It supports various transformations like UML2Java or
ServiceSpecification2WSDL.

In the SOA migration project presented in Section 5, the
RSA is used for the following tasks:

– Design metamodels for repository (SOMA Solution
Management phase): The metamodels are designed as
UML class diagrams and exported as XMI files. A tool
is then used to create a TGraph schema from that XMI
file.

– Model business processes (SOMA Business Modeling
phase): The processes are designed as UML activity di-
agrams, exported as XMI file and then parsed into a
TGraph for further exploration.

– Create service design (SOMA Service Identification and
Service Specification phases): Using a UML profile for
SOAs, the design of the services (service specification,

messages, implementation) is created. As described in
Section 5.6, RSA’s transformation functionality is used
to transform the service specification into WSDL inter-
faces and the implementation framework into Java stubs.

– Generate service framework (SOMA Service Realiza-
tion, Service Implementation and Service Deployment
phases): Using the WebService Wizard provided by
RSA, the WSDL interfaces and the implementation code
are put together and fully functional services are gener-
ated.

While covering all modeling aspects with the RSA, addi-
tional tools are needed to handle legacy code. The following
subsection describes legacy code parsers.

4.2 Legacy Code Parsers

In model-driven development, parsers play an important
role. All kinds of artifacts are parsed and stored in a reposi-
tory. For integrated analyses, legacy systems are parsed into
a TGraph representation (model). For Java systems, the tool
GraBaJa (Graph-Based Java, (Baldauf and Vika 2009)) is
used. GraBaJa is a Java API providing

– a Java 6 metamodel,
– a Java parser and
– a Java code generator.

The tool is used to parse Java legacy systems into a
TGraph conforming to the Java 6 metamodel. In addition,
a transformed Java TGraph can be parsed back into Java us-
ing GraBaJa’s code generator.

Within the SOAMIG project, pro et con GmbH is devel-
oping further industrial strength parser frontends for Java 6
and Cobol to be integrated to TGraph based software evolu-
tion activities (Zimmermann et al 2010).

4.3 Tool Set-Up for Dynamic Analysis

In model-driven migration projects, many models are cre-
ated, e.g. business process models, legacy architecture mod-
els or legacy code models. Relations between model ele-
ments – e.g. which code is executed during what business
process – can hardly be identified by static analysis. There-
fore, we use dynamic analysis in SOA migration projects to
find relations between models and integrate them into the
repository.

Dynamic analysis approaches execute a predefined sce-
nario on a software system. The system under analysis is
extended by functionality to trace which parts of the soft-
ware are executed during this scenario (e.g. all method calls
and returns are logged). This results in a log file describing
which methods have been called during the scenario. This

Repository

AspectJ
Tracing

Log-File

Load
business

processes

Instrument legacy system

Log execution of business processes

Log behavior of legacy system

Create trace links

2

1

3

4

Trace
Analyzer

Log
Server

Legacy
System

Business
Process
Tracer

Create workflow

Fig. 4 Tool Set-Up for Dynamic Analysis

information can be used for further analysis like exploring
dynamic call dependencies.

In SOA migration, useful scenarios are naturally given
by the business processes. As SOAs are tightly related to
these processes, they are suited for dynamic analysis. In this
paper, dynamic analysis using the workflow of business pro-
cesses is used to

1. verify that business processes are supported by the le-
gacy system (Service Identification, see Section 5.3.2)
and

2. identify legacy code that is able to support business pro-
cesses and therefore could be used to implement a ser-
vice (Service Realization, see Section 5.5.2).

The tool environment shown in Figure 4 has been set
up to run these analyses (Fuhr et al 2010a). The dynamic
analysis is split into two parts:

– the definition of a storyboard for the scenario and
– the execution of the scenario on the legacy system.

First, the business processes (which have been captured,
modeled and parsed into the repository) are loaded into the
Business Process Tracer (BPT). The BPT (1) allows to nav-
igate through all processes and visualize each process as
UML activity diagram. Selecting a business process, a user
gets displayed a storyboard for one dynamic analysis run.
Following this storyboard, the user can then perform each
business process step on the legacy system. Using the BPT,
he can tell when each step starts and ends. This information
is sent to a log server (3), tracing start and end of each step.

Second, the legacy system needs functionality to trace
which code is executed during the scenario (2). In order to
keep the legacy system as much unchanged as possible, we
decided to integrate this tracing functionality by using as-
pects. The aspect hooks into each method call and return
and logs each call and return to the log server. As dynamic
analysis produces a vast amount of tracing information, first
filtering mechanisms – e.g. to filter out calls to GUI-related
methods – can be established in this aspect, too.

Summarizing, when running a dynamic analysis, a user
executes a given business process on the legacy system
while logging when each step of the process starts and ends.
Meanwhile, the legacy system logs which code is executed
during the scenario. All information is send to the central
log server and stored as log file.

After finishing the dynamic analysis, the log files are
post-processed by the Trace Analyzer (4). The Trace Ana-
lyzer has two jobs:

– create trace links between methods and process steps
and

– extract the real workflow of business processes.

First, the Trace Analyzer creates for each method that
has been called during a business process step a trace link
between this method and the process step. After this analy-
sis, the repository has been extended by trace links telling
which methods have been executed during each business
process step. This information will be used in Section 5.5.2
to identify code that is able to implement a service.

