
Towards Applying Reengineering Services to Energy-Efficient Applications

Jan Jelschen, Marion Gottschalk, Mirco Josefiok, Cosmin Pitu, Andreas Winter
Carl von Ossietzky Universität Oldenburg, Germany

{gottschalk, josefiok, pitu, jelschen, winter}@se.uni-oldenburg.de

Abstract—Conserving resources and saving energy has
become an important issue for information and communica-
tion technology. With increasing adoption of smartphones
and tablet PCs, reducing energy consumption in mobile
computing is of particular significance. User expectations
towards their mobile devices are rising, and functionality
is increasing. Accordingly, available energy is made a scarce
resource. This paper discusses how software reengineering
techniques, like dynamic analysis and refactoring, can be
applied to the field of energy-aware computing, to monitor,
analyze, and optimize the energy profile of mobile applica-
tions and devices.

I. INTRODUCTION

Energy-efficiency has become an important issue in
information and communication technology. According to
a 2007 report of German research organization Fraunhofer
[1], over ten percent of Germany’s overall electrical energy
consumption of 2007 was generated by the information
and communication technology sector. By 2020, this figure
is prediced to have risen to over 20 percent, which, with
unchanged energy mix, would account for CO2 emissions
exceeding that of the entire German aviation sector [2].

Energy consumption in Mobile Computing poses a
challenge. Due to the rapidly increasing adoption of smart
phones, tablet PCs, and other mobile devices, there is also
an increasing demand for higher battery capacities. The
most direct approach to conserve energy in IT probably
is trying to build more efficient hardware. Lots of work
has already been done in the area of energy efficiency in
IT mostly driven by research in embedded systems and in
wireless sensor networks.

Improving energy efficiency of software systems can
be approached on different levels. A great amount of
research focuses on low-level optimizations (e.g. machine
code level) [3]. Energy efficiency for higher software
layers, in particular for the software application level,
has not been addressed deeply, yet. In this paper, first
ideas on saving energy on the end-user application and
operating system level by applying reengineering services
are presented. Analyzing both code as well as execution
behavior and patterns of applications will show oppor-
tunities for optimization. With such information, code
can be restructured to utilize hardware resources more
efficiently, and the operating system is enabled to schedule
application execution complying with their run-time needs
and a possibly system wide energy efficient behavior.

To appear in: R. Ferenc, T. Mens, and A. Cleve, Eds., Proceedings
of the 16th European Conference on Software Maintenance and Reengi-
neering. Los Alamitos, CA, USA: IEEE Computer Society, 2012.
©2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

These activities – analyzing software, then making
improvements to it with the gained information and knowl-
edge – are basically the same as in software reengineering.
Reengineering aims at improving a program’s quality in
terms of maintainability, code quality, or similar goals [4].
This research agenda argues software reengineering tools
and techniques, like static and dynamic program analysis,
and systematic code transformations like refactoring, can
be used to obtain more energy efficient applications.

This paper is structured as follows: Section II introduces
a broad, high-level overview on the state-of-the-art of
energy efficiency in IT and current and related work in
that field. Section III identifies opportunities for further
research. In Section IV a short overview on common and
relevant reengineering services is given. Afterwards, the
previously presented research opportunities are revisited
in Section V, to present exemplary scenarios and ideas
of applying reengineering services to energy efficiency
research. Future steps towards a research agenda on en-
ergy efficient applications are sketched in Section VI.
Section VII concludes this paper.

II. ENERGY EFFICIENCY IN IT

The rising importance of environment-friendly and
energy-saving technologies also asks for the contributions
software engineering and software reengineering could
make to improve energy consumption. This paper origi-
nates from the results of a research seminar on graduate
level to explore the field of energy-efficient applications
and to identify research opportunities. The results of an
initial literature review is classified along the application
domains and the addressed application level, resulting in
an overview on recent research into energy efficiency in
information technology. For more comprehensive surveys
refer to Roy and Johnson [3], who offer an overview on
low-level optimization techniques, and the survey by Naik
[5], covering energy efficiency in mobile computing.

A. Application Domain

Substantial ongoing research on energy efficiency in
Information technology addresses four important areas:

Embedded Systems. Early research into energy effi-
ciency has been motivated by power dissipation becoming
an issue due to increasingly denser microchip designs [6],
[7]. In many embedded environments this is of special
importance, as sophisticated heat dissipation techniques
might not be an option. Naturally, work in this area focuses
mainly on hardware and low-level software optimizations.

