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Abstract

Reverse engineering tools are mostly based on ana-
lyzing code repositories. Various technological spaces
for realizing these repositories including appropriate
analysis techniques exist. Graph technology and seman-
tic web based technologies provide elaborated and suffi-
cient means to analyze software structures. This paper
elaborates differences and similarities of both technolog-
ical spaces by comparing the GUPRO/GReQL program
comprehension framework with OWL/SPARQL based
code analysis.

1 Introduction

Reverse engineering aims at analyzing software sys-
tems to identify components and their interrelations to
provide better understanding of software systems un-
der development and maintenance. Tools used to sup-
port program understanding usually follow the Extract-
Abstract-View-Metaphor [34]. Artefacts of a software
system are extracted and identified from the source
code and represented in a repository. The repository
reflects an abstract representation of the software sys-
tems according the maintainers needs. If the reposi-
tories structure is made explicit [22] it is defined by
conceptual modeling techniques.

There exit different realizations of a repository. In
general the repository is organized in net-like struc-
tures like e.g. graphs (cf. Bauhaus [31], GUPRO [15],
Rigi [35]) relations (cf. (RPA [29], SWAG Kit [19], Cro-
copat [9]), or logic oriented data representations (cf.
DATA Tool [11], CodeQuest [18]). According to its

technological space [25] each representation is associ-
ated with appropriate analyzing technologies.

This paper aims at comparing approaches from
metamodel-based graph analysis and semantic web
technologies to be applied in program comprehension.
As representatives for these spaces, we view at the
GUPRO workbench for program comprehension and
at code representations in Web Ontology Language
(OWL) together with SPARQL query language.

GUPRO [15] is a graph-based approach for analyz-
ing large and complex software systems originated from
the metamodel-based software engineering. It uses a
graph-based repository that realizes highly optimized
graph analyzing and traversing algorithms. The soft-
ware analysis is based on GReQL querying [24].

The Web Ontology Language (OWL) supports con-
ceptual modeling based on the power and expressivity
of description logics. Here, source code is described in
an ontology. Based on the semantics of description log-
ics reasoners provide powerful analyzing services and
query languages like SPARQL [30] are used for inter-
rogating ontologies.

GUPRO/GReQL and OWL/SPARQL are applied
to parts of the GEOS software system [1], which is a
large banking system used for stock trading transac-
tions. Lange et al. [26] already used GEOS for com-
paring graph-based analyses with a database. This
case study already outlined the good performance of
graph-based systems for standard reverse engineering
applications. Here, we apply the same analysis tasks
for comparing graph-based analysis with semantic web
analysis.

The remainder of this paper is organized as follows.
Section 2 describes the two modeling approaches in-



cluding their tools and infrastructures. In section 3 the
conceptual model reflecting the objective of analyzing
GEOS system is specified. This section also introduces
the required fact extraction for GUPRO and OWL. A
comparative analysis of GEOS with GUPRO/GReQL
and OWL/SPARQL is presented in section 4. Section
5 summarizes the differences and similarities of graph-
based and web-based analysis and concludes the paper.

2 Program Analysis Techniques

This section outlines two different approaches for
modeling repositories in order to provide analysis tech-
nologies that are used in reverse engineering for the
GEOS system, a large and complex banking system.

2.1 GUPRO and GReQL

GUPRO (Generic Understanding for PROgrams)
[16, 32], is a system for analyzing and visualizing
software systems and documents. GUPRO uses a
graph-based repository that implements sophisticated
graph traversal algorithms. In GUPRO all informa-
tions about a software system are stored and managed
in a repository.

The repository is organized as TGraphs [14] which
are attributed, directed, ordered, and typed graphs. In
an attributed and typed graph the vertices and edges
may have assigned attribute and type values. In an or-
dered graph there is an order for all vertices and edges.

GUPRO implements efficient graph algorithms for
querying and extracting informations from a graph.
The objects of the software system are nodes of the
TGraph and all relations are modeled as edges between
the corresponding nodes. Objects of a software system
are not only classes but also attributes, methods or
database tables. Therefore nodes are all entities in the
software system.

GUPRO provide different tools for the data extrac-
tion. For the extraction in [26] ANAL/SoftSpec is used.
The abstract data are visualized for the user by differ-
ent visualization tools and different output formats.