Second, an instance of the real workflow of the business
process is stored back to the repository. We discovered that
business processes are often not executed as strictly as they
have been modeled. For this reason, the BPT-GUI does not
enforce the modeled ordering of the process steps. An al-
ternative execution of a process is stored to the repository
as additional workflow for this process. This information
will be used in Section 5.3.2 to verify the business process
model.

Merging this development environment and the TGraph
approach with SOMA provides a comprehensive technique
for SOA migrations. The following section describes how
this technique is applied on extracting three services from
GanttProject, a Java tool used for project management.

5 Merging SOMA and Model-Driven Approaches

The previous sections motivated the need of extending
SOMA for reusing legacy software assets in software mi-
gration and shortly presented graph-based modeling, anal-
ysis and transformation techniques including tool support.
The migration approach resulting in the extension of SOMA
by TGraph-based techniques is applied to identify services
from legacy code to support specification and realization de-
cisions and to transform legacy code into service implemen-
tations.

In the following subsections, an integrated SOMA and
TGraph-based reverse-engineering and transformation is
applied to the migration of GanttProject into a Service-
Oriented Architecture (Fuhr 2009). GanttProject (GanttPro-
ject 2009) is a project planning tool. It manages project re-
sources and tasks and displays project schedules as Gantt
charts. GanttProject is a Java system containing about 1200

Fig. 5 The Resource Management business process

classes. The required migration is exemplified by identifying
and migrating three services to manage project resources by
transforming legacy code.

5.1 Business Modeling

During the first phase in SOMA, the current state of the
company is analyzed. Because services are tightly related to
business processes, this phase establishes an important basis
to identify which services are needed. One core result of this
phase is the business model.

In this example, two project mangers have been inter-
viewed to gather business processes for project manage-
ment. One of the captured processes has been identified as
core business process in project management: defining what
resources are available to get work done.

Figure 5 shows the workflow of the Resource Manage-

ment business process. First, general data (e.g. name, tele-
phone or e-mail address) about a resource is entered during
the ManageResource step. Next, the role of a resource dur-
ing the project – e.g. developer, tester or manager – is de-
fined (ManageRole). If a resource is on holiday during the
project, the time that the resource is not available can be
specified in an optional step (ManageHoliday).

For industrial projects business modeling is far more
complex. Experiences during the SOAMIG project showed,
that finding the right granularity in the description of busi-
ness processes to be able to model services supporting them
is one of the main difficulties. As a lesson learned, a service
designer should be involved during this phase.

At the end of this phase, a business process model has
been created describing the business process as activity dia-
gram. In the remaining phases, this Resource Management

business process is used as continuous example. It will be
described how to identify and implement services support-
ing this business process using SOMA and the TGraph ap-
proach.

5.2 Solution Management

Solution Management adapts the SOMA method to the cur-
rent project needs. Extending SOMA by model-driven tech-
niques to support software migration – as depicted in this pa-
per – is located in this SOMA phase. This includes adapting
the used tools (cf. Section 4) and techniques. To allow de-
tailed analyses of the legacy system, it is necessary to store
all information (e.g. legacy code, legacy architecture de-
scriptions or business processes) in an integrated data struc-
ture, the repository. Therefore, the metamodel of the repos-
itory must support all languages used for modeling these ar-
tifacts.

In this example, the Java sources of GanttProject and
the business processes modeled as activity diagrams in Sec-
tion 5.1 are to be stored in such a repository. The metamodel
of the repository therefore has to support Java syntax and
UML activity diagrams. The Java 6 part of our metamodel
contains about 90 vertex and 160 edge types and covers the
complete Java syntax. The activity diagram part contains 16
vertex and 14 edge types and covers the full UML 2.1 activ-
ity diagram specification. Storing all information in an inte-
grated data structure will later allow to add traces between
the two domains and perform analyses over all data.

The GanttProject sources are parsed according to that
metamodel. The activity diagram in Figure 5 is exported
as XMI and then parsed into the same graph, resulting in
a graph of 171198 nodes and 239359 edges.

After this phase, an integrated repository exists, con-
taining a TGraph representation of the GanttProject Java
sources as well as the Resource Management business pro-
cess modeled during Business Modeling (see Section 5.1).
This graph and the implicit knowledge on resource manage-
ment will provide the foundation for service identification,
service specification, service realization and service imple-
mentation.

5.3 Service Identification

Service Identification explores all information available to
find all services a customer needs to perform his tasks. As a
reminder, services are coarse-grained, loosely-coupled and
business-aligned software components. Sources to identify

1 from t : V{Type}
2 with t . name =~ ' . ∗ [Rr] e s ou r c e .∗ '
3 reportSet t end

4 ==> Cr e a t eVe r t e xC l a s s uml . C l a s s ;
5

6 from t : keySet (img_uml$Class)
7 reportMap t , t . name end

8 ==> Cr e a t eA t t r i b u t e uml . C l a s s . name : S t r i n g ;
9

10 from c : keySet (img_uml$Class) ,
11 c2 : keySet (img_uml$Class)
12 with c <−−{I sB l o ckOf } <−−{IsMemberOf}
13 <−−{^I sBreakTargetOf ,^

I sCont inueTarge tOf ,
14 ^ I sTyp eDe f i n i t i o nO f ,^ I sC l a s sB l o ckO f

,
15 ^ I s I n t e r f a c eB l o c kO f }∗
16 [<−−{ I sT y p eDe f i n i t i o nO f }] c2
17 reportSet tup (c , c2) , c , c2 end

18 ==> Crea t eEdgeC la s s uml . A s s o c i a t i o n
19 from uml . C l a s s to uml . C l a s s ;
20

21 from c : keySet (img_uml$Class) ,
22 c2 : keySet (img_uml$Class)
23 with c (<−−{ I s Sup e rC l a s sO f }|<−−{

I s I n t e r f a c e O f C l a s s })
24 <−−{I sT y p eDe f i n i t i o nO f } c2
25 reportSet tup (c , c2) , c , c2 end

26 ==> Crea t eEdgeC la s s uml . I sA
27 from uml . C l a s s to uml . C l a s s ;

Listing 4 Simplified GReTL transformation from Java to UML

services from are business processes and goals as well as
legacy systems.

