
Proceedings of the 28th EnviroInfo 2014 Conference, Oldenburg, Germany September 10-12, 2014

Saving Energy on Mobile Devices by Refactoring

Marion Gottschalk1, Jan Jelschen2, Andreas Winter2

Abstract

Energy-efficiency is an import topic in information and communication technology and has to be

considered for mobile devices, in particular. On the one hand, the environment should be protected

by consuming less energy. On the other hand, users are also interested in more functionality of

their mobile devices on hardware and software side, and at the same time, longer battery durations

are expected. This paper shows an approach to save energy on the application level on mobile

devices. This approach includes the definition, detection, and restructuring of energy-inefficient

code parts. Energy savings are validated by different energy measurement techniques.

1. Motivation

Mobile devices and the mobile communication network are big energy consumer of information

and communication technologies (ICT) in Germany [1] and their rising sales volume in the last

years shows their significance in ICT [2]. Meanwhile, the energy consumption of mobile devices

and the mobile network amounts to 12.9 PJ in Germany per year. This corresponds to the complete

energy production of the atomic power plant Emsland [3] within four months. This amount shows

that energy saving for mobile devices is also important to reduce the energy consumption in

Germany, and hence, to protect the environment. In addition, the scope of mobile devices is

increasing, due to new requirements, more powerful processors, and a broad variety of different

apps provided on mobile devices. All these functionalities have an influence on battery duration

and battery lifetime. This paper focuses on supporting developers to save energy on application

level and does not consider the OS, e.g. selecting the most energy efficient network connection.

Therefore, an approach for saving energy on mobile devices on application level is described.

Software evolution techniques, such as reverse engineering and reengineering, are used. Reverse

engineering describes approaches to create abstract views of software systems to enable efficient

code analyses. Software reengineering is a process to improve the software quality by

reconstituting it in a new form without changing its functionality [4]. In this work, the energy

consumption of existing Android apps [5] is changed by code analysis and transformation, which

do not change apps’ behavior. The process of code analysis and transformation is called refactoring

in this work. The approach starts with defining energy-inefficient code parts called energy code

smells. For these, a reengineering process [6] is described and validated by different, software-

based energy measurement techniques [7]. Aim of this work is the collection and validation of

energy code smells and corresponding refactorings which are presented in form of a catalog.

This paper is structured as follows: Firstly, the reengineering and the evaluation process to show

energy savings by refactoring is described in Section 2. Secondly, in Section 3 validated energy

code smells are described, in which the energy code smell Data Transfer (c.f. Section 3.1) and its

restructuring are presented in more detail. Thirdly, measurement results of some energy code

smells are summarized in Section 4. Finally, Section 5 concludes this paper with a summary and an

outlook.

1
 OFFIS e.V., 26121 Oldenburg, Germany, gottschalk@offis.de, Division Energy, Architecture Engineering and Interoperability

2
 University of Oldenburg, 26121 Oldenburg, Germany, {jelschen, winter}@se.uni-oldenburg.de, Department of Computing

Science, Software Engineering

Saving Energy on Mobile Devices by Refactoring

2. Basic Techniques

Energy saving on mobile devices by refactoring needs two fundamental steps. Firstly, a

reengineering process must be defined to perform the bad smell detection and the code

restructuring. Secondly, the benefit (energy saving) for the refactoring must be shown by an

evaluation which includes measurement techniques, checked smartphones and apps, and settings

during the measurements.

2.1. Reengineering Process

The process to generate more energy-efficient code is depicted in Figure 1. It describes the

platform-independent process from an energy-inefficient app to a more efficient one. The process

starts with reverse engineering for the Java code of an app. In Step 1, the code is parsed into an

abstract representation which conforms to a Java meta-model [8] and it is stored into a central

repository to execute efficient analyzes. Android apps are parsed according the Java meta-

model [5]. In the Steps 2 and 3, the

refactoring by analyzing and

restructuring the abstracted code is

done and saved. The analysis is done

by static code analysis which has

proved itself in software evolution,

to identify energy code smells.

Restructure changes the abstract

view without changing the intended

functionality. In the last Step 4, the

abstract view is parsed back into

code (Android app) which can be

compiled and executed.

The abstract view of apps’ code is

provided by TGraphs which can represent each programming language by nodes and edges.