The conceptual model is based on the EER/GRAL
[17] modeling approach. EER/GRAL is an extended
entity relationship (EER) diagram augmented with a
constraint language GRAL. The constraint language is
used to specify integrity conditions and path expres-
sions for TGraphs. A path expression describes a path
in a graph and also restrictions on a path.

from tab: V{Table}, col: V{Column}
with tab.name = ’Article’ AND

col -->{isColumnOf} tab
report col.name , col.type
end

Figure 1. A GReQL Query example.

2.1.1 Querying the GUPRO Repository

For analyzing TGraphs a special graph-based query
language GReQL (Gragh Repository Query Language)
[23] is used. GReQL is a declarative language for ex-
tracting information from the repository but doesn’t
change the data. A GReQL query consists of the three
clauses from, with and report. The from clause de-
clares variables for the concerning elements (nodes and
edges) in the graph with the corresponding domain of
each variable.

In the with clause are predicates declared which
have to be fulfilled from the variables. These predi-
cates are powerful graph oriented expressions like path
expressions. The report clause determines the result
structure of the query.

A GReQL query is evaluated in two steps. The first
step is a test if the predicate from the with clause is
fulfilled. In the second step the expression is computed
as described in the report clause. Objects and rela-
tions between objects are both first order concepts in
GReQL. They are attributed and typed.

An example of a GReQL query is displayed in Fig-
ure 1. The two variables tab and col are declared in
the from clause. The types of these variables are Table
and Column which are both subtypes of Vertex. The
vertex type is referenced with V. There are two pred-
icates in the with clause. The first predicate is the
condition that the name of the table tab is ’Article’
and the second predicate is the path expression col
-->icColumnOf tab. This expression describes that
the two vertices col and tab are in a isColumnOf rela-
tion. This relation is a subtype of the edge relation.
The structure of the result set are name and type tu-
ples of the corresponding column. Name and type are
attributes of the vertex subtype edge.

This example also demonstrates the kind of con-
nection which are in the repository between the ver-
tices Table and Column that is a representation of a
database and a database column.

For a better program understanding GUPRO pro-
vides facilities for source code visualization [16]. The
results of a GReQL query is represented in nested ta-
bles and additionally the corresponding source code is
also shown beside the tables. It is a link between the
(concrete) source code and the (abstract) query result.
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2.1.2 Tools and Infrastructure

GUPRO with GReQL is a stand-alone system includ-
ing tools for source code extraction, repository manage-
ment, querying and visualization. GreQL is provided
by various interfaces [15].

2.2 The OWL Model

The Web Ontology Language (OWL) [13] is the
W3C standard ontology language for the Semantic
Web. OWL is an expressive language for describing
ontologies. An ontology is a model of a certain do-
main which describes classes or concepts, relations be-
tween classes, instances or individuals and a number
of axioms. An ontology consists of two description for-
malisms: the terminological knowledge (TBox) and the
assertional knowledge (ABox). The TBox describes
concepts and relations whereas the ABox formalizes
facts, i.e. properties of individuals and instances.

There are two kinds of relations or properties. An
object property is a relation between objects, i.e. the
domain and range are OWL classes. A datatype prop-
erty is a relation between an object and a datatype, e.g.
a datatype property age has a range of positive integer
values. Datatypes are all XML schema datatypes [5].
Axioms are assertions about classes, class relationship
and properties.

Ontologies are used for knowledge representation as
a knowledge base in information systems. A require-
ment for ontologies and the use of ontologies is the
machine processable data representation that leads to
a kind of machine understandability of the data. The
main tasks that are performed on ontologies are rea-
soning and querying. Reasoning is used for classifi-
cation, consistency checks, class subsumption and in-
stance checking. Querying ontologies is a part of infor-
mation retrieval.

OWL has a well defined syntax and semantics. The
underlying logical formalism of OWL is Description
Logics (DL) [8].

The OWL language family is divided into three lan-
guage species with different expressiveness. There is a
tradeoff in using one of the OWL sublanguages between
expressivity and computational properties.

• OWL Full is the most powerful and most expres-
sive OWL language. OWL Full is the only OWL
language which is fully upward compatible with
RDF and RDFS [10].

• OWL DL is in general computational efficient for
reasoning tasks, except from a high worst case
complexity. OWL DL covers only a subset of the

OWL-Full language. OWL DL is a variant of the
DL-language SHOIN (D). The language restric-
tions are in favor of scalable reasoning services
which are based on the DL reasoning techniques.

