
Removing Energy Code Smells with Reengineering Services

Marion Gottschalk, Mirco Josefiok, Jan Jelschen, Andreas Winter

Department of Computer Science
Carl von Ossietzky University Oldenburg

Ammerländer Heerstr. 114-118
26129 Oldenburg

{gottschalk, josefiok, jelschen, winter}@se.uni-oldenburg.de

Abstract: Due to the increasing consumer adoption of mobile devices, like smart
phones and tablet PCs, saving energy is becoming more and more important. Users
desire more functionality and longer battery cycles. While modern mobile comput-
ing devices offer hardware optimized for low energy consumption, applications often
do not make proper use of energy-saving capabilities. This paper proposes detecting
and removing energy-wasteful code using software reengineering services, like code
analysis and restructuring, to optimize the energy consumption of mobile devices.

1 Introduction

The increasing energy consumption of information and communication technology is cre-
ating a rising demand for more energy-efficiency (cf. [SNP+09]). It is important to reduce
the energy consumption of mobile devices to preserve environmental resources and main-
tain an acceptable level of energy consumption caused by information and communication
technology. Also, users of devices want to be independent of current power sources, but
battery technology develops slower than the devices’ functionality [Wue11].

Many opportunities exist for reducing energy consumption on different levels, ranging
from hardware, operating system, machine code to application level [JGJ+12]. Various
research focuses on low-level software optimization; e. g. in improving machine code
[RJ97]. Another approach is to optimize hardware components for reducing energy con-
sumption of mobile devices (cf. [HB11, Kam11]). In software engineering, it is best
practice to find and remove errors (in this case: energy wasteful code) as early as possible
for optimizing energy consumption of applications on every level. The work presented in
this paper, focuses on possibilities for improving energy-efficiency on application level by
applying reengineering techniques to applications.

Viewing energy-efficiency on application level requires analyzing and interrogating code
structures. Improving energy consumption of applications necessitates changing and re-
working source code. Altering source code for improving software qualities is, viewed as
perfective maintenance, targeting energy consumption. In the field of software evolution,
various techniques have been developed during the last decades, which have been success-
fully applied to improve software systems. This paper aims at applying these techniques
for lowering energy consumption of applications by finding energy wasting patterns in the

janj
Bibliography Note
To appear in: Ursula Goltz, Marcus Magnor, Hans-Jürgen Appelrath, Herbert K. Matthies, Wolf-Tilo Balke, Lars Wolf, Eds., Beitragsband der 42. Jahrestagung der Gesellschaft für Informatik e.V. (GI), GI-Edition - Lecture Notes in Informatics (LNI), Bonner Köllen Verlag, 2012.

application’s source code. These patterns will be called energy code smells, analogously to
code smell detection in software maintenance. Software maintenance views code smells
as source code segments which have to be restructured for improving software quality
including maintainability [FBB+02].

Developing energy-efficient software is discussed in various papers. Höpfners work clas-
sifies software components by utilizing software complexity in O-notation [HB10]. They
also developed a component-based and model-driven framework, which estimates and op-
timizes the energy consumption of a software system. A vision for self-aware systems and
services was given by Kounev [Kou11]. They combined different areas e. g. software and
system engineering, cloud computing and Green IT, to reduce the costs of information and
communication technology. Next to analyzing hardware aspects, Pathak’s research focuses
on applications of mobile devices to detect energy code smells (here called energy bugs)
by tracing system calls [PJHM11]. Energy bugs are an equivalent to energy code smells,
but address a wider range. They describe not only energy wasteful code patterns on appli-
cation level, but also on operation system and hardware level of smartphones. Moreover,
Pathak et al. [PJHM11] aim to develop a systematic diagnosing framework for debugging
energy bugs. In contrast, the focus of this work lays on applying reengineering techniques
for removing energy code smells. Additional ideas for energy savings on application level
are presented in a vision paper, which focuses on a model-based energy testing approach
[WGRA11]. In it they try to predict energy consumption by using a combination of ab-
stract interpretation and run-time profiling. Another idea for reducing energy consumption
on software level is described by Siegmund [SRA10]. There, an energy-optimization fea-
ture library for storing reusable energy-saving functionalities is created. This library could
be used by developers without knowledge about energy-saving algorithms.

The remainder of this paper is organized as follows: Foundations of reengineering and
reverse engineering services and their applications for improving energy-efficiency are
presented in Section 2. An example refactoring and its capabilities for removing energy
code smells is given in Section 3. Section 4 adds further types of energy code smells, their
detection techniques and possible restructurings. Section 5 concludes this paper.