TGraphs are directed graphs, whose nodes and edges are typed, attributed, and ordered [9]. Thanks

to the SOAMIG project [8], the tooling for the Java programming language is available and used

for this work. This abstract view allows performing efficient analyses and transformations by static

analyses and graph transformations. Therefore, GReQL (Graph Repository Querying Language)

[8] and the JGraLab API [10] are used. GReQL can be used to extract static information and

dependencies in source code represented as TGraphs. The JGraLab API implements the GReQL

approach and provides means for graph manipulation. An example of the analysis and restructuring

by JGraLab is shown in Section 3 for explaining the reengineering process in more detail.

2.2. Evaluation Process

After the refactoring, the energy improvement of refactored apps must be checked. Therefore, an

evaluation process is created which includes the usage of different software-based energy

measurement techniques, hard- and software, and the measurement procedure involving the

duration and the mobile devices’ settings during the energy measurement.

2.2.1. Energy Measurement Techniques. The approach uses three software-based energy

measurement techniques: file-based, delta-B, and energy profiles [7]. These techniques are realized

by the Android app Andromedar [11] which is used for validating the energy consumption of apps

before and after refactoring. The delta-B technique calculates the energy consumption through the

battery level, which can be read out with the Android BatteryManager API [12]. If the battery level

changes, Andromedar calculates a new value of the current energy consumption by using the

Figure 1: Reengineering Process [6]

Proceedings of the 28th EnviroInfo 2014 Conference, Oldenburg, Germany September 10-12, 2014

BatteryManager API. The system-file technique uses an internal system file which is implemented

by some mobile device vendors, only. It stores information about the current battery discharge and

battery voltage. This information is used by Andromedar to calculate the energy consumption.

Energy Profiling uses an internal XML file, which is created by the vendor or someone who has

detailed information about the mobile devices’ hardware components. This XML file gives

information on the average power consumption of each hardware component built into the mobile

device. In this case, the energy consumption is not measured directly, but the active time of all

hardware components, i.e. Andromedar measures the time between switching components on and

off. After measuring, the active time of each component in each particular state is multiplied with

its average power, from which the energy consumption results.

2.2.2. Hardware. For validation, two mobile devices are used: aHTC One X [13] and a Samsung

Galaxy S4 [14]. The HTC One X is used for the validation of all energy refactorings and the

Samsung Galaxy S4 is only used for validating the Backlight energy refactoring (cf. Section 3.2).

Both devices use the Android OS which is necessary to apply the reengineering process with the

Java meta-model and the energy measurements by Andromedar. The HTC One X uses Android

4.1.1 with HTC Sense 4+. It has a 4.7 inch HD, super LCD 2 screen with a resolution of 1280x720

pixels. The Samsung Galaxy S4 uses Android 4.2.2 with TouchWiz. The screen is a 5 inch Full HD

Super AMOLED screen with a resolution of 1920x1080 pixels. This information is listed to give an

overview about considered components during the energy measurements in Section 4.

2.2.3. Applications. For validation, two Android apps are chosen: GpsPrint [15] and

TreeGenerator. GpsPrint is a free Android app with about 1642 LOC. It locates the position of a

mobile device and seeks via Internet for an address. TreeGenerator is a self-written Android app for

this validation with about 345 LOC. Each second it displays another name of a tree, its type, and a

picture of it. Both apps display advertisements at the bottom of the screen. GpsPrint is used for the

energy refactorings: Third-Party Advertisement and Binding Resources Too Early (paragraph on

Section 3). TreeGenerator is used for the refactorings: Third-Party Advertisement, Statement

Change, Backlight and Data Transfer (paragraph on Section 3).

2.2.4. Measurement Procedure. The evaluation process for each energy refactoring is the same;

hence, a short overview about the process is given. For each energy refactoring, ten energy

measurements are done before and after the refactoring and an average is created to compare the

results. Each energy measurement has a duration of two hours. To guarantee correct, comparable,

and reproducible results, the mobile devices’ settings should be the same during the different

energy measurements. This includes screen, notification, application, wireless and network, and

gesture settings.

Screen: The screen is permanently on but on lowest brightness because apps only run when the

screen is active, and the lowest brightness is chosen to reduce and to normalize the energy

consumption of the screen. Auto rotation of the screen is turned off, because the rotation sometimes

interrupts the GPS connection. This was observed by first measurements with GpsPrint (2.2.3).

Notification: Automatic notifications are set off, such as email client, play store, calendar, etc.

This is necessary to make comparable energy measurements which are not interrupted by

individual notifications, such as emails or updates.