• OWL Lite is the easiest OWL-language and pro-
vides the best computational efficiency. The lan-
guage is decidable for reasoning problems. It is a
subset of OWL DL with certain language restric-
tions like no disjunction, no enumerations and only
cardinality restriction with 0 and 1. OWL Lite is
a variant of the DL-language SHIF(D).

OWL DL and OWL Lite profit from the well-defined
semantics and the reasoning technologies adapted from
DL. Therefore in this paper only OWL DL and OWL
Lite is considered. One important extension of OWL
DL compared to OWL-Lite is the use of nominals i.e.
individual names in class descriptions.

Further restrictions are explicit typing [7] i.e. all
resources have to be explicitly stated. There are no
cardinality restrictions on transitive properties [7].

Since OWL was designed for specifying ontologies
for the Semantic Web, there are some assumptions that
are common for the Semantic Web use. One important
assumption is the open-world assumption. If a state-
ment is missing (unknown) it is not possible to conclude
that it is false.

2.2.1 Querying the OWL Model

SPARQL [30] is a query language for ontologies, orig-
inally designed for RDF. A SPARQL query contains a
set of triple patterns called basic graph patterns. These
triples correspond to the RDF triple notation which are
triples of the kind subject, predicate and object.
These triples are in the WHERE-part of the query. The
SELECT-part contains query variables which appear also
in the triples of the WHERE-part. The patterns are
matched against the RDF triples (RDF graph) and the
query result is a set (solution sequence) in which every
element is a data element from the RDF graph that
matched to a variable of the pattern.

Figure 2 demonstrates a simple SPARQL query. In
the SELECT clause of the query are two variables ?name
and ?type defined. Variable identifiers always start
with ?. In the WHERE clause are four graph pattern. The
variables ?col and ?table are not in the result set. The
first and second terms define the type of the variables
?table and ?col. The isColumnOf relation is expressed
with the third pattern. The result are the name and
type of all columns from all tables.

For constructing more complex queries there are
some algebraic operations like the FILTER operation
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SELECT ?name ?type
WHERE { ?table rdf:type Table .

?col rdf:type Column .
?col isColumnOf ?table .
?col hasName ?name .}

Figure 2. A SPARQL query example.

which is used to specify further constraints on the re-
sult set, the UNION operator and the OPTIONAL operator
for left join operations.

Some reasoners support the SPARQL syntax for
query answering. Therefore the SPARQL syntax is also
used for querying OWL DL ontologies. All tools that
are used in this evaluation support SPARQL.

2.2.2 Tools and Infrastructures

A comfortable modeling tool for ontologies is Protege
[4], a free ontology framework. Protege provides sup-
port for creating and visualizing ontologies in various
formats. The framework consists of two main parts:
the Protege-Frames editor for building frame based on-
tologies and the Protege-OWL-editor for working with
OWL ontologies. The OWL-editor enables tasks like
loading and saving OWL (and RDF) ontologies, visu-
alizing classes, individuals, object and data properties,
and it provides reasoning capabilities such as consis-
tency checking and classification. For this service Pro-
tege has an interface to enable a connection to reason-
ers like Pellet [33], Racer [6] or KAON2 [3] via a port
connection.

In this case study the KAON2 infrastructure is used
for querying and reasoning. KAON2 is a free java im-
plementation. It is capable to manipulate OWL DL
ontologies. For reasoning and querying it supports the
DL sublanguage SHIQ(D), whereas querying is intern
reduced to a reasoning task. The power of KAON2
compared to other reasoners is in reasoning (or query-
ing) over large ABoxes. As described in [28] the field of
deductive databases extremely studied reasoning over
large data sets. KAON2 exploits experiences of this
research field by implementing an reasoning algorithm
that reduces the SHIQ(D) knowledge base to an dis-
junctive datalog program [20].

As a first step in KAON2 before reasoning tasks can
be applied the generation of the disjunctive datalog
program is performed. The rule set mainly depends on
the TBox. The main component of KAON2 is the rea-
soning engine. This component consists of a theorem
prover for the transformation step. The other compo-
nent is the disjunctive datalog engine which works on
the rule set.