Sensor Networks. Wireless sensor networks have been
another driving force in enhancing energy efficiency (cf.
[8]–[10]). These networks consist of small, autonomous
devices distributed in an area, e.g. for some kind of
environmental monitoring. Each single device has to last



as long as possible on a single battery charge. Much work
concentrates on energy-efficient, wireless data transmis-
sion, as the wireless network device is often the biggest
energy consumer [11].

Data Centers. In data centers, power and cooling are
becoming the dominating cost factor [12]. In this domain,
optimizations therefore focus on reducing energy con-
sumption with a fixed quality of service as goal, whereas
in battery-powered devices the challenge is to deliver the
best service possible with a constrained amount of energy.
The recent interest in cloud computing has also spawned
research into more energy-efficient data centers [13], [14].
The OFFIS Institute, associated closely with Carl von
Ossietzky University, has a research group dedicated to
this field (cf. e.g. Schröder et al. [15]).

Mobile Computing. With the recent advent of powerful
smartphones and tablet PCs, mobile computing today
addresses a large, mainstream audience. This sector has
evolved very rapidly in terms of the devices’ feature-
richness, while development of energy-conserving tech-
niques has not kept up. Saving energy in mobile computing
will also extend the durability of battery charges, resulting
in longer-dated availability of mobile devices.

When service degradation is not tolerable, energy can
be saved only by making the system as a whole as efficient
as possible in that regard. Otherwise, one can also consider
trading quality of service against energy consumption.
This requires the system, or parts of it, to be energy-aware,
i.e. being able to make decisions informed by the amount
of energy different strategies would require.

Notably absent from this list is desktop computing.
While there are potentials for energy optimizations, the
requirement of conserving energy is not as pressing as in
mobile computing, where limited battery charge dictates
energy-aware computing. Also, energy-saving measures
applied on the application level will arguably be trans-
ferable from the mobile domain to desktop computers.

Whereas challenges regarding energy efficiency in em-
bedded systems, sensor networks, and data centers need
to be addressed at the hardware level, applying soft-
ware reengineering services to energy efficiency mainly
addresses applications in mobile computing. Thus, only
energy efficiency in mobile computing will be considered
in the following.

B. System Level

Another way of classifying past and current research is
by looking at the level of a computer system they address.

Hardware. The most direct approach to energy effi-
ciency optimization is building hardware that consumes
less energy [7], or, put differently, wastes less energy by
enabling better utilization.

Low-level Software. Software running on a given
hardware can be optimized on a machine code level,
e.g. by implementing such optimization into a compiler.
Research on this level has been ongoing longer than on
higher levels [3], [6], and as such has already been more
comprehensively explored.

Operating Systems. The OS has control over hardware
utilization. Given appropriate information and the required
hardware capabilities, it can put certain components into
sleep mode while they are not needed, or shut them down
entirely. Scheduling may present further opportunities for
energy savings [16]–[18].

Applications. The highest level are user-facing applica-
tions. Any energy optimizations on this level are depen-
dent on the capabilities of the underlying hardware and
operating system. On lower levels, application information
cannot be taken into account, motivating the need for
application-level power management [19], [20].

Software reengineering related consideration of energy
efficiency on system level mainly refers to applications
and their embedding in operating systems. Reengineering
services are explored to analyze applications in two direc-
tions: (1) measure and improve the energy consumption
by certain applications and (2) provide information on the
behavior of an application to enable the operating system
to ensure a more energy efficient scheduling of system
processes serving the application.

III. RESEARCH DIRECTIONS

As a result of our investigation into the state of the art of
energy-efficient applications, both in industry and current
research, we identify the following topics to be considered
for further research: A. Energy consumption and perfor-
mance, B. Influencing energy consumption, C. Energy-
consuming components, D. Scheduling in mobile comput-
ing, E. Application usage analysis for energy-awareness.

The following sections summarize open research ques-
tions and domains exhibiting potential to save energy, and
therefore offer research opportunities. As motivated in the
previous section, the main focus is set on the domain of
mobile computing and energy-saving techniques applied at
the application level.

The topics presented here are revisited in Section V,
giving examples of how they can be approached with
software reengineering services.