5.3.1 Service Identification based on Legacy Analysis

The identification of services from legacy systems requires
a coarse-grained analysis. The graphical user interface of
GanttProject is explored first and functionality to manage
project resources is identified as one main feature of the soft-
ware. Looking at the legacy code identifies the functionality
providing the management of project resources.

Identifying functionality in legacy code is a challeng-
ing task and still an open research issue (Kontogiannis et al
2007). In our approach, GReQL queries are used to identify
this functionality in the GanttProject-TGraph and a corre-
sponding GReTL transformation visualizes the query result.
String search on TGraphs is used to detect possible code ar-
eas referring to “ resources” and further interconnections of
code objects are specified by regular path expressions. The
resulting subgraph is transformed by GReTL into a TGraph
conforming to a simple UML schema. Further XMI-based
filters (cf. (Ebert and Winter 2006)) are used to render these
structures in UML tools.

Listing 4 shows a GReTL transformation supporting
coarse-grained legacy code analysis. For each legacy class
or interface whose name contains “resource” (line 5), this

v1 Class

isAbstract = false
name = "HumanResourceManager"

v3 Class

isAbstract = false
name = "HumanResource"

e9: Association

v4 Class

isAbstract = true
name = "ResourceManager"

e16: IsA

e6: Association

e13: Association

v2 Class

isAbstract = false
name = "ResourceAssignmentImpl"

e4: Association

e7: Association

e10: Association
e2: Association

e15: IsA
e3: Association

e14: Association

v5 Class

isAbstract = false
name = "ProjectResource"

Fig. 6 Visualization of classes and interfaces possibly providing func-
tionality to manage resources

transformation creates one UML class node in the target
TGraph. In addition, associations are drawn between those
class nodes whenever one node uses (e. g. by method calls
or variable types) another node (lines 11-16). Inheritance be-
tween types is represented by “IsA” edges (lines 17-22). For
interfaces and abstract Java classes, their UML class coun-
terparts are marked by appropriate attributes.

Of course, such queries are project specific and must be
developed in the beginning of a project. However, once de-
veloped, they can be reused in the remaining project. The
generic SOAMIG process model (Zillmann et al 2011) com-
prises a Conceptualization phase, which identifies automati-
zation options and provides reusable analysis and transfor-
mation techniques for recurring activities within the migra-
tion project.

Looking at the visualized result of this GReTL trans-
formation shown in Figure 6, the class HumanResourceM-

anager (marked with gray background) implementing the
interface ResourceManager can be identified as functional-
ity to manage project resources. Based on this information,
an initial service specification for the service candidate IRe-
sourceManagement is created and traces to the legacy code
are noted.

5.3.2 Service Identification based on Domain
Decomposition

In addition to exploring the legacy system, the business
model is analyzed to identify services. Based on the assump-
tion that each business process should be supported by a ser-
vice (Arsanjani et al 2008), business processes are analyzed
to identify service candidates during Domain Decomposi-
tion.

Fig. 7 Three initial services (in UML modeled as stereotyped inter-
face) identified from legacy code and business model

The Resource Management business process in Figure 5
indicates that managing a resource may include managing
its role and its holidays. Therefore, two additional service
specifications are added to the initial service model shown
in Figure 7. In this phase, no further information about the
method signatures of the initial service specification is gath-
ered. Method signatures and messages are added in the next
increment of the service design, during Service Specifica-
tion.

In order to verify that the legacy system really does
support the two business processes (and is therefore suited
for reusing functionality to implement the services), the dy-
namic analysis set-up described in Section 4.3 is used to ex-
plore which processes are supported by GanttProject. Fig-
ure 8 shows the Business Process Tracer tool, visualizing
the Resource Management business process. While logging
when each step of the process begins and ends, the process
is executed on GanttProject. GanttProject has been extended
by an AspectJ aspect logging each method call and return.
All information is sent to a central log server.

After the analysis, a Trace Analyzer processes the trace
files to perform two tasks:

1. Create real workflow of the process
2. Map legacy code to business processes

Establishing the real workflow of the business processes
gives hints where the business process model might have to
be revised. The mapping between legacy code and business
processes indicates if a process is supported by GanttProject
or not: If any code is mapped to a process, it is supported
by GanttProject. In addition, the mapping between legacy
code and business processes will later be used to find code
that is able to implement services, as will be described in
Section 5.5.2.

At the end of this phase, three service candidates have
been identified from legacy code and from the business pro-

Fig. 8 The BPT tool used to trace the execution of the Resource Man-
agement business process

cess model: The IResourceManagement service has been
derived from legacy code and the IHoliday and IRole ser-
vices have been derived from the business process model.
Traces to their sources of identification have been noted, too.
In the following SOMA phases, the services are specified in
more detail.