For this case study KAON2 is well suited. Since

the TBox is manageable and not complex whereas the
ABox is large with about 9,500 individuals. For this
ontology KAON2 provides a scalable querying service.
The query engine supports the syntax of the SPARQL
query language.

These additional services are also useful in the field
of reverse engineering. Some standard reasoning ser-
vices are:

• The classification of concepts computes all sub-
class relations of the TBox. The result is a com-
plete class hierarchy. For reverse engineering a
classification of concepts gives information about
the subclass relations of all involved concepts.

• Reasoning provides the possibility of testing the
satisfiability of a concept. A concept is satisfiable
if every individual (instance) of this concepts is
consistent with the ontology.

• Checking the ontology for consistency is another
reasoning task. A consistent ontology doesn’t con-
tain contradictions. This property is useful for cre-
ating the conceptual model in order to guarantee
consistency.

3 Conceptual Modeling

A conceptual model contributes to the repository in
three different ways. First of all the model describes the
structure of the repository, i.e. the objects, the object
properties and the relationship between the objects.
The extraction and transformation process is based on
the model structure. Source code is parsed concern-
ing to the model. Finally the information extraction,
e.g. the kind of queries performed on the repository
depends on the conceptual model.

3.1 The GEOS System

GEOS (Global Entity Online System) [1, 2] is an in-
tegrated online system for stock trading and derivate
activity transactions in realtime. GEOS Nostro is an
optional GEOS component that is specialized for auto-
mated balancing and supports different national and
international accounting standards. In this reverse
engineering analysis the GEOS Nostro component is
used.

The GEOS system consists of more than 1,600 com-
ponents, 3,000 modules, 2,200 classes, 30,000 interfaces
, 34,000 functions, 290,000 function calls and 895,110
data references. The original system was built of more
than 6,279 source files and about 2,364,652 lines of code
[26].
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3.2 The Conceptual Model for GEOS

Maintaining GEOS requires knowledge on program-
ming constructs, databases and their interdependen-
cies. Thus an abstraction of GEOS has to provide
information on software modules, associated database
tables, methods and attributes.

A conceptual model defines this structure for an-
alyzing the GEOS Nostro. It specifies the facts that
are extracted from the source code. The appropriate
conceptual model is given in Figure 3.

The system is divided into several components.
Components are collections of logically related mod-
ules. Such a collection provides interfaces to other
modules. A module is a source file and is in an include
relation with other modules. An Uri is an identifier
with a name attribute. It describes exactly one compo-
nent. A class is a special kind of module for object ori-
ented languages. Modules and Classes consist of meth-
ods and attributes. The tables refer to the database ta-
bles in the GEOS system. The uses relation indicates
the database access. The reflexive, transitive and anti-
symmetric relation isSubclassOf expresses the class de-
pendencies and the class hierarchy. The same property
is respectively expressed by the include relation be-
tween the module components. The dependencies and
hierarchies of method calls are described with the calls
relationship.

3.3 Repository Based Reverse Engineering

Using ANAL/SoftSpec facts from the GEOS source
code were extracted according the conceptual model
in Figure 3. and stored in a relational database. To
provide analysis with GUPRO, filters were created, to
translate the DB content into TGraphs [26]. Further
filters were based on TGraphs to create an OWL on-
tology representation of GEOS.

For reverse engineering tasks information is ex-
tracted from the repository Querying repositories in
software reengineering is a powerful mechanism for
extraction system information instead of searching in
large documentations and diagrams [24].

OWL DL and OWL Lite realize a conceptual model-
ing approach. In conceptual modeling there is a strict
separation of the conceptual and the data model [27].
The conceptual model describes the structure of the
considered model that is comparable to a database
schema. This includes all definitions of concepts and
relations (rolls) between concepts. In an ontology this
part of the model is the TBox.

On the other hand the data model consists of all
individuals belonging to the concepts and the relations

Figure 3. The Conceptual Model of the GEOS
System.

between this individuals. It is similar to an database
instance and is the ABox of an ontology. In DL a valid
instance is called a model.

A property in OWL is considered as a first class ob-
ject and not just as an aspect of some classes. There-
fore the ontology may contain assertions directly about
a property of individuals. In GUPRO the edges which
corresponds to object properties in OWL are first class
objects in the same way. Assertions are expressed in
GUPRO with type and attribute expressions.