2 Software Reengineering

Software reengineering defines the process of altering software with the purpose of adding
functionality or correcting errors [CC90]. Figure 1 shows a basic reengineering reference
framework [EKRW02] introducing the main reengineering steps. Source code of applica-
tions is parsed and stored 1 into a central repository which provides efficient code analy-
sis. In software evolution, these repositories are usually found on graph structures which
conform to a metamodel (cf. e. g. [ERW08]). All analyses and restructurings, required dur-
ing reengineering, are performed on graphs. Explicitly defined metamodels ensure a clear,
precise and targeted definition and documentation of underlying data structures [JCD02].

Applying reverse engineering techniques, source code is transferred into higher abstrac-
tions, like control flow or call graphs 2 . Further reverse engineering provides querying
software systems, e. g to expose interrelationships between various software concepts. In

RepositoryCode Abstractionreverse engineering

restructuring

Metamodel

3

conforms to

parse

unparse

1

4
2

Figure 1: Model based Reengineering Reference Framework

addition to static analysis, dynamic analyses are possible. Dynamic analyses are used
to observe users activities and to learn from it, e. g. to shut down an application after a
specific time and hence to reduce energy consumption [CZvD+09] depending on users
behavior. Static analysis influences the restructuring process, marked by 3 , which aims
at converting existing code to more energy-efficient code. After restructuring, the graph is
unparsed to source code and played back to the systems source code base 4 .

The reengineering reference framework in Figure 1 is split into two areas: (i) The repos-
itory and facilities to parse, store, and unparse source code according to a specific meta-
model is described in Section 2.1. (ii) Section 2.2 introduces reverse-engineering and re-
structuring techniques to provide energy aware refactorings. Refactoring combines energy
code smell detection via reverse engineering, and restructuring of source code to improve
energy-efficiency.

2.1 Repository

Transferring source code of a given application into reasonable data structures is required
for performing advanced analyses efficiently. For optimizing the energy consumption of
applications for mobile devices, analyses must address the source code level. In this work
TGraphs [ERW08] are used to represent source code. TGraphs are directed graphs, whose
nodes and edges are typed, attributed, and ordered. TGraph-based tooling is provided
for supporting reverse engineering activities. All necessary functionalities for applying
TGraphs are embedded in JGraLab [Kah06]. The structure of TGraphs is defined by UML
class diagrams forming appropriate and purposeful metamodels. Classes define node types
and edge types are specified by associations.

Figure 2 shows an extract of a complete Java metamodel, which contains all concepts
needed to explain the examples in Section 3. This excerpt was extracted from the SOAMIG
Java metamodel [FWE+12] intending to support migrating Java programs. The complete

SOAMIG Java metamodel contains 86 node types and 67 edge types and provides a fine
grained representation of Java code, which is also required for analyzing energy-efficiency
on code level. The metamodel is accompanied by a parser 1 translating Java in an appro-
priate TGraph. Also generating source code from a given TGraph 2 , is realized with the
SOAMIG unparser tools developed by pro et con, Chemnitz [FWE+12].

Java programs are represented by Class-nodes and methods are represented by Method-
Type-nodes. To provide unambiguous links to source code, DataObjects associated to
various nodes, are used to store fully qualified names. Therefore, DataObjects connect
Classes to declared (by HasMethod-edges) and called methods (by CallsMethod-edges).
The SOAMIG parser also lifts method calls to class level, such that all methods (DataOb-
jects) are connected by HasMethod-edges to calling Classes.

MethodType

-name : string

Class

-fullyQualifiedName : string
-name : string

DataObject

-modifier : Modifier>
-name : string
-typeString : string

JavaType

ClassType

0..10..*

-returnType

0..*

0..1

-method

-callee

-caller

0..* 0..1

0..1

0..*

-type

0..1

-parameter

HasMethod

HasReturnType

DataObjectHasType

MethodHasParameter
CallsMethod

HasConstructor

Figure 2: Java Metamodel (extract) [FWE+12]

2.2 Software Evolution Services

Software evolution requires various activities and techniques to be applied to software
systems. These activities are viewed as services which allow for a flexible handling and
usage of services [JW11]. Refactoring is a widely applied reengineering service, which
aims at improving the internal structure of programs without altering its external behavior
[FBB+02]. According to [ISO06] refactoring is viewed as service providing perfective
maintenance, i. e. improving software quality without modifying the system’s behavior.
Improving software systems energy consumption by detecting and resolving energy code
smells also intends to keep the software behavior apparent to the user.

Applying refactorings for energy-efficiency provides detecting programming faults effect-
ing in dissipation of energy and restructuring the code, accordingly. Fowler defined more
than 70 refactorings in his book sorted in different categories [FBB+02]. In this paper a

similar list of refactorings on basis of energy-efficiency is intended. Energy code smells
were described by a motivation and a technique for detecting and restructuring them.