5.4 Service Specification

During Service Specification, the initial service specifica-
tions are refined. A service provider component is created
which will later implement the service specification. In ad-
dition, message flows are created to enable communication
with services. The goal of this phase is to create an compre-
hensive service design specifying all aspects of the external
view on the service (i.e. how a service is seen by consumers).
Implementation details will be designed later, during Sec-
tion 5.5.

In this example, for method parameters in the legacy in-
terface, request messages are created that are passed to the
service. For return types in the legacy system, response mes-
sages are defined that will be returned by the new service.
Request and response messages can be derived from legacy
code. Listing 5 shows a GReQL query taking an interface or
class name as input and returning method parameters (lines
3-11) and return types (lines 12-20) as output. This informa-
tion is used to derive message parameter types from legacy
code.

1 l e t c l a s sname :="HumanResourceManager" i n

2 tup (
3 from hrmClass : V{ C l a s s D e f i n i t i o n } ,
4 usedType : V{Type , Bu i l t I nType }
5 with hrmClass . name = c la s sname
6 and hrmClass <−−{I sC l a s sB l o c kO f}<−−{

IsMemberOf}
7 <−−{IsParameterOfMethod } <−−{

IsTypeOfParameter }
8 [<−−{ I sT y p eDe f i n i t i o nO f }] usedType
9 reportSet (hasType (usedType , " Bu i l t I nType "))

?
10 usedType . type :
11 theE lement (usedType<−−&{ I d e n t i f i e r }) . name

end ,
12 from hrmClass : V{ C l a s s D e f i n i t i o n } ,
13 usedType : V{Type , Bu i l t I nType }
14 with hrmClass . name = c la s sname
15 and hrmClass <−−{I sC l a s sB l o c kO f } <−−{

IsMemberOf}
16 <−−{I sReturnTypeOf } [<−−{

I sT y p eDe f i n i t i o nO f }]
17 usedType
18 reportSet (hasType (usedType , " Bu i l t I nType ")

) ?
19 usedType . type :
20 theE lement (usedType<−−&{ I d e n t i f i e r }) . name

end)

Listing 5 GReQL query retrieving method parameters and return
types for message specification

Figure 9 shows the refined specification for the
IResourceManagement service. This service is a com-
posite service (i.e. it uses other services to provide
its functionality). The composite service specification
(RscMgmtCompServSpec) implements the service specifi-
cation and uses the two services IHoliday and IRole. The
service specifications of the three services now contain in-
formation about parameters. In addition, messages for ser-
vice communication and parameter types (*Entity) for these
messages have been defined. For the HumanResourceEn-

tity, the parameter type has been derived from legacy code.

In addition, the services are composed in this phase.
Figure 10 shows the composition of the IResourceMan-

agement, IRole and IHoliday services. The upper part con-
tains the service consumer which is the corresponding busi-
ness process (ResourceMangementProcess). This consumer
component will later use the functionality of the IResource-
Management service. The IResourceManagement service
is a composite service using the IRole and IHoliday services.
All components are connected by service channels which
will later be used to send messages between the services.

At the end of this phase, the service design is mostly
completed. The service specification now contains all ser-
vice operations and their parameters. Messages and message
parameter types have been specified. In addition, the compo-

sition of the services has been defined. The next step is now
to decide how the services are implemented.

5.5 Service Realization

The first decision to be made during Service Realization
is how to implement services. Model transformation ap-
proaches are also suited for code transformation. Thus, the
legacy code is transformed into a service implementation
to provide the business functionality. If service realization
by wrapping is decided, wrappers can be generated analo-
gously.

Identifying which code is able to implement the business
functionality of a service is one key challenge in migrating
legacy systems towards SOAs. In this case study, two dif-
ferent but complementary approaches are presented: static
analysis and dynamic analysis.

5.5.1 Identifying Code by Static Analysis

For the core functionality of the IResourceManagement ser-
vice, Service Identification already identified one class in the
legacy code that may provide functionality to the service: the
HumanResourceManager class (short: HRM). Looking at
the source code manually, this class seems to provide func-
tionality to add, retrieve and delete resources. Therefore, this
class is suited to implement one core part of the service.

Now, the complete but minimal code realizing this func-
tionality has to be determined and transformed into exe-
cutable code. Slicing these code fragments also requires to
consider dependencies of HRM.

Listing 6 describes the GReQL query retrieving these
static dependencies. It returns a list of all classes and inter-
faces that HRM depends on. The path expressions in this
query retrieve classes and interfaces needed with respect to
the following dependencies:

– method invocations (line 8)
– method parameters (line 9)
– local variables (line 10)
– return types (line 11)
– fields (line 15)
– super classes or implemented interfaces (line 16)
– member classes (line 17)

Such complex queries require an understanding of GReQL
and a solid knowledge about the repository-schema. How-
ever, once created, they can be reused in the remaining
project.

While the GReQL query returns a set of qualified type-
names, Figure 11 shows a (manually created) visualization
of this query result. Using these classes to implement the
service provides functionality to add, retrieve and remove
resources.