A. Energy consumption and performance

Performance, in the sense of execution time, is strongly
related to energy consumption. More powerful devices
usually have higher energy demands, e.g. when comparing
a notebook computer with a mobile phone (which is less
powerful, but usually has a considerably higher average
battery life) [21]. Modern processors often provide differ-
ent power states, allowing to save energy at the cost of
performance [22]. Another option is to completely switch
off components not required by currently running appli-
cations. In desktop computers, the standardized Advanced
Configuration and Power Interface (ACPI) gives operating
systems control over power management. However, the
operating system cannot make well-informed decisions
to preserve energy if it is unaware of specific needs of
running applications. For this, power management would
have to move to the application level [19], [23].

Conversely, optimizing utilization of a given hardware
platform will often both speed up execution, and lower



energy consumption [3]. This can be achieved, e.g. by
parallelizing instructions each using different processor
parts. Leaving parts of the hardware idle usually wastes
energy. So far, most optimizations have focused on hard-
ware or instruction level optimizations, though the work
done on application-level, e.g. Chung et al. [24], suggests
opportunities for significant energy optimizations exist.

This leads to two research goals: first, empowering
applications to pass on energy-related information to the
operating system for smarter power management. And,
second, identifying opportunities in software for better
hardware utilization.

B. Influencing energy consumption

To improve a system’s energy consumption, opportu-
nities to save energy have to be identified. The previous
section already revealed two such opportunities. Follow-
ing, we list further areas which have been shown to present
untapped potential for further energy optimizations:

Balasubramanian et al. [25] have developed a protocol
reducing the energy cost associated with 3G, GSM, and
WiFi data transmission, making use of knowledge about
the requirements of the applications requesting data. In
Atasu et al. [26], a technique for automatically designing
instruction-set extensions for reduced energy consumption
is described, utilizing the processors special capabilities
for such adaptation. Amur et al. [27] have presented an
approach to monitor running applications and predict idle
times. This is leveraged by setting the CPU into an energy-
conserving state while idle. Barr and Asanovic [28] have
shown that wireless transmission of compressed data often
uses more energy than transmitting uncompressed data,
due to the energy cost of compressing and uncompressing.
However, choosing an energy-optimal strategy has to take
context information into account.

Further research should concentrate on exploiting such
optimization potentials on the one hand, and on the other
hand identify more areas where energy can be saved, by
measuring and analyzing systems.

C. Energy-consuming components

A mobile phone can be broken down into several
components, which all require electric energy to operate.
Among them, for example, are transceivers connecting the
phone to cellular networks, displays, cameras, CPUs and
memory. Smartphones usually offer additional connectiv-
ity through WiFi, Bluetooth, and GPS, all requiring addi-
tional hardware components providing these capabilities.

Applications running on a device utilize these compo-
nents to a different extent. Some parts of the system may
not be required to be activated at all during certain times,
or could at least be put into an energy-saving state. For
example, monitoring user activity and utilizing location-
awareness, user profiles for being at home and at work
could be derived. If an accessible WiFi network was only
available at home, the phone’s WiFi component could be
powered down while at work.

To utilize resources more energy-efficiently, first the
energy consumption of single components has to be es-

tablished, along with the degree of control the operating
system or running applications have over their state. Then,
applications would need to make information available to
power management, regarding required components. Some
recent studies have taken steps in this direction [25], [29].

D. Scheduling in mobile computing

Another potential area for energy optimization is the
operating system’s process scheduling system. Weiser et
al. [16] have presented scheduling techniques trying to
predict idle times to clock down the CPU. This approach
has become a common feature of power management im-
plementations as dynamic voltage and frequency scaling.

With this ability, quality of service of an application
can be degraded in favor of lower energy consumption, by
scaling down the processor and slowing the applications’
execution. Often, though, it is more energy-efficient to
execute a task as fast as possible to stay idle longer [30].

Specifically aimed at the smartphone domain, Calder
and Marina [17] propose scheduling recurrent jobs in
batches to reduce the amount of times the phone has to
be woken up from an energy-saving sleep state.

With additional knowledge about the running applica-
tions, their current and future performance requirements,
further optimization can be achieved. An example for
such an approach is described by Yuan and Nahrstedt
[18], whose scheduler optimizes for multimedia-related
processes and as such makes assumptions about their soft
real-time requirements.

E. Application usage analysis for energy-awareness

As discussed in Section III-B, to influence and optimize
energy consumption, knowledge of saving potentials is
required. This leads to the questions of what data can and
should be collected, on which system level. One important
dimension is the energy consumption of different system
components, as described in Section III-B. This can be
used to establish an energy model [25], [29] of the
hardware platform used.