Already applying Fowler’s standard refactorings might influence energy consumption of
applications (cf. [Sho09]). Applying e. g. the in-line method refactoring which exchanges
a method call for its body [dSB10] reduces energy consumption by avoiding to create
additional activation records. On the contrary, this refactoring will probably reduce main-
tainability, since code clones might be created.

The remainder aims at presenting refactorings directly oriented towards energy-efficient
software development. To accomplish these refactoring on graphs, code smell detection is
mapped to graph queries using GReQL (Graph Repository Query Language). GReQL is
a declarative expression language for analyzing TGraphs, which can be applied to various
reverse engineering services e. g. calculating cross references, software metrics, program
slicing [KW99]. Figure 5 in Section 3 gives an example of a GReQL query, used to detect
binding resources too early.

3 Refactoring for Energy-Efficiency

To demonstrate an energy code smell and its detection and restructuring, an Android ex-
ample is presented in this section. Whilst the general approach in this work is generic,
this section provides an example using Android as a concrete platform. For different plat-
forms the mechanisms are the same, but the structure of the restructuring process has to
be adapted. The life cycle of an Android application is shown in Figure 3, represented as
a state machine based on the Android documentation [Goo12].

Android Activity Lifecycle

Application Lifetime

onCreate()
onDestroy()

Visible

onStart()
onStop()

Background
Foreground

onResume()
onPause()

Invisible
Killed

Terminate

finished, destroyed
by the system

user navigates away from
the activity

onSaveInstanceState()

device goes to sleep,
dialog appears

user returns
to activity

user navigates to the activity
 onRestoreInstanceState()

user navigates to
the activity/...

onRestart()

Apps with higher priority need memory

onSaveInstanceState()

Apps with
higher priority
need memory

Figure 3: Android State Machine

Android applications pass through various states during their lifetime. Considering these
states and their associated activities, allows for analyzing and optimizing the energy con-
sumption of applications. When an application is started, onCreate() is called when
entering ApplicationLifetime. Leaving ApplicationLifetime results in call-
ing onDestroy(). User directly interact with applications in Foreground. Entering
this state effects in calling onResume() and leaving calls onPause(). Applications
in Background still perform relevant calculations, but probably do not request all re-
sources required for user interaction. If neither the user interacts with an application nor
the application is running in background, but still is present e. g. for faster restart, it is in
Invisible. Usually, applications do not require access to further resources in this state.

If applications are in Background or Invisible, usually addressed resources like
GPS sensors, Wi-Fi etc., are not requested. When being up, they consume energy and
switching them of or deactivating them will save energy. Applications wasting energy
may switch on resources too early when starting the application in onCreate() and
do not switch them of when sent to sleep. A more economic behavior will be caused, if
resources are only switched on if needed. This behavior can be achieved, if these resources
are switched on only if being in Foreground.

1 p u b l i c c l a s s G p s P r i n t e x t e n d s A c t i v i t y
2 imp lemen t s O n C l i c k L i s t e n e r , L i s t e n e r ,
3 L o c a t i o n L i s t e n e r {
4 [. . .]
5 p u b l i c vo id o n C r e a t e (Bundle
6 s a v e d I n s t a n c e S t a t e) {
7 [. . .]
8 Loca t ionManager lm =(Loca t ionManager)
9 t h i s . g e t S y s t e m S e r v i c e (C o n t e x t .

10 LOCATION SERVICE) ;
11 i f (lm . g e t A l l P r o v i d e r s () . c o n t a i n s (
12 Loca t ionManager . GPS PROVIDER)) {
13 i f (lm . i s P r o v i d e r E n a b l e d (
14 Loca t ionManager . GPS PROVIDER)){
15 lm . a d d G p s S t a t u s L i s t e n e r (t h i s) ;
16 lm.requestLocationUpdates(LocationManager.
17 GPS PROVIDER, 1000, 0, this);
18 s t a t u s v i e w . s e t T e x t (
19 ”GPS s e r v i c e s t a r t e d ”) ;}
20 e l s e {
21 s t a t u s v i e w . s e t T e x t (
22 ” P l e a s e e n a b l e GPS”) ;
23 s a v e l o c a t i o n b u t t o n . s e t E n a b l e d (
24 f a l s e) ; }
25 [. . .] }
26 [. . .]
27 p u b l i c vo id onPause () {
28 [. . .]
29 lm . removeUpdates (t h i s) ;
30 [. . .] }
31 p u b l i c vo id onResume () {
32 [. . .]
33 lm . r e q u e s t L o c a t i o n U p d a t e s (
34 Loca t ionManager . GPS PROVIDER ,
35 1000 , 0 , t h i s) ;
36 [. . .] }
37 } Before Refactoring

1 p u b l i c c l a s s G p s P r i n t e x t e n d s A c t i v i t y
2 imp lemen t s O n C l i c k L i s t e n e r , L i s t e n e r ,
3 L o c a t i o n L i s t e n e r {
4 [. . .]
5 p u b l i c vo id o n C r e a t e (Bundle
6 s a v e d I n s t a n c e S t a t e) {
7 [. . .]
8 Loca t ionManager lm =(Loca t ionManager)
9 t h i s . g e t S y s t e m S e r v i c e (C o n t e x t .