Fig. 9 Detailed design of the IResourceManagement service

1 from hrmClass : V{ C l a s s D e f i n i t i o n } ,
2 hrmMethod : V{MethodDe f i n i t i on } ,
3 usedType : V{Type}
4 with

5 hrmClass . name = "HumanResourceManager" and hrmClass <−−{I sC l a s sB l o c kO f}<−−{IsMemberOf}
hrmMethod and

6 (
7 hrmMethod (
8 (<−−{IsBodyOfMethod} <−−{IsStatementOfBody } (<−−{At t r i bu tedEdge ,^ I sBreakTargetOf ,^

I sCont inueTarge tOf ,^ I sT y p eDe f i n i t i o nO f }) ∗ & {Method Invocat ion } <−−{
I sDec l a r a t i onOf I nvokedMethod } & {MethodDe f i n i t i on } −−>{IsMemberOf} −−>{I sC l a s sB l o c kO f }) |

9 (<−−{IsParameterOfMethod } <−−{IsTypeOf}+ <−−{I sT y p eDe f i n i t i o nO f }) |
10 (<−−{IsBodyOfMethod} <−−{IsStatementOfBody } (<−−{At t r i bu tedEdge ,^ I sBreakTargetOf ,^

I sCont inueTarge tOf ,^ I sT y p eDe f i n i t i o nO f }) ∗ <−−{I sTypeO fVa r i a b l e } <−−{I sT y p eDe f i n i t i o nO f) |
11 (<−−{I sReturnTypeOf } <−−{I sT y p eDe f i n i t i o nO f }))
12 usedType
13 or

14 hrmClass (
15 (<−−{ I sC l a s sB l o c kO f } <−−{IsMemberOf} <−−{I s F i e l d C r e a t i o nO f } <−−{I sTypeO fVa r i a b l e } <−−{

I sT y p eDe f i n i t i o nO f }) |
16 ((<−−{ I s S u p e rC l a s sO fC l a s s } | <−−{ I s I n t e r f a c e O f C l a s s }) <−−{I sT y p eDe f i n i t i o nO f }) |
17 ((<−−{ I sC l a s sB l o c kO f } <−−{IsMemberOf })+))
18 usedType
19)
20 reportSet theE lement (usedType <−− & { I d e n t i f i e r }) . name end

Listing 6 GReQL query retrieving dependencies

Fig. 10 Composition of the three services

5.5.2 Identifying Code by Dynamic Analysis

In addition to adding, retrieving and removing resources, the
IResourceManagement service also provides operations to
add roles and holidays. This functionality is provided by the
IRole and IHoliday services. Both services need legacy code
to implement the business functionality, too. In this example,
a dynamic approach is used to map legacy code to these two
services.

The dynamic analysis set-up described in Section 4.3 is
used to identify legacy code that is able to implement each
of the three services. The dynamic analysis had already been
executed during Service Identification (cf. Section 5.3.2).
Now, the tracing information that had been derived from the
log files and stored to the repository is processed by further
analysis techniques to identify code to implement the ser-
vices according to exemplary runs of GanttProject. In this
example, it is computed for each class how often a method
of this class is called in each business process step. Each
class is allocated to the process in which its methods are
called most often.

Table 1 shows classes and their mapping to a process
after filtering out GUI classes (e.g. panels, actions or ren-
derer). The business process column names the process step
in which a method of the class was called most often.
The significance value (Sig.) is the percentage how often a
method of the class was called in this process in contrast to
all calls. The three remaining columns (#Resource, #Holi-
day and #Role) stand for the total number of occurrences in
each process.

The values can be interpreted as follows: Classes with
a high significance value (> 0,5, marked bold in the table)
can be allocated clearly to the named process as they are
mostly used during the corresponding business process step.
So the class GanttDaysO� is only used in the ManageHoli-

day business process and should therefore be allocated to the
IHoliday service. Classes like HumanResource, HumanRe-

sourceManager and ProjectResource are called most often
in the Manage Resource process and should be allocated to
the IResourceManagement service (that matches the result
of the static analysis in Section 5.5.1). In addition, the Role-
ManagerImpl class should be allocated to the IRole service.

However, some classes have quite low significance val-
ues (≤ 0,5). They are used in each process similarly.
This indicates that these classes are some kind of helper
classes used in all processes. In addition, the three classes
with italic class names (RoleImpl, RoleManager.Access and
RoleSetImpl) seem to be mis-allocated. Their name suggests
that they should be allocated to the IRole service. Instead,
they are mapped to the IResourceManagement service. As
they are called in these two processes the same number of
times, this is a hint that these both processes may not be
separated well in the legacy code.

Taking the results of this analysis gives a first insight
where to look in the legacy code to find a service imple-
mentation. Manually exploring the legacy code confirms the
results of the dynamic analysis. The class GanttDaysO� is
suited to implement the business functionality of the IHoli-

day service and the class RoleManagerImpl can implement
the IRole service.

5.5.3 Integrating Business Functionality into Service
Design

Summarizing, the static and dynamic analyses gave useful
hints to developers where to look in the legacy system to
find code that is able to implement the business functionality
of the three services. Next, the business functionality must
be integrated into the overall service design. This is done
according to the patterns proposed by Wahli (Wahli 2007).

Figure 12 shows the application of these patterns to cre-
ate a framework to integrate the legacy code which will be
transformed in the next phase. The service component Re-
sourceManagerSC implements the service specification. A
facade pattern is used to implement the service component.
The facade class delegates service requests to the appropri-
ate service implementation, in this example the HRM class,
and all its dependencies revealed by the GReQL query. The
IRole and IHoliday services are designed in a similar man-
ner.

After accomplishing this phase, the service design con-
tains a complete specification about how to implement the
services by legacy code. The next step is to implement this
design and to transform the legacy code into a service im-
plementation.