Application: All background apps, such as HTC Services, Google Services, 7digital, etc. are set

off, so that only the tested app is running and energy consumption is not affected by further apps.

Also, the power saver of the OS is turned off.

Wireless and network: The modules mobile data, blue-tooth, GPS, NFC, and Wi-Fi are set to off,

if they are not needed.

Saving Energy on Mobile Devices by Refactoring

Gesture: Additional gestures, such as the three finger gestures, are turned off to reduce the error

rate when energy measurements are started, e.g. unwanted touches on the screen which makes

repeatable measurements difficult, so the user interface is not viewed.

Miscellaneous: The HTC does not have a SIM card installed, with the result that the HTC seeks

for it, permanently. Additional measurements checks the influence of the missing SIM card, and it

shows that the influence is very small [16]. Also, no further apps are installed apart from the

standard apps, the tested app, and Andromedar.

3. Energy Refactoring Catalog

The energy refactoring catalog includes a list of five energy code smells which are validated:

Third-Party Advertising, Binding Resources Too Early, Statement Change, Backlight, and Data

Transfer [16]. This paper describes one of the energy code smells in more detail, Data Transfer,

and introduces further five which are described in more detail in [16] or [19]. The aim is to

demonstrate possible areas of wasting energy by bad programming and strategies to improve apps’

energy behavior.

The detailed description of Data Transfer follows a template which is developed in [16]. The

template includes: a name, a definition, a motivation, constraints, an example, an analysis, a

restructuring, and an evaluation. Thus, a consistent presentation of the energy code smells is

ensured. A part of the template is derived from the description of code smells by Fowler et al. [17].

3.1. Energy Code Smell: Data Transfer

Description: Data Transfer refers to loading data from a server via network instead of reading pre-

fetched data from the app’s storage [18].

Motivation: Many apps use data, such as images, videos, and sound effects. Programmers can

decide whether these data are stored on the apps’ storage or on an external server. The

measurements by [18] show that the usage of an external server needs more energy than the local

one. Additionally, Android apps offer a further possibility to access data. Data are stored on an

external server and are loaded into apps’ cache during their runtime. While the cache is not cleared,

the data do not have to be loaded again from the server. Hence, three variants exist: (1) data are

loaded from server (every time), (2) data are stored on the mobile device, and (3) data are stored in

the cache. These variants are considered in the following description and evaluation.

Constraints: The variants (2) and (3) request storage on the mobile devices while an app is

installed. If memory size of the data is big, users will get a problem when installing many data-

intensive apps. Variant (1) needs less storage on mobile devices, but requests high data traffic to

load all data each time. If the data access of apps should be changed, many changes must be done.

At first, the data must be collected to upload them to a server (for variant (1) and (3)) or to

download and integrate them into an app (for variant (2)). For all variants, different Android APIs

exist which must be known to detect this energy code smell.

Example: Example source code (TreeGenerator) showing the “Data Transfer” bad smell is

demonstrated in Figure 2. It shows on the left side the code for loading data from server (1), and on

the right side data is read from the memory card (2). The code on the left side loads data from the

server in line 8 and 11 by the method image(url, applicationCache, deviceCache,

size, alternativeFile). If the Boolean applicationCache on the left side is

changed, the usage of app’s cache will be possible (3). The code on the right side calls the image

files from the storage in line 8 and 12 by the method getDrawable(file) which contains the

path to the image on the storage.

Proceedings of the 28th EnviroInfo 2014 Conference, Oldenburg, Germany September 10-12, 2014

Figure 2: Example for Data Transfer [16]

Analysis: Apps must be detected which use the image method of the AQuery API to know

which part within the app must be changed. Therefore, a GReQL query is used. The query seeks for

a class (AQuery) and an access (image()) vertex within the TGraph which is created by parsing

the code from Figure 2 (left). These vertices must be a part of the same block and must be called in

a specific order.

Figure 3: Query for DataTransfer [16]

Figure 3 shows the GReQL query (Section 2) which is used to detect this energy code smell. The

query consists of three parts: from, with, and report. In the from part vertices and edges are

defined which are needed to detect the energy code smell, e.g. the vertex cache of the type

Literal must exist to detect the attribute applicationCache of the image method (Figure

2). The second part is the with part, which includes the content of the query. Firstly, the known

values of the vertices are checked (in line 2: cache.value = “false” and

aquery.name = “AQuery”). Secondly, the link between these vertices is checked by cache

<--{frontend.java.HasOperand} ... block. This means, that the vertex cache is

an operand of a further vertex which is connected via further edges with the block vertex. The

last part is the report part which defines the vertex which will be returned.