On the application level, information regarding the
components actually needed by running applications is
required, to optimize management of the hardware. It
might also be worthwhile to profile long-term application,
system, or user behavior, to be able to dynamically adapt
power management to emerging usage patterns, and an-
ticipate their occurrence. For example, Harris and Cahill
[31] employed bayesian networks to combine different en-
vironment information sources and predict when a desktop
computer could be powered down. Shye et al. [32] have
monitored user activities on a smartphone and used the
information to extract usage scenarios in which display
brightness or CPU frequency could be reduced.

With both information – the current energy-state of the
system, and the usage context (other running applications
and the services they demand) – applications could make
purposeful decisions to conserve energy.

The technical infrastructure to collect information about
a system’s energy consumption is available on many sys-
tems: hardware components providing information about



their energy usage, ACPI or similar APIs on the OS-level,
and application-level tools like PowerTOP [33] exist.

IV. SOFTWARE REENGINEERING SERVICES

Software reengineering is the modification of an exist-
ing software system to improve the system’s quality.

Software reengineering is most often done in the con-
text of the evolution of legacy software systems, e.g. to
improve maintainability, or in preparation of subsequent
migration efforts. The general reengineering process is
summarized in the horseshoe model [34]. It consists of
reverse engineering to extract a higher-level model of the
system under study. On this level, the system is then ana-
lyzed and restructured with respect to reengineering goals
and analysis results. Eventually the original abstraction
level is reached by forward engineering, e.g. generating
source code from the improved high-level model.

A number of services are used in software reverse and
reengineering to gain the required knowledge about the
system at hand (program analysis) and make systematic
changes to enhance it in the desired way (restructuring).
A short overview over each area is presented in Sections
IV-A and IV-B, respectively. Following that, the research
directions pointed out in Section III are revisited in Section
V, to illustrate how each topic can be approached from a
software reengineering perspective.

A. Program Analysis

Program analysis can be categorized as either static
or dynamic [35]. Static analysis looks at the structure
and composition of software systems, without taking into
account run-time behavior, i.e. the system’s inputs and
resulting state. Two examples for common static analysis
activities are:

• Code smell detection [36], the identification of pat-
terns known or suspected to be detrimental to soft-
ware quality (especially maintainability). In the same
way, energy-wasting code patterns can be defined.
This is tightly linked to refactoring (Sec. IV-B).

• Software metrics [37] are used to quantify certain
system properties, e.g. energy indexes based on code
patterns with known energy cost.

Dynamic analysis studies running systems [38]. Activ-
ities of dynamic program analysis include:

• Source code instrumentation, used to record execu-
tion traces of running applications. Together with
recorded energy consumption, activities correspond-
ing to high energy usage can be identified. Instrumen-
tation can, for example, be achieved with frameworks
supporting aspect-orientation.

• Dynamic metrics, e.g. how often a method is invoked.
Energy optimization can focus on such hot-spots,
representing code parts most often executed.

B. Restructuring

Restructuring a software system is perfective mainte-
nance, i.e. it entails modifications which preserve func-
tionality [4]. The abstraction level is also kept, excluding
forward and reverse engineering steps.

In software reengineering, restructurings are applied to
remove deficiencies from a software system identified by
analysis, improving its quality. In the context of object
orientation, the term refactoring, introduced by Fowler
[36], is sometimes used synonymously with restructuring.
It is, however, associated with Fowler’s catalog of refactor-
ings, a collection of (anti-) patterns and code smells, each
encapsulating commonly found source code constructs,
which are considered bad design.

V. REENGINEERING TOWARDS ENERGY-EFFICIENT
APPLICATIONS

Software reengineering aims at improving software
quality. Though usually thought of in software mainte-
nance contexts (improving quality attributes like maintain-
ability), the same techniques are useful to drive software
systems towards energy efficiency. The following sec-
tions revisit research directions presented in Sec. III, and
give examples of how software reengineering can be ap-
plied to further energy efficiency of (mobile) applications.

A. Energy consumption and performance

Two challenges have been presented concerning energy
consumption and performance: power management on the
application level, and optimizing source code for better
hardware utilization.

Power management is actually present in all areas pre-
sented here, as energy optimization is approached mainly
on the application level. The general idea is to use static
and dynamic program analysis to gather information about
applications’ energy needs and expected behavior. More
concrete examples are given in the following sections.