5.6 Service Implementation

During Service Implementation, the services are imple-
mented, e. g. as Web Services (as is supposed by SOMA).

«Java Interface»
ResourceManager

«Java Class»
HumanResourceManager

«Java Class»
ProjectResource

«Java Class»
GanttDaysOff

«Java Interface»
CustomPropertyManager

«Java Class»
GanttCalendar

«Java Class»
PropertyTypeEncoder

«Java Interface»
CustomProperty

«Java Interface»
Role

«Java Interface»
CustomPropertyDefinition

«Java Interface»
GPUndoManager

«Java Class»
CustomPropertyDefinitionImpl

«Java Class»
ResourceEvent

«Java Class»
HumanResource

«Java Interface»
ResourceView

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Fig. 11 Service Realization: Dependencies of HRM class

Qualified Class Name Business Process Sig. #Resource #Holiday #Role

net.sourceforge.ganttproject.calendar.GanttDaysOff ManageHoliday 1,00 0 2 0
net.sourceforge.ganttproject.language.GanttLanguage ManageHoliday 0,39 5 7 6
net.sourceforge.ganttproject.resource.LoadDistribution ManageHoliday 0,46 4 6 3
net.sourceforge.ganttproject.resource.LoadDistribution.Load ManageHoliday 1,00 0 1 0

net.sourceforge.ganttproject.resource.HumanResource ManageResource 0,86 19 2 1
net.sourceforge.ganttproject.resource.HumanResourceManager ManageResource 0,73 11 3 1
net.sourceforge.ganttproject.resource.ProjectResource ManageResource 0,63 12 4 3
net.sourceforge.ganttproject.resource.ResourceColumn ManageResource 0,40 2 2 1
net.sourceforge.ganttproject.resource.ResourceEvent ManageResource 0,50 1 1 0
net.sourceforge.ganttproject.resource.ResourceNode ManageResource 0,38 5 4 4
net.sourceforge.ganttproject.roles.RoleImpl ManageResource 0,40 4 4 2
net.sourceforge.ganttproject.roles.RoleManager.Access ManageResource 0,33 1 1 1
net.sourceforge.ganttproject.roles.RoleSetImpl ManageResource 0,38 5 4 4

net.sourceforge.ganttproject.roles.RoleManagerImpl ManageRole 0,64 2 3 9

Table 1 Result of dynamic analysis

Fig. 12 Implementation design of IResourceManagement service

Migrating identified source code (cf. Section 5.5) to realize
the three services combines functionality provided by the
IBM Rational Software Architect for WebSphere Software
V7.5.43 (RSA) and TGraph technology.

First, the code generation capabilities of the RSA are
used to create WSDL code (interface description language
for Web Services) from the service specifications. WSDL is
later used to specify the service interfaces. Next, the design
of the service framework (UML diagram in Figure 12 which
includes service component, facade pattern and facade inter-
face) are transformed into Java.

So far, the service implementation lacks of business
functionality, which will be added by transforming legacy
code into a service implementation. The GReQL query de-
scribed in Listing 6 (Section 5.5) is used to mark the HRM

3 IBM, Rational and WebSphere are trademarks of International
Business Machines Corporation.

class and all legacy software components it depends on. The
Java code-generator of GraBaJa is used to generate Java
code for all marked classes of the TGraph. This results in
Java classes implementing the business functionality of the
IResourceManagement service. These classes are connected
to the service framework. For this purpose, the facade class
must be edited manually to delegate service requests to the
HRM class. In addition, the facade class translates message
parameters into objects known by the HRM class.

For the IRole and IHoliday services, the classes
RoleManagerImpl, GanttDaysO� and their static dependen-
cies are migrated the same way.

Finally, the Web Service Wizard of RSA is used to gen-
erate fully functional Web Services. This wizard takes the
WSDL interface descriptions and the Java classes of the ser-
vice frameworks and the service implementations and cre-
ates a Java EE Web Service implementation for each of the
three services.

5.7 Service Deployment

The Web Services created in the last subsection are deployed
to the customer. This step concludes the migration.

6 Related Work

Whereas a plethora on publication on the development of
Service-Oriented Architectures exists, migrating legacy sys-
tems to SOA is only addressed in a few papers. The SMART
approach Smith (2007) deals with the planning of SOA mi-
gration projects, but does not provide concrete migration
or migration tool support. Correia et al (2007) and Fleurey
et al (2007) describe general approaches of model-driven
migration into a new technology not especially focused on
SOA. Matos (2008) describe a graph-based approach which
mentions SOA as possible target architecture. In contrast to
SOAMIG, this approach focuses on annotating functional-
ity in legacy code instead of directly identifying services
from source code. Marchetto and Ricca (2008) propose an
approach to migrate legacy systems into a SOA, step by step.
However, this approach does not focus on model-driven
techniques and uses wrapping as general migration strat-
egy. Another approach focusing on wrapping is described in
Gimnich (2007). Razavian et al (2010) describe a first idea
of an approach to enable pre-existing assets for SOAs. Up to
date, this approach lacks of tool support.

In contrast to these approaches, the work presented
here provides a coherent model-driven approach to soft-
ware migration by integrating an established SOA forward-
engineering approach with graph-based reengineering tech-
nologies. In addition, in SOAMIG software systems are

viewed at all levels of abstraction including business pro-
cesses and code.