10 LOCATION SERVICE) ;
11 i f (lm . g e t A l l P r o v i d e r s () . c o n t a i n s (
12 Loca t ionManager . GPS PROVIDER)) {
13 i f (lm . i s P r o v i d e r E n a b l e d (
14 Loca t ionManager . GPS PROVIDER)){
15 lm . a d d G p s S t a t u s L i s t e n e r (t h i s) ;
16 / / removed by r e f a c t o r i n g
17

18 s t a t u s v i e w . s e t T e x t (
19 ”GPS s e r v i c e s t a r t e d ”) ;}
20 e l s e {
21 s t a t u s v i e w . s e t T e x t (
22 ” P l e a s e e n a b l e GPS”) ;
23 s a v e l o c a t i o n b u t t o n . s e t E n a b l e d (
24 f a l s e) ; }
25 [. . .] }
26 [. . .]
27 p u b l i c vo id onPause () {
28 [. . .]
29 lm . removeUpdates (t h i s) ;
30 [. . .] }
31 p u b l i c vo id onResume () {
32 [. . .]
33 lm.requestLocationUpdates(
34 LocationManager.GPS PROVIDER,
35 1000, 0, this);
36 [. . .] }
37 } After Refactoring

Figure 4: Excerpt of Android App GPS Print.

Figure 4 shows part of the implementation of an open source Android application GPS
Print (Version 0.5.2) [Rob12], which displays geographic coordinates of the user’s current
position on the screen. The code on the left shows the original code before refactoring.
Starting GPS Print, immediately activates the GPS, by calling requestLocation-
Updates() (line 16). When setting up, the applications also verifies, if the GPS sensor
is enabled; if not the user is asked to enable it (line 22). If the user accesses GPS Print,
i. e. the application moves to Foreground, the GPS is initialized in line 33 by calling
requestLocationUpdates(), again. The GPS is released in onPause() by call-
ing removeUpdates() (line 29).

Following the state machine in Figure 3, initializing GPS Print, results in sequentially
accessing the states Application Lifetime, Visible, and Foreground result-
ing in calling requestLocationUpdates() twice (lines 16 and 33). Providing GPS
Print’s services only require to call requestLocationUpdates() in onResume().
Starting the GPS already in onCreate() wastes energy, due to early binding. Releasing
the GPS in onPause() (line 29) is timed correctly.

The reworked code is shown on the right of Figure 4. The energy code smell, marked red
and boldface, in line 16-17 (left) has to be deleted in the refactored code in line 16 (right).
Since initializing the GPS was already correctly realized in onResume() (lines 33-35)
no code removal is required, here. Otherwise, the green and italics marked snippet has to
be included.

Detecting and resolving energy code smells addressing binding resource too early is de-
scribed in the following sections. Another flaw in GPS Print’s implementation is caused
by not validating, if the GPS is active, before calling requestLocationUpdates()
in onResume(). This issue is not included in the binding resource too early refactoring.

3.1 Detection

Detecting energy code smells is the first step for removing them. For analyzing source
code, a simple GReQL evaluator is used. The query in Figure 5 calculates all classes call-
ing requestLocationUpdates() in onCreate(), directly or indirectly. Those
classes are candidates for restructuring, as switching on the GPS may be postponed to
activating onResume().

The FROM clause maps the variables onCreate, caller, actClass, superClass,
and callee to their according node types MethodeType, Class, and DataObject,
defined in the SOAMIG Java metamodel (cf. Figure 2). The WITH clause defines condi-
tions which must be fulfilled by the query result. This includes comparing attribute val-
ues like onCreate.name = "onCreate", testing for the name attribute of method
onCreate and path expressions like onCreate <--{frontend.java.DataOb-
jectHasType} <--{frontend.java.HasMethod} actClass ensuring the
definition of method onCreate in class actClass. In this case, a method with name
onCreate is searched. The class in which the method is located must inherit from
class android.app.Activity. The concrete resource examined is requestLoca-
tionUpdates. According to the Java metamodel onCreate is approached from two
sides. The REPORT clause defines the presentation of query results. Here, the names of a

Figure 5: Binding resources too early

calling class and the called method, which acquires the GPS sensor is reported back. The
result is presented in the right upper panel of Figure 5. ((GpsPrint, onCreate))
indicates that onCreate in GpsPrint probably defines an early binding of a GPS sen-
sor. A more comprehensive introduction to GReQL can be found at [ERW08].