The conceptual modeling with OWL DL is some-
what different to the UML-based modeling approach
like in GUPRO. Some critical and perhaps not intuitive
aspects are cardinality restrictions for the number of
individuals that can conclude equivalence or value re-
strictions which implicitly conclude class membership
[12]. In OWL DL cardinality restrictions can infer ex-
istence and equivalence of individuals.

The complexity of the DL ontology is
ALUHINC(D). The AL is the DL base lan-
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guage. The U allows union of concepts, the H is
for describing role hierarchies such as subproperties
(rdfs:subPropertyOf), the I indicates the inverse
property and the N allows expression simple car-
dinality restrictions like owl:MaxCardinality. The
identifier C allows complex concept negations.

3.4 Modeltransformation to OWL

Analyzing the GEOS system with SPARQL is based
on the appropriate OWL representation of the facts al-
ready given in the GEOS TGraph. The conceptual
model determines the structure of the TBox. The
ABox contains the data of the TGraph.

The transformation from the TGraph to OWL is
straightforward. All nodes are described as OWL
classes. A node is defined as an OWL class and all
other components of the system like modules or meth-
ods are subclasses of the node class. The definition of
the class Module as a subclass of node is presented be-
low. The attributes of this class are defined as datatype
properties.

<owl:Class rdf:ID="Module">
<rdfs:subClassOf rdf:resource="#node"/>

</owl:Class>

All edges are modeled as ObjectProperty. There
is an ObjectProperty for edge and all other rela-
tions are subproperties of edge. The following list-
ing demonstrates the definition of the ObjectProperty
includes.

<owl:ObjectProperty rdf:ID="includes">
<rdfs:subPropertyOf rdf:resource="#edge"/>
<rdfs:domain rdf:resource="#node"/>
<rdfs:range rdf:resource="#node"/>

</owl:ObjectProperty>

The class hierarchy, the call relation and the include
relation are reflexive and transitive relations. There is
a difference in modeling and querying the transitivity
property of roles. The ObjectProperty role is per de-
fault not transitive, but it is possible to define a role
as a transitive role. This is a difference compared to
GUPRO, where it is not necessary to specify if a rela-
tion is transitive or not.

Therefore it is necessary in the transformation to de-
cide for each role (ObjectProperty) whether it is tran-
sitive or not. These are the following relations: the
includes role between modules, the is SubClassOf
role between GEOSClasses and the calls role between
methods. Reflexive roles are considered in the same
way.

In a GReQL query it is specified in the path expres-
sion whether a direct connection or a transitive con-
nection is focused. This is expressed in GReQL with
−− > for the direct connection and with −− > ∗ for
a reflexive and transitive path. In OWL it is necessary
to specify the edge (ObjectProperty) as a Transitive-
Property in the ontology. There is no way to define
this in a plain SPARQL query.

For the performance evaluation the direct (non-
transitive) queries are applied to an ontology without
transitive property. For transitive queries an ontol-
ogy with transitive properties (TransitiveProperty)
is used. The queries are the same for direct and transi-
tive edge connections but the ontologies are different.

A part of the ABox is displayed below. This de-
scribes a module module318 with the name ”nnd-
nostr”. The name attribute is a datatype property.

<Module rdf:ID="module318">
<moduleHasName rdf:datatype=
"http://www.w3.org/2001/XMLSchema#string">
nndnostr</moduleHasName>

</Module>

4 Comparison of the Modeling Ap-
proaches

This case study is a comparison of the two models
and query evaluation between GReQL and SPARQL
and also a description of their limitations.

4.1 Comparison of the Conceptual Models

In the test case there are four possible kind of ques-
tions considered which are typical points of interest in
the reengineering process. These four question types
are also described in [26]. The dataset is also the GEOS
Nostro system.

• The module-function relationship describes
the functionality of the different system modules.

• Queries about the call relationship provide in-
formation about the relationship of the system and
the functions.

• The include relationship contains the module
inclusions and therefore also module dependencies.

• The subclass relationship describes the class re-
lationship from the object oriented code modules.
This contains also information like inheritance and
multiple inheritance.
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4.2 Include Relationship

The include relationship describes the relationship
between modules. The query below selects all module
pairs which are in a include relationship

The GReQL query in Figure 4 selects all attributes
(id, name and type) of the involved modules. All vari-
ables in the GReQL query are declared in the from
clause. The domain of a variable consists of all types
of the schema i.e. all objects (vertex types) and all
relations (edge types). The with clause contains the
path expression m -->{includes}inc. The variables
m and inc are declared as modules (V {Module}). The
existence of an edge between these two modules is de-
scribed by the predicate -->{includes}. It is a nested
query. The report clause describes the result structure.

from m:V{Module}
report m.id, m.name, m.type

from inc:V{Module}
with m -->{includes}inc
report inc.id, inc.name, inc.type
end

end

Figure 4. A GReQL Query for Include.