7 Conclusion and Future Work

In this paper, we described a model-driven approach to mi-
grate legacy systems, extending IBM’s SOMA method. The
approach was applied to the migration of functionality of
GanttProject towards a Service-Oriented Architecture. This
example demonstrated the identification and specification of
services by analyzing legacy code, the identification of re-
sponsible functionality in legacy code and the transforma-
tion of legacy code into service implementations. As result,
fully functional Web Services were generated whose busi-
ness functionality where implemented by transforming le-
gacy code.

The example presented in this paper is a first technical
proof-of-concept of a general, model-driven migration strat-
egy. As part of the SOAMIG project, this first approach has
been leveraged to an own SOA migration process (Zillmann
et al 2011) addressing the migration of industrial-scaled le-
gacy systems to SOAs. The process is there applied to the
migration of a monolithic Java system towards a service-
oriented system. First results in SOAMIG indicate a general
suitability for the approach in industrial-scaled applications.
However, a detailed evaluation of the approach must be left
open in this paper, as the SOAMIG project is still running.

Up to now, the TGraph approach has turned out to be
a powerful tool for model-driven migration towards SOAs.
Except for needing to learn the querying and transforma-
tion languages (which is the case for other model-driven ap-
proaches, too), the approach has successfully been used to
support migration activities. In addition, using the TGraph
approach will enable the leveraging of several techniques
used in this proof of concept. E.g. the string-based service
identification technique (which fails when source code does
not follow some naming conventions) will be replaced by a
more powerful approach in future research.

Another issue is the application of the approach on sys-
tems that are not written in Java. In addition to plain archi-
tectural migrations as presented in this example, languages
(e.g. COBOL → Java) must be migrated in language mi-
gration projects, too. All TGraph techniques explained in
this paper are generic and will work for other languages if
metamodels and suitable extractors are provided. Currently,
a metamodel for COBOL is being developed and will enable
our approach to cope with legacy COBOL systems as soon
as it is finished.

In contrast to “transformation capabilities” of modern
tools like IBM’s Rational Software Architect or Borland’s
Together Architect, the TGraph approach offers an inte-
grated view on all models and allows to process all needed

queries on one repository. This enables the creation of a
single homogeneous workflow instead of handling different
types of results from different sources leading to compati-
bility issues.

As many companies are currently implementing or plan
to implement SOAs – all of them having legacy systems
already running, the approach presented in this paper has
much potential to support theses companies in migrating
their legacy systems towards SOAs. As a process of on-
going research, the approach will be tested and adapted in
industrial-scaled projects in future.

References

Arsanjani A, Ghosh S, Allam A, Abdollah T, Ganapathy S, Holley K
(2008) SOMA: A method for Developing Service-Oriented Solu-
tions. IBM Systems Journal 47(3):377–396

ATLAS Group (2009) ATL: User Guide. URL http://wiki.
eclipse.org/ATL/User_Guide

Baldauf A, Vika N (2009) Java-Faktenextraktor für GUPRO. Studien-
arbeit, University of Koblenz-Landau

Bildhauer D, Ebert J (2008) Querying Software Abstraction Graphs.
In: Proceedings of QTAPC 2008, pp 1–4

Bildhauer D, Schwarz H, Strauss S, Riediger V, Horn T (2009) grUML
– A UML based modelling language for TGraphs. Tech. rep. 15,
University of Koblenz-Landau

Borchers J (1997) Erfahrungen mit dem Einsatz einer Reengineer-
ing Factory in einem großen Umstellungsprojekt. HMD - Praxis
Wirtschaftsinform 194:77–94

Brodie ML, Stonebraker M (1995) Migrating Legacy Systems, Gate-
ways, Interfaces & The Incremental Approach. Morgan Kauf-
mann, San Francisco

Correia R, Matos C, Heckel R, El-Ramly M (2007) Architecture Mi-
gration Driven by Code Categorization. In: Flávio Oquendo (ed)
ECSA 2007, Springer, Berlin, LNCS, vol 4758, pp 115–122

Ebert J, Horn T ([To appear]) The GReTL Transformation Language.
Tech. rep., University of Koblenz-Landau

Ebert J, Winter A (2006) Using Metamodels in Service Interoperabil-
ity. In: STEP 2005, pp 147–156

Ebert J, Riediger V, Winter A (2008) Graph Technology in Reverse
Engineering: The TGraph Approach. In: Gimnich R, Kaiser U,
Quante J, Winter A (eds) WSR 2008, pp 67–81

Eclipse (2007) KM3. URL http://wiki.eclipse.org/KM3
Fleurey F, Breton E, Baudry B, Nicolas A, Jezequel JM (2007) Model-

driven Engineering for Software Migration in a Large Industrial
Context. In: Engels G, Opdyke B, Schmidt DC, Weil F (eds)
MODELS 2007, Springer, Berlin, vol 4735, pp 482–497

Fuhr A (2009) Model-driven Software Migration into a Service-
oriented Architecture. Bachelor thesis, Johannes-Gutenberg Uni-
versity, Mainz

Fuhr A, Horn T, Riediger V (2010a) Dynamic Analysis for Model Inte-
gration (Extended Abstract). Softwaretechnik-Trends 30(2):70–71

Fuhr A, Horn T, Winter A (2010b) Model-Driven Software Migration.
In: Engels G, Luckey M, Schäfer W (eds) Software Engineering
2010, GI, Bonn, LNI vol P-159, pp 69–80