3.2 Restructuring

Restructuring source code is the second step for removing energy code smells. For the
presented binding resource too early-example, the restructuring was carried out manu-
ally to show its feasibility. Future activities will address removing energy code smells
by utilizing graph transformation. It must, however, be noted that application behavior
must not be changed after restructuring. Therefore, user interaction is needed to decide
whether to accept a proposed restructuring or not, to keep the intended semantics. Dif-
ferent graph transformation languages like ATL (Atlas Transformation Language) [JK06],
QVT (Query View Transformation) [Kur08], GReTL (Graph Repository Transformation
Language) [HE11] and others exists. GReTL is the likely choice for this use case, because
it is part of the TGraph tool chain and has simple Java API besides GReQL used for graph
querying [HE11].

Figure 6 shows an excerpt of the TGraph, representing the code of the GPS example de-
picted in Figure 4 before the restructuring. The complete graph conforms the Java meta-
model (Figure 2) and contains 14880 nodes and 9034 edges.

The graph shows the GpsPrint-class (node v3488), which specializes the Activity-
class (node v8676). GpsPrint defines two methods onCreate() (node v3644) and
onResume() (node v6212). Following the CallsMethod-edges e5833 and e10467,
both methods call requestLocationUpdates() (node v3644).

The binding resource too early-refactoring requires to delete onCreate()’s call of re-
questLocationUpdates(). So, restructuring results in deleting the CallsMethod-
edges e5833 (marked red in figure 6) and adding another CallsMethod-edge connecting

v3488 frontend.java.Class

name = "GpsPrint"

v3643 frontend.java.DataObject

name = "onCreate"

v3644 frontend.java.MethodType

name = "onCreate"

v6211 frontend.java.DataObject

name = "onResume"

v6212 frontend.java.MethodType

name = "onResume"

v8676 frontend.java.DataObject

fullyQualifiedName = "android.app.Activity"
name = "Activity"

v8823 frontend.java.DataObject

name = "requestLocationUpdates"

e5563 : frontend.java.HasSuperClass

e5834 : frontend.java.ext.CallsMethod

e6654 : frontend.java.DataObjectHasType

e6655 : frontend.java.HasMethod

e10467 : frontend.java.ext.CallsMethod

e10572 : frontend.java.DataObjectHasType

e10573 : frontend.java.HasMethod

Figure 6: Excerpt of GpsPrint’s TGraph representation (abstract syntax tree).

onResume() to requestLocationUpdates(). The later was already correct in the
original system (cf. green marked e10467), so no further activites were required here. An
appropriate unparser provides transformation services to translate these graphs to Java.

By using the Android simulator [Goo12] and by deploying the reworked GPS Print on an
Android smartphone, is was shown that both programs behaved equally. So the refactoring
improved the energy consumption but did not alter the program semantics.

4 Energy Code Smells

The previous section demonstrated by example how a specific energy code smell can be
detected and removed by using refactoring. As a prerequisite, this approach requires the
identification and cataloging of energy code smells. This catalog introduces a list of gen-
eral energy code smells, which have to be adapted to be used on a specific platform. The
proposed energy code smells are cross-platform as the underlying concepts and mecha-
nisms stay the same on every platform.

Fowler [FBB+02] presents a catalog of code smells indicative of bad software design, de-
scribed as a list of generic patterns. This paper envisions a similar compilation of energy-
wasteful code patterns. Even though Fowler’s refactorings are not aimed at enhancing
energy-efficiency, some “classic” code smells also indicate energy-inefficient code, one
being dead code, for example.

Surveying literature, an initial set of energy code smells was identified. Binding resources
too early was the subject of Section 3. The energy code smell releasing resources too late
is basically the same: it describes program behavior wherein a resource is kept active, even
though the application is not active itself. Further energy code smells are: loop bug, dead
code, in-line method, moving too much data, immortality bug, and redundant storage of
data. They are described in the following, each with a brief statement of the subject matter
and motivation, explaining their energy inefficiency, and an account of the energy code
smell’s detection and removal.

4.1 Loop Bug

Loop bugs [PHZ11] represent a program behavior wherein an application is repeating the
same activity over and over again, without achieving the intended results.

A loop bug might occur due to external events, e. g. crashing of a server. As a result the
application is trying to contact, the server, causing in repeatedly polling without receiving
an answer, while using up energy for data connection. Programming mistakes can, also
cause loop bugs, e. g. if an application is running in an (infinite) loop or descents into
recursion, unnecessary enabling a device in every iteration, which is not actually needed.
The loop might be running unnoticed by the user in background and drain the battery over
time.

Detection
Detecting loop bugs requires to identify loops which always return to the same, initial
system state, using energy-consuming components in the process. Exception handling in
loops may be indicative of loop bugs, e. g. when a connection timeout exception is caught
to retry and contact a remote server again.