Restructuring: If the query detects such a code part, the restructuring will start. Due to the

complexity (saving images locally, calling each image) of the changes, this restructuring must be

done manually from variant (1) to (2). The restructuring from variant (1) to (3) can be done

automatically with the JGraLab API. Therefore, nearly the same query can be used, only a further

vertex for the Boolean applicationCache must be added which must be detected and

changed to true.

Saving Energy on Mobile Devices by Refactoring

Evaluation: Figure 4 shows the energy consumption of the TreeGenerator app in all variants.

Variant (1) (data are loaded from server) consumes the most energy with 4232 J in two hours. The

difference to variant (2) (data is stored locally) with a switched-off Wi-Fi module amounts 368 J. If

the Wi-Fi module is not switched-off, the difference is very small which shows that the data traffic

does not have a real influence on the switched on Wi-Fi modul. Variant (3) (data is stored in app’s

cache) also saves energy which amounts 224 J in two hours. The results of the other two energy

measurement techniques (delta-B and energy profile) are summarized in Figure 5. They show the

same trend such as the file-based technique.

Figure 4: File-based Measurement [16]

3.2. Further Energy Code Smells

The following energy code smells are explained briefly to give an overview of further areas for

saving energy. A more detailed descriptions of the first four can be found in [16]. However, their

energy savings are summarized in Section 4. The last energy code smell is described in [19].

Third-Party Advertisings are integrated code parts within apps which display advertisements

during operation. Thereby, advertisements do not have an influence on apps’ functionality, but

might consume energy through 3G or Wi-Fi connection [20]. If advertisements are deleted,

programmers might have to change their business model, but the main functionality remains

unaffected.

Binding Resources Too Early refers to hardware components, such as Wi-Fi and GPS, which are

switched on by apps at an early stage when they are not yet needed by the app or user [21].

Statement Change describes alternative programming statements, such as if and switch, which

can be substituted with each other, because they have the same functionality, but potential different

energy consumptions [22].

Backlight refers to the background color of an app. For different screen technologies (e.g. Super

LCD and Super AMOLED) the energy consumption can vary for different background colors [23].

Selecting an appropriate background color may decrease the energy consumption.

Cloud Computing describes the usage of external services via Internet to execute high energy

consuming apps instead of running them on mobile devices. Thus, energy is saved on mobile

devices, and it allows further energy optimizations on servers [19].

Proceedings of the 28th EnviroInfo 2014 Conference, Oldenburg, Germany September 10-12, 2014

4. Energy Measurement

For the most described energy code smells in Section 3, the three energy measurement techniques

(Section 2.2) are applied. The energy code smell Cloud Computing is described in another work

[19], hence the results are shown there. In Figure 5, the measurement results with and without

energy code smells are depicted. In addition, the difference between the energy consumption before

and after refactoring is shown. If the difference is negative, the energy consumption rises after

refactoring, i.e. the inverse of the energy code smell will save energy. The file-based measurement

technique is not available for the Samsung Galaxy S4.

Figure 5: Energy Measurement Results [16]

As you can see, the energy profiling has one major problem, which was detected during the

validation. After a firmware update, the internal XML files used for realizing the energy profiling

was also updated and the measurement results differ from the other two techniques [16]. This

indicates that the vendor provides one internal XML file for the latest mobile devices, which are

transferred to all devices which get the new firmware; independent on the build-in hardware (e.g.

the new internal XML file has more processor states for the same mobile device after updating).

Hence, the new power profile is adapted to the old one and the results of the energy consumption

are manually calculated. With the adapted profile, the energy consumption for Third-Party

Advertisement amounts 4461 J before refactoring and 4426 J after refactoring, a difference of 1 %.

This small value results from active time of the Wi-Fi component because in both calculations the

Wi-Fi is not switched off to execute the application behavior and the different traffic transfer does

not have a real influence.

5. Conclusion

The definition and validation of energy code smells demonstrate an approach to save energy for

mobile devices. All measurement results show that it is reasonable to perform energy refactorings

on code to reduce energy consumption on mobile devices. The presented energy code smells are

validated for Android apps. However, the definition of the energy code smells can also be applied

on other platforms, such as Windows Phone and iOS, but has to respect hardware and operating

Saving Energy on Mobile Devices by Refactoring

system specifics. These results show that saving energy by refactoring can support programmers to

improve their existing apps and avoid energy code smells during developing new apps.