If one is interested in the transitive closure of the
include relationship, i.e. for a module m, all modules
inc are searched, which are included directly by m or
indirectly by an includee from m, the path predicate is
expanded by the star: m-->{includes}* inc.

SELECT ?m ?inc
WHERE {
?m rdf:type a:Module .
?inc rdf:type a:Module .
?m a:includes ?inc . }

Figure 5. A SPARQL Query for Include.

The corresponding SPARQL query is described in
Figure 5. In this example the two modules are se-
lected without a special selection of the attributes of
the module classes. In the SELECT part there are the
variables ?m and ?inc for the modules. The first two
triples in the WHERE clause express that the variables
and therefore the result of the query are modules. For
this expression the rdf:type statement is used. This
is the predicate part of the triple. The type expression
a:Module is a reference to the class Module whereas a
is an abbreviation for the namespace prefix that is de-
fined in the ontology. Types are covered with predicate
expressions.

Queries for selecting transitive include relations are

exactly the same but they are applied to another on-
tology with transitive role definitions.

With a similar query (Figure 6) it is possible to se-
lect only modules that include a module with the name
”nndnostr”. In the GReQL query an additional with
clause is added.

from inc:V{Module}
with inc.name = ’nndnostr’
report

from m:V{Module}
with m -->{includes} inc
report m.id, m.name, m.type
end

end

Figure 6. GReQL Query with condition.

In SPARQL queries this is expressed by using the
FILTER option (Fig. 7). This query uses a further vari-
able ?incName for the name of the included module.
The relationship (role) between a module and its name
is expressed with the triple ?inc a:moduleHasName
?incName. The filter expression needs this name in
order to filter only those result sets which satisfy
the name condition. Instead of an additional vari-
able it is also possible to use blank nodes [30]. The
module:HasName relationship is a DataProperty.

SELECT ?m ?inc ?incName
WHERE
{ ?m rdf:type a:Module .

?inc rdf:type a:Module .
?inc a:moduleHasName ?incName .
?m a:includes ?inc .

FILTER regex(?incName, "nndnostr") .}

Figure 7. SPARQL query with FILTER.

4.3 Call Relationship

The call relationship describes a relation between
methods. It is analyzed which methods call a particular
method or which methods are called by this method.

The query in Figure 8 selects all module pairs with
the corresponding names which are in a call relation-
ship, i.e. one module (caller) calls the other module
(callee).

In the corresponding SPARQL query (Figure 9) the
calls relation is expressed as triple in the WHERE
clause. The variables ?calleeN and ?callerN refer to
the names of the methods. These variables are intro-
duced in this query in order to get also the names of
the methods in the result.
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from caller:V{Method}
report caller.name

from callee:V{Method}
with caller -->{calls} callee
report callee.name
end

end

Figure 8. GReQL Query for Call.

The caller method is in a calls relationship with
the callee method. The predicate calls refers to the
ObjectProperty. As in the previous case a query for
all transitive connected methods is the same but it is
applied to another ontology with a transitive role defi-
nition for calls.

SELECT ?caller ?callee ?callerN ?calleeN
WHERE { ?caller rdf:type a:Method .

?callee rdf:type a:Method .
?caller a:calls ?callee .
?caller a:methodHasName ?callerN .
?callee a:methodHasName ?calleeN .}

Figure 9. SPARQL Query for Call.

The use of four variables instead of only two as in the
GReQL query is a performance drawback. In GReQL
it is possible to select the attributes of a vertex class
as outlined in the report clause by the caller.name
expression. SPARQL needs further variables with the
corresponding graph pattern. Therefore the query eval-
uation demands more pattern matchings than a query
without displaying the names of the methods.