Restructuring
One way to deal with loop bugs would be to introduce a maximum number of iterations,
e. g. trying to poll a server three times before giving up (and possibly report the problem
to the user).

4.2 Dead code

Dead Code [CGKO97] is source code which is never used, but needs to be loaded into
memory and thereby consumes energy.

Some forms of dead code can be detected and removed as a compiler-level optimization. A
variant of dead code is code which is invoked, but whose results are immediately discarded.
These more “intricate” cases of dead code are easier analyzed and detected on source code
level.

Detection
This energy code smell can, in the simplest case, be recognized by locating methods which
are never actually called. Static code analysis is capable for detecting e. g. simple “left-
overs” from previous maintenance activities like unused classes. More involved analysis is
required to detect methods which are called under conditions which never arise at runtime,

or whose results are never actually used. Here, dynamic code analysis might help, keeping
in mind that these analyses never guarantee a complete coverage.

Restructuring
If dead code is detected, it can simply be discarded completely.

4.3 In-line method

Da Silva and Brisolara [dSB10] have shown that method in-lining – replacing a method
call with the actual body of the called method – may save energy, as the computational
overhead of a method call is avoided.

In-line method is the opposite of extract method [FBB+02] defined as a technique to re-
duce duplicated code, and increase code maintainability. Applying this refactoring may
therefore decrease the code’s maintainability and readability.

Detection
One approach to find method calls whose in-lining would have a high impact on energy-
efficiency uses dynamic analysis, i. e. profiling the running application and record how
often each method call occurs. This information can be used to select candidates for
refactoring by setting a threshold of the number of invocations. Each method call in the
code exceeding this threshold should be in-lined. In a similar vein, short methods, only
containing a few lines of source code are reasonable candidates for further In-line method-
refactorings.

Restructuring
Candidate method calls are replaced with the body of the called method, replacing the
method’s parameters appropriately in the process.

4.4 Moving too much data

Moving too much data [HB10] represents unnecessary communication between processor
and memory. If multiple parts of applications or different applications access the same
set of data, it is usually called and stored several times, for example in database systems.
Therefore, the data is written and pulled back from memory again and again.

Höpfner and Bunse show that moving data can be more expensive than recalculating it. In
environments where much data is processed, the amount of energy consumed by storage
units is higher than the amount consumed by CPUs [BH07]. In addition, if even two
separate memories need the same data which was calculated before, it is not useful to
store the data in lower level memory between the two calls. In most cases it is better to
spend more instructions or to use higher level caches. For larger sets of data it is even
possible to prefer cloud based storage solutions over local ones.

Detection
Methods loading data which have been saved previously by another method have to be
detected, e. g. by querying for corresponding read and write methods.

Restructuring
To reduce data movement, refactorings similar to In-line method (Section 4.3) can be used:

in this case, methods reading data need to be replaced by the method calculating the data
that was to be retrieved.

4.5 Immortality Bug

The Immortality Bug [PHZ11] describes an application’s respawning after explicitly being
killed by the user.

Two different cases can occur: an application might spawn another instance of itself when
receiving the kill-signal from the operating system, or another application is monitoring it,
and restarts it immediately after it was killed.

Detection
The self-respawning of applications when being killed can be detected in a similar manner
as Loop Bugs (Section 4.1): instead of catching, for example, a server response timeout,
self-respawning applications handle the notification of being killed by “retrying” indef-
initely. Detecting applications being restarted by other processes seems only feasible if
source code of all applications involved, is available for co-analysis. Furthermore, dy-
namic analysis on system level might also indicate repeatedly starting and closing appli-
cations.

Restructuring
The code causing the spawning of another instance when being killed needs to be removed.
Alternatively, refactoring could introduce persisting the number of previous restarts and
have it compared to an upper bound of consecutive restarts, after which the “restart loop”
is broken.

4.6 Redundant storage of data

Redundant storage of data [TDD+04] is a program behavior wherein different methods
of an application store the same data in memory, instead of sharing it. Reducing this
additional memory access decreases energy consumption.

Detection
To detect redundant storage of data, data-storing methods have to be identified, and com-
pared to each other, to find those which store same data.

Restructuring
Unnecessary data accesses must be reduced and then the methods which store the same
data can be combined. For this, the program behavior must be known.

4.7 Using expensive resources

Using expensive resources [SH11] represents possibilities to swap energy-expensive re-
sources against “cheaper” alternatives, e. g. approximating global positioning data using
WiFi (with access points whose position is known), instead of GPS. A prerequisite for this
optimization is, of course, knowing the energy consumption of different resources for a
given device.

Such a refactoring might impact the service quality of an application, like the higher accu-
racy of GPS versus approximating position data using WiFi, and should therefore only be
applied if this higher service quality is not actually required. Similarly, resources not op-
erable in certain situations, like UMTS or GPS in long railway tunnels might be switched
of.