Next steps could be to extend the reengineering process to parse Windows Phone and iOS apps.

Thereupon, the existing energy code smells could be validated for these platforms. Furthermore,

hardware based energy measurement techniques could be used to confirm the software based

measurement results. These would help to extend and to confirm the energy refactoring catalog in

the mobile devices’ area.

References

[1] L. Stobbe, N. Nisse, M. Proske, A. Middendorf, B. Schlomann, M. Friedewald, P. Georgieff, and T.

Leimbach, “Abschätzung des Energiebedarfs der weiteren Entwicklung der Informationsgesellschaft,”,

Fraunhofer ISI, Fraunhofer IZM, Germany, 2008.

[2] Statista, “Absatzprognosen für 2013: Smartphones verkaufen sich am besten,” 2013. [Online]. Available:

http://de.statista.com/themen/647/itk-.

[3] RWE Power AG, “Kernkraftwerk Emsland,” 2013. [Online]. Available: https://www.rwe.com/we.

[4] J. Chikofsky and J. H. Cross, “Reverse Engineering and Design Recovery: A Taxonomy,” IEEE, 1990.

[5] Android Developers, “Android, the world’s most popular mobile platform,” 2013. [Online]. Available:

http://developer.android.com/about/index.html.

[6] M. Gottschalk, J. Josefiok, J. Jelschen, and A. Winter, “Removing Energy Code Smells with

Reengineering Services,” Lect. Notes informatics, GI, 2012.

[7] M. Josefiok, M. Schröder, and A. Winter, “An Energy Abstraction Layer for Mobile Computing

Devices,” Oldenbg. Lect. Notes Softw. Eng., vol. 5, 2013.

[8] A. Fuhr, A. Winter, U. Erdmenger, T. Horn, U. Kaiser, V. Riediger, and W. Teppe, “Model-Driven

Software-Migration - Process Model, Tool Support and Application,” in Migrating Legacy Applications:

Challenges in Service Oriented Architecture and Cloud Computing Environment, Hershey, PA: IGI

Global, 2012.

[9] J. Ebert, V. Riediger, and A. Winter, “Graph Technology in Reverse Engineering, The TGraph

Approach,” in 10th Workshop Software Reengineering (WSR 2008), Bonn: GI, 2008, pp. 67–81.

[10] T. Horn and J. Ebert, “The GReTL Transformation Language,” in Theory and Practice of Model

Transformations - 4th International Conferenc, 2011.

[11] M. Schröder, “Erfassung des Energieverbrauchs von Android Apps,” Carl von Ossietzky University,

Diploma Thesis, 2013.

[12] Android Developers, “Monitoring the Battery Level and Charging State,” 2013. [Online]. Available:

http://developer.android.com/training/monitorin.

[13] HTC Corporation, “HTC One X,” 2013. [Online]. Available: http://www.htc.com/uk/smartphon.

[14] Samsung, “Samsung Galaxy S4,” 2013. [Online]. Available: http://galaxys4.samsung.de/tech.

[15] Robotmafia.org, “GpsPrint,” 2012. [Online]. Available: https://play.google.com/st.

[16] M. Gottschalk, “Energy Refactorings,” Carl von Ossietzky University. Masters’ Thesis, 2013. Available:

http://www.se.uni-oldenburg.de/documents/gottschalk-MA2013.pdf

[17] M. Fowler, K. Beck, W. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 2002, p. 431.

[18] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a Smartphone,” USENIX Annu. Tech.

Conf., 2010.

[19] V. Strokova, S. Sapegin, and A. Winter, “Cloud Computing for Mobile Devices,” in Proceedings of the

28th EnviroInfo 2014 Conference, 2014.

[20] A. Pathak, Y. Charlie Hu, and M. Zhang, “Fine Grained Energy Accounting on Smartphones with

Eprof,” EuroSys’12, 2012.

[21] A. Pathak, Y. Charlie Hu, and M. Zhang, “Bootstrapping Energy Debugging on Smartphones: A First

Look at Energy Bugs in Mobile Devices,” ACM, 2011.

[22] “Energy Aware Software-Engineering and Development (EASED@BUIS),” 2013.

[23] X. Chen, Y. Chen, Z. Ma, and F. Fernandes, “How is Energy Consumed in Smartphone Display

Applications?,” ACM, 2013.