Optimizing source code for better energy efficiency
can be approached with static analysis akin to the de-
tection of code smells. Code patterns which could be
optimized for energy efficiency can be derived from the
target hardware architectures, and some examples have
already been presented in literature: Cattoor et al. [39]
propose restructuring certain loop constructs in a way that
minimizes memory accesses. The approach by Chung et
al. [24] depends on run-time information, to optimize code
for situations which occur very often during its execution.
Such information can be obtained by dynamic analysis.

To identify further patterns of energy-wasting source
code, the energy consumption of a system executing differ-
ent algorithm alternatives can be measured and analyzed
(this idea is picked up again in Section III-B).

A catalog of energy-inefficient source code patterns
could also be used to derive software metrics to measure
and quantify energy efficiency of code, and classify appli-
cations according to such an energy rating.

B. Influencing energy consumption

The following examples for ways to influence en-
ergy consumption were given in Section III-B: wireless
data transmissions, utilizing special processor capabilities,
managing and exploiting processor idle times to go into
energy-saving states, and trading off data compression and
decompression costs against data transfer cost.



In general, knowledge about running applications can
help make more accurate assumptions and predictions
regarding the system’s state and dynamics in the imminent
future. For example, Amur et al. [27] predict running
applications’ activation and idle times to avoid scheduling
timing interrupts when the processor is idle and sleeping.
These information could be gathered by monitoring run-
ning applications using dynamic analysis services.

Another possible scenario may exploit the fact that,
depending on certain circumstances, it may be either
more energetically efficient to compress and decompress
data, or sending it uncompressed [28]. Refactorings could
be developed to introduce strategy patterns [40] into
source code, allowing an application to dynamically decide
whether to use compression or not. This may be based
on current system state and the required performance or
quality of service.

C. Energy-consuming components

Knowing which usage scenarios and components con-
tribute to total energy consumption is an important pre-
requisite to systematically optimize for lowest possible
energy consumption. The resulting energy model will
enable applications and the operating system to make
energy-aware decisions.

Gathering this knowledge can be done by attaching
appropriate measurement instruments to a device, and its
components [29]. This is, of course, an invasive procedure,
which is not always possible.

Measurement can also be approached in software [25],
given that both hardware components and the operat-
ing system offer appropriate capabilities to attain energy
consumption information. With this approach, an energy
model can be established by an application at run-time.
This can be coupled by dynamic analysis, e.g. recording
execution traces to match usage scenarios to energy usage.
It may also provide enough information to deduce the
energy consumption of single components from the overall
consumption, in case the device does not offer fine-grained
energy-related information.

D. Scheduling in mobile computing

Section III-D illustrated that the CPU scheduler is a
central component to optimize processor utilization for
energy efficiency. To do so, it requires information about
running applications, regarding, e.g. latency criticality or
periodic wake-ups.

Reengineering services can be used to collect these data,
e.g. by monitoring running applications using code instru-
mentation. The resulting information is further analyzed
for patterns, both of a single application, and between
different applications running at the same time.

Applications with similar activation and idle patterns
can then be scheduled in batches [17]. Another possible
optimization opportunity would be to schedule applica-
tions, which largely utilize different parts of the CPU, at
the same time and try to parallelize instructions.

The ability to influence the scheduling of processes
from the application level is, however, limited in most

operating systems. In this regard, the viability of energy-
saving approaches aimed at scheduling, remains an open
question.

E. Application usage analysis for energy-awareness

Application usage analysis aims at monitoring user ac-
tivity and exploiting detected usage patterns for energy op-
timization. This requires combining different reengineer-
ing services: code instrumentation can be used to monitor
running applications. This information has to be analyzed
in context: all running applications have to be taken into
account, as optimization efforts may otherwise cancel each
other out. System constraints like battery charge also have
to be considered. Further dynamic analysis has to take all
these information sources, and map application activity,
component usage and energy consumption.

This motivates the need for a central power manager
on application level, ideally based on a standardized,
platform-independent interface providing information rel-
evant to energy optimization. The design of such an
energy abstraction layer is central to the research agenda,
presented in the following section.

VI. RESEARCH AGENDA

In this section an overview over planned next steps to
conduct future research into energy efficient applications
using software reengineering services is presented.