Detection
Usage of resource like GPS can be detected with appropriate queries. If an energy-
expensive resource is found, it must be verified whether it would be possible to replace
it with another, cheaper resource. For some applications, e. g. car navigation, WiFi po-
sition information might suffice (if available), while pedestrian navigation might require
the finer-grained position information of GPS. Further detection might require additional
information of the current surrounding of a mobile device.

Restructuring
The interface of the original resource can be implemented by a wrapper, using the cheaper,
alternative resource or make use of information about the surrounding physical environ-
ment. Provided with such an implementation, the refactoring only needs to replace the
original resource with the interface-compatible alternative.

5 Conclusion and further Research Opportunities

The paper motivated the application of software reengineering services for improving the
energy consumption of applications. The binding resource too early-refactoring was de-
fined and applied as one example for reengineering services, facilitating more efficient
energy consumption. Applying the reengineering reference framework also showed, that
existing tool support from software maintenance seems worthwhile for the development
of energy-aware software. Further energy code smells and corresponding restructurings
were sketched to motivate the development of a catalog of energy refactorings.

In summary, detecting energy code smells was shown to be possible via GreQL. In this
paper, the actual restructuring was done manually. Besides the expansion of the catalog
of energy refactorings, further research will address the extension and adaptation of the
TGraph-based analysis and restructuring framework, so that the restructuring can be auto-
mated. Further validation of the presented techniques and an estimation of possible energy
savings is still required to show advantages and limitations of the presented approach. In
addition, the benefit of the specific refactorings has to be demonstrated. To make a quanti-
tative statement a measurement platform with per application measurement capabilities is
needed.

Preliminary results and related work in the area indicate that substantial energy-efficiency
optimizations are possible on source code level, whose application will be eased by a
structured, refactoring-based approach, and made readily available in a catalog of energy
code smells. This approach can also be widen to applications on servers and desktop-pcs.
The described energy code smells can be adapted to different areas, only the terminology
will be changed but the process will be the same, like presented in this work.

References

[BH07] L. A. Barroso and U. Hölzle. The case for Energy-Proportional Computing. IEEE
Computer Society, (December):33–37, 2007.

[CC90] E. J. Chikofsky and J. H. Cross. Reverse Engineering and Design Recovery: A Taxon-
omy. Software, IEEE, 7(1), 1990.

[CGKO97] Y. Chen, E. R. Ganser, and E. Koutso Os. A C++ Data Model Supporting Reachabil-
ity Analysis and Dead Code Detection. In Proc. 6th European Software Engineering
Conference and 5th ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, April 1997.

[CZvD+09] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A System-
atic Survey of Program Comprehension through Dynamic Analysis. Software Engi-
neering, IEEE Transactions on, 35(5):684–702, 2009.

[dSB10] W. G. P. da Silva and L. Brisolara. Evaluation of the Impact of Code Refactoring
on Embedded Software Efficiency. In 1. Workshop de Sistemas Embarcados, pages
145–150, 2010.

[EKRW02] J. Ebert, B. Kullbach, V. Riediger, and A. Winter. GUPPRO. Generic Understanding
of Programs - An Overview. Electronic Notes in Theoretical Computer Science, 72(2),
2002.

[ERW08] J. Ebert, V. Riediger, and A. Winter. Graph Technology in Reverse Engineering, The
TGraph Approach. In R. Gimnich, U. Kaiser, J. Quante, and A. Winter, editors, 10th
Workshop Software Reengineering (WSR 2008), pages 67–81, Bonn, 2008. GI.

[FBB+02] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the
Design of Existing Code. Addison Wesley, 2002.

[FWE+12] A. Fuhr, A. Winter, U. Erdmenger, T. Horn, U. Kaiser, V. Riediger, and W. Teppe.
chapter Model-Driven Software Migration - Process Model, Tool Support and Appli-
cation. IGI Global, Hershey, PA, 2012. To appear.

[Goo12] Google, Inc. Android Developers. http://developer.android.com, 2012.
Last visited on 21st March 2012.

[HB10] H. Höpfner and C. Bunse. Towards an Energy-Consumption based Complexity Clas-
sification for Resource Substitution Strategies. In W. Balke and C. Lofi, editors, Pro-
ceedings of the 22. Workshop on Foundations of Databases (Grundlagen von Daten-
banken), Bad Helmstedt, Germany, May 2010.

[HB11] H. Höpfner and C. Bunse. Energy Awareness Needs a Rethinking in Software De-
velopment. In ICSOFT 2011 - Proceedings of the 6th International Conference on
Software and Data Technologies, Seville, Spain, 2011. SciTePress.

[HE11] T. Horn and J. Ebert. The GReTL Transformation Language. In Theory and Practice
of Model Transformations - 4th International Conference, ICMT 2011, pages 183–197,
Zurich, Switzerland, June 2011. Springer Berlin / Heidelberg.