As mentioned above in GReQL queries it is also pos-
sible to select edges, i.e. defining a variable in the from
clause of the type edge, e.g. e:E{calls} defines a vari-
able e of the edge relation. Since edges are modeled
as ObjectProperty in OWL it is not possible to se-
lect edges directly with SPARQL. Such queries must
be transformed to equivalent queries that select nodes
and their subclasses. The drawback in this case is that
a variable for an edge is replaced by two vertex vari-
ables. This increases the number of pattern matchings.

4.4 Subclass Relationship

Queries for the subclass relations are constructed
in the same way. This relation describes the subclass
connection of two GEOS classes.

4.5 Metrics

A further kind of queries are metrics. Which con-
tain some measurements like counting and average val-

ues. An example for such a query in GReQL is demon-
strated in Figure 10. The result is the number of all
modules in the repository.

cnt (
from m:V{Module}
report m
end )

Figure 10. GReQL Query for Counting.

One main difference in the model assumptions is
the closed-world assumption in GUPRO and the open-
world assumption in the OWL model. In GUPRO it
is assumed that all system artefacts are contained in
the repository and all referenced components are avail-
able in the repository. The user is aware of the content
of the repository due to the conceptual model. In the
ontology the intention is that the repository not nec-
essarily contains all artefacts. Therefore metrics of the
GEOS system are not considered in this case study.

4.6 Summary of Performance

The Table 1 outlines a short comparison of the three
query kinds performed in both approaches.

Query Tuples eval. time (msec)
GReQL KAON2

include 2935 565 2573
include trans 2935 578 52311
include nndnostr 65 41 3477
directCall 11318 1015 2687
transitiveCall 184506 12617 58475
directCall Err 140 134 2599
superclasses 133 75 2126
superclasses trans 140 77,4 53204

Table 1. Performance comparison.

In the first part of the queries the include relation-
ship between modules is considered. The first query
is the direct include relation, the second the transitive
relationship and the third query selects all direct con-
nections in which the name of the included module is
”nndnostr”.

The second three queries select methods that are in
a call relationship. The first query directCall selects
all methods which are in a direct relationship whereas
the second query selects all methods with a transitive
connection. The result of the third query contains all
module pairs that are in a direct call relationship and
the name of the called method is ”CheckErrOut”. The
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performance drawback in the third query is due to fur-
ther graph pattern matchings that are necessary for
selecting the name for the FILTER expression.

The third part contains two queries for the
isSubClassOf relation. The first query selects all
direct connected GEOSClasses and the second query
comprehends all transitive connected GEOSClasses.

5 Conclusion and Future Work

In this paper we transformed a graph-based repos-
itory that is used in reverse engineering into an OWL
DL model. The graph is directly mapped into an on-
tology. The resulting conceptual models are similar.
All components are modeled as OWL classes with the
same attributes. All relations are described as object
properties.

As expected for all queries of the case study the
performance of GReQL is better than that of KAON2.
The graph based representation and the search algo-
rithm is more suitable for this kind of application. An
advantage of GReQL is the direct access of all at-
tributes of a vertex or edge class like the name of a
vertex class or subclass. In the OWL ontology the at-
tributes of a class are modeled in the same way but in
SPARQL it is not possible to access the attributes of
a class without further pattern matchings. This is due
to the RDF-based triple structure of SPARQL.

A further advantage of GReQL is the possibility of
selecting edges i.e. using an edge variable in the from
clause. For such an edge there is a direct connection
to the two corresponding vertices. The access to an
vertex belonging to an edge is realized in the same way
as an attribute access. There is no further search or
pattern matching necessary. In SPARQL queries for
OWL DL it is not possible to use a variable of an edge
type since an edge is an ObjectProperty and this is
not directly supported by the SPARQL syntax. There
are at least two vertex variables necessary for replacing
one edge variable. This increases the number of pattern
matchings.

The performance advantages of GReQL in the tran-
sitive queries is due to the aggregation of the perfor-
mance benefits in the direct connections.

Based on a case study that outlined the good per-
formance of GUPRO the same kind of queries are used
for this comparison of GUPRO and the OWL repre-
sentation. The transformation of the model and the
mapping of the queries is straightforward. As expected
the good performance of graph-based query processing
in GUPRO is not reached with OWL due to the well
optimized query evaluation in GUPRO and the high
expressivity of OWL, and therefore high complexity of

OWL. Currently using SPARQL for querying OWL DL
ontologies is not the best solution. But the research in
developing and optimizing OWL DL querying is still
ongoing research.
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