First, a suitable infrastructure has to be built. This
includes making energy consumption measurable, i.e.
define measuring means to collect energy-related data,
utilizing the capabilities available on different platforms
and operating systems, and encapsulating them under a
unified interface. This interface will also include services
to support the operating system with application-specific
informations to optimize energy consumption of the entire
system. As such, it constitutes an energy abstraction layer
between the operating system, analysis tools, and energy-
efficient applications.

Also required are the means to analyze applications
and, by extension, user activities. To this end, application
code has to be instrumented, for example using aspect-
orientation frameworks. With the measurement infrastruc-
ture in place, further analyses are required to identify
mappings between energy consumption of the system,
components, running applications, and user behavior. Hav-
ing made these connections, this data will be analyzed for
patterns to make predictions about system activity, and
optimize accordingly.

Parallel to these activities mainly supported by static
and dynamic analysis services, refactoring for energy
efficiency will be researched. Energy-inefficient code pat-
terns have to be identified, either from previous research
work into this topic, or empirically by measurement and
analysis. Patterns can then be detected in source code like
bad smells through static analysis, and be used to develop
suitable refactorings to replace them with functionally
equivalent, but more energy-efficient alternatives.



While this paper focused on technical aspects, issues
of how to incorporate energy saving techniques into real-
world development practices remain as open question. In
particular, the viability of additional development effort
to create more energy efficient applications, both eco-
nomically and ecologically, has to be considered. Another
interesting concern for further research would be how
refactoring towards energy efficient code affects maintain-
ability.

VII. SUMMARY

This paper gave an overview on current research into
energy efficiency in information and communication tech-
nology. Further improvements of providing energy effi-
ciency on an application level were motivated by applying
reengineering services.

REFERENCES

[1] L. Stobbe, N. Nissen, M. Proske, A. Middendorf, B. Schlomann,
M. Friedewald, P. Georgieff, and T. Leimbach, “Abschätzung
des Energiebedarfs der weiteren Entwicklung der Informationsge-
sellschaft,” Fraunhofer ISI and IZM, Berlin, Abschlussbericht an
das Bundesministerium für Wirtschaft und Technologie, 2009.

[2] W. Nebel, M. Hoyer, K. Schröder, and D. Schlitt, “Untersuchung
des Potentials von rechenzentrenübergreifendem Lastmanagement
zur Reduzierung des Energieverbrauchs in der IKT,” OFFIS,
Oldenburg, Studie für das Bundesministerium für Wirtschaft und
Technologie, 2009.

[3] K. Roy and M. C. Johnson, “Software design for low power,” in
Low power design in deep submicron electronics, W. Nebel and
J. P. Mermet, Eds. Berlin: Springer, 1997, pp. 433–460.

[4] E. J. Chikofsky and J. H. Cross, II, “Reverse engineering and
design recovery: A taxonomy,” IEEE software, vol. 7, no. 1, pp.
13–17, 1990.

[5] K. Naik, “A survey of software based energy saving methodolo-
gies for handheld wireless communication devices,” University of
Waterloo, Tech. Rep., 2010.

[6] S. Devadas and S. Malik, “A survey of optimization techniques
targeting low power VLSI circuits,” in Proceedings of the 32nd
annual ACM/IEEE Design Automation Conference. ACM, 1995,
pp. 242–247.

[7] A. Chandrakasan and R. Brodersen, Low power digital CMOS
design. Springer, 1995.

[8] R. Min, M. Bhardwaj, S. Cho, E. Shih, A. Sinha, A. Wang, and
A. Chandrakasan, “Low-power wireless sensor networks,” in VLSI
Design, 2001. Fourteenth International Conference on. IEEE,
2001, pp. 205–210.

[9] V. Raghunathan, C. Schurgers, and M. Srivastava, “Energy-aware
wireless microsensor networks,” IEEE Signal Processing Maga-
zine, vol. 19, no. 2, pp. 40–50, 2002.

[10] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella,
“Energy conservation in wireless sensor networks: A survey,” Ad
Hoc Networks, vol. 7, no. 3, pp. 537–568, 2009.

[11] C. Jones, K. Sivalingam, and P. Agrawal, “A survey of energy effi-
cient network protocols for wireless networks,” wireless networks,
pp. 343–358, 2001.

[12] M. Poess and R. O. Nambiar, “Energy cost, the key challenge
of today’s data centers: a power consumption analysis of TPC-C
results,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp.
1229–1240, 2008.