[ISO06] ISO. International Standards Organization. Software Engineering - Software Life Cycle
Processes - Maintenance, (ISO/IEC 14764:2006), March 2006.

[JCD02] D. Jin, J. R. Cordy, and T. R. Dean. Where’s the Schema? A Taxonomy of Patterns for
Software Exchange. In IWPC, pages 65–74, 2002.

[JGJ+12] J. Jelschen, M. Gottschalk, M. Josefiok, C. Pitu, and A. Winter. Towards Applying
Reengineering Services to Energy-Efficient Applications. In R. Ferenc, T. Mens, and
A. Cleve, editors, Proceedings of the 16th Conference on Software Maintenance and
Reengineering, 2012.

[JK06] F. Jouault and I. Kurtev. Transforming Models with ATL. In Lecture Notes in Computer
Science, number 3844, pages 128 – 138. Springer, 2006.

[JW11] J. Jelschen and A. Winter. Towards a Catalogue of Software Evolution Services. In
Softwaretechnik Trends, Bonn, May 2011. Gesellschaft für Informatik.

[Kah06] S. Kahle. JGraLab: Konzeption, Entwurf und Implementierung einer Java-
Klassenbibliothek für TGraphen. Master’s thesis, University Koblenz-Landau, 2006.

[Kam11] T. Kaminski. Intel erfindet den Transistor mit einer 3D-Struktur neu. May 2011.

[Kou11] S. Kounev. Self-Aware Software and Systems Engineering: A Vision and Research
Roadmap. In GI Softwaretechnik-Trends, 31(4), November 2011, ISSN 0720-8928,
Karlsruhe, Germany, 2011.

[Kur08] I. Kurtev. State of the Art of QVT: A Model Transformation Language Standard. In
Lecture Notes in Computer Science, number 5088, pages 377–393. Springer, 2008.

[KW99] B. Kullbach and A. Winter. Querying as an Enabling Technology in Software Reengi-
neering. In C. Verhoef and P. Nesi, editors, Proceedings of the 3rd Euromicro Confer-
ence on Software Maintenance and Reengineering, pages 42–50, Los Alamitos, 1999.
IEEE Computer Society.

[PHZ11] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping Energy Debugging on Smartphones:
A First Look at Energy Bugs in Mobile Devices. In Hotnets ’11, Cambridge, MA,
USA, November 2011.

[PJHM11] A. Pathak, A. Jindal, Y. C. Hu, and S. Midkiff. Characterizing and Detection No-Sleep
Energy Bugs in Smartphone Apps. Technical report, 2011.

[RJ97] K. Roy and M. C. Johnson. Software Design for Low Power. In W. Nebel and J. P.
Mermet, editors, Low power design in deep submicron electronics, pages 443–460.
Springer, Berlin, 1997.

[Rob12] Robotmafia.org. GPS Print. https://play.google.com/store/apps/
details?id=com.tyfon.gpsprint&hl=en, 2012. Last visited on 30st March
2012.

[SH11] M. Schirmer and H. Höpfner. SenST*: Approaches for Reducing the Energy Con-
sumption of Smartphone-Based Context Recognition. In Modeling and Using Context
- 7th International and Interdisciplinary Conference, pages 250–263, Karlsruhe, Ger-
many, 2011. Springer.

[Sho09] C. Shore. Developing Power-Efficient Software Systems on ARM Platforms. Technol-
ogy In-Depth, pages 48–53, 2009.

[SNP+09] L. Stobbe, N. F. Nissen, M. Proske, A. Middendorf, B. Schlomann, M. Friedewald,
P. Georgieff, and T. Leimbach. Abschätzung des Energiebedarfs der weiteren En-
twicklung der Informationsgesellschaft. Technical report, Berlin, 2009.

[SRA10] N. Siegmund, M. Rosenmueller, and S. Apel. Automating energy optimization with
features. In Proceedings of International Workshop on Feature-oriented Software De-
velopment (FOSD), pages 2–9. ACM, 2010.

[TDD+04] M. Temmerman, E. G. Daylight, S. Demeyer, F. Catthoor, and T. Dhaene. Towards
Energy-Conscious Class Transformations for Data-Dominant Applications: A Case
Study. In K. de Bosschere, editor, Proceedings PA3CT’03 (3rd PA3CT Symposium),
2004.

[WGRA11] C. Wilke, S. Götz, J. Reimann, and U. Assmann. Vision Paper: Towards Model-Based
Energy Testing. In Proceedings of 14th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2011), 2011.

[Wue11] K. Wuest. Microprozessortechnik. In Microprozessortechnik, pages 237–248.
Vieweg+Teubner Verlag, Wiesbaden, April 2011.