GanttProject (2009) The GanttProject. URL http://
ganttproject.biz/

Gimnich R (2007) SOA Migration: Approaches and Experience.
Softwaretechnik-Trends 27(1):13–14

Gold N, Knight C, Mohan A, Munro M (2004) Understanding Service-
Oriented Software. IEEE Software 21(2):71–77

IBM Corporation (2009) Rational Software Architect for WebSphere
Software. URL http://www-01.ibm.com/software/
awdtools/swarchitect/websphere/

Kontogiannis K, Lewis GA, Smith DB, Litoiu M, Müller H, Schuster
S, Stroulia E (2007) The Landscape of Service-Oriented Systems:
A Research Perspective. In: SDSOA 2007, IEEE, pp 1–6

Kullbach B, Winter A (1998) Querying as an Enabling Technology in
Software Reengineering. In: CSMR 1998, IEEE, pp 42–50

Lewis GA, Smith DB (2008) SMART Tool Demonstration. In: CSMR
2008, IEEE, pp 332–334

Marchetto A, Ricca F (2008) Transforming a Java application in a
equivalent Web-services based application: Toward a Tool Sup-
ported Stepwise Approach. In: WSE 2008, IEEE, pp 27–36

Martin W (2009) SOA Check 2009: Status Quo und Trends
im Vergleich zum SOA Check 2008 und 2007. URL
http://www.soa-check.eu/download.php?cat=
30_Archiv&file=Download_Summary_SOA_Check_
2009.pdf

Matos C (2008) Service Extraction from Legacy Systems. In: Hutchi-
son D, Ehrig H, Heckel R, Kanade T, Kittler J (eds) Graph Trans-
formations, Springer, Heidelberg, vol 5214, pp 505–507

Nasr KA, Gross HG, van Deursen A (2010) Adopting and Evaluating
Service Oriented Architecture in Industry. In: Capilla R, Duenas
JC, Ferenc R (eds) CSMR 2010, IEEE, pp 11–20

OMG (2006) Meta Object Facility (MOF) 2.0: Core Specification –
formal/06-01-01

OMG (2007) Meta Object Facility (MOF) 2.0: Query/View/Transfor-
mation – Specification. Needham, MA

Rajlich VT, Bennett KH (2000) A Staged Model for the Software Life
Cycle. Computer 33(7):66–71

Razavian M, Nguyen DK, Lago P, van den Heuvel HJ (2010) The
SAPIENSA Approach for Service-enabling Pre-existing Legacy
Assets. In: Lewis G, Filippo R, Postina M, Steffens U, Winter A
(eds) SOAME 2010, pp 21–30

Smith DB (2007) Migration of Legacy Assets to Service-Oriented Ar-
chitecture Environments. In: CSMR 2007, IEEE, pp 174–175

Sneed HM, Wolf E, Heilmann H (2010) Softwaremigration in der
Praxis: Übertragung alter Softwaresysteme in eine moderne
Umgebung, 1st edn. dpunkt.Verl., Heidelberg

Thomas O, Leyking K, Scheid M (2010) Serviceorientierte Vorge-
hensmodelle: Überblick, Klassifikation und Vergleich. Informatik
Spektrum 33(4):363–379

Wahli U (2007) Building SOA Solutions Using the Rational SDP. IBM
Redbooks, IBM International Technical Support Organization

Winter A, Ziemann J (2007) Model-based Migration to Service-
oriented Architectures: A Project Outline. In: Sneed HM (ed)
CSMR 2007, Workshops, pp 107–110

Wu B, Lawless D, Bisbal J, Richardson R, Grimson J, Wade V,
O’Sullivan D (1997) The Butterfly Methodology: A Gateway-free
Approach for Migrating Legacy Information Systems. In: ICECCS
1997, IEEE, pp 200–205

Zillmann C, Gringel P, Winter A (2010) Iterative Zielarchitekturdefini-
tion in SOAMIG. Softwaretechnik-Trends 30(2):72–75

Zillmann C, Winter A, Fuhr A, Horn T, Riediger V, Herget A, Teppe
W, Theurer M, Erdmenger U, Kaiser U, Uhlig D, Zimmermann Y
(2011) The SOAMIG process model in industrial applications. In:
Kanellopoulos Y, Mens T, Winter A (eds) Proceedings of the 15th
European Conference on Software Maintenance and Reengineer-
ing (CSMR 2011), Oldenburg, IEEE

Zimmermann Y, Uhlig D, Kaiser U (2010) Tool- und Schnittstel-
lenarchitektur für eine SOA-Migration. Softwaretechnik-Trends
30(2):66–67

http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/KM3
http://ganttproject.biz/
http://ganttproject.biz/
http://www-01.ibm.com/software/awdtools/swarchitect/websphere/
http://www-01.ibm.com/software/awdtools/swarchitect/websphere/
http://www.soa-check.eu/download.php?cat=30_Archiv&file=Download_Summary_SOA_Check_2009.pdf
http://www.soa-check.eu/download.php?cat=30_Archiv&file=Download_Summary_SOA_Check_2009.pdf
http://www.soa-check.eu/download.php?cat=30_Archiv&file=Download_Summary_SOA_Check_2009.pdf

	Introduction
	SOMA
	Model-Driven Migration: The TGraph Approach
	Migration Tool Set Environment
	Merging SOMA and Model-Driven Approaches
	Related Work
	Conclusion and Future Work