[13] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer,
M. Q. Dang, and K. Pentikousis, “Energy-Efficient Cloud Com-
puting,” The Computer Journal, vol. 53, no. 7, pp. 1045–1051,
2009.

[14] A. J. Younge, G. von Laszewski, L. Wang, S. Lopez-Alarcon, and
W. Carithers, “Efficient resource management for Cloud computing
environments,” in International Conference on Green Computing.
IEEE, 2010, pp. 357–364.

[15] K. Schröder, D. Schlitt, M. Hoyer, and W. Nebel, “Power and
cost aware distributed load management,” in Proceedings of the
1st International Conference on Energy-Efficient Computing and
Networking - e-Energy ’10. New York, USA: ACM, 2010, p. 123.

[16] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” Mobile Computing, pp. 449–471, November
1996.

[17] M. Calder and M. Marina, “Batch Scheduling of Recurrent Ap-
plications for Energy Savings on Mobile Phones,” Sensor Mesh
and Ad Hoc Communications and Networks (SECON), 2010 7th
Annual IEEE Communications Society Conference on, pp. 1–3,
2010.

[18] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU
scheduling for mobile multimedia systems,” ACM SIGOPS Oper-
ating Systems Review, vol. 37, no. 5, pp. 149–163, 2003.

[19] C. C. Ellis, “The case for higher-level power management,” in
Proceedings of the Seventh Workshop on Hot Topics in Operating
Systems. IEEE CS, 1999, pp. 162–167.

[20] X. Liu and P. Shenoy, “Chameleon: Application-level power man-
agement,” Mobile Computing, IEEE, vol. 7, no. 8, pp. 995–1010,
2008.

[21] T. D. Burd and R. W. Brodersen, Energy Efficient Microprocessor
Design. Kluwer Academic Publishers, 2002.

[22] E. Saxe, “Power-Efficient Software,” Queue, vol. 8, no. 1, p. 10,
2010.

[23] F. Shearer, Power management in mobile devices. Newnes, 2007.
[24] E.-y. Chung, L. Benini, and G. D. Micheli, “Energy Efficient

Source Code Transformation based on Value Profiling,” Transfor-
mation, 2000.

[25] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: A Measurement Study
and Implications for Network Applications,” in Proceedings of the
9th ACM SIGCOMM Internet measurement conference. ACM,
2009, pp. 280–293.

[26] K. Atasu, L. Pozzi, and P. Ienne, “Automatic Application-Specific
Instruction-Set Extensions under Microarchitectural Constraints,”
International Journal of Parallel Programming, vol. 31, no. 6, pp.
411–428, 2003.

[27] H. Amur, R. Nathuji, M. Ghosh, K. Schwan, and H.-H. S. Lee,
“IdlePower: Application-Aware Management of Processor Idle
States,” in MMCS, 2008.

[28] K. Barr and K. Asanovic, “Energy Aware Lossless Data Compres-
sion,” in MobiSys2003, 2003, pp. 231–244.

[29] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in USENIXATC’10 Proceedings of the 2010 USENIX
conference on USENIX annual technical conference, 2010, p. 21.

[30] M. Garrett, “Powering down,” Communications of the ACM,
vol. 51, no. 9, pp. 42–46, 2008.

[31] C. Harris and V. Cahill, “Exploiting user behaviour for context-
aware power management,” in WiMob’2005, IEEE International
Conference on Wireless And Mobile Computing, Networking And
Communications, 2005., vol. 4. IEEE, 2005, pp. 122–130.

[32] A. Shye, B. Scholbrock, and G. Memik, “Into the wild,” in Pro-
ceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture - Micro-42. New York, USA: ACM Press,
2009, p. 168.

[33] Intel Corporation, “PowerTOP,” 2007. [Online]. Available:
http://www.linuxpowertop.org/

[34] R. Kazman, S. G. Woods, and S. J. Carriere, “Requirements
for Integrating Software Architecture and Reengineering Models:
CORUM II,” in Proceedings of the Working Conference on Reverse
Engineering (WCRE’98), 1998, p. 154.

[35] D. Binkley, “Source code analysis: A road map,” in 2007 Future
of Software Engineering. IEEE CS, 2007, pp. 104–119.

[36] M. Fowler and K. Beck, Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

[37] N. E. Fenton, Software Metrics: A Rigorous Approach. Chapman
and Hall, 1991.

[38] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A Systematic Survey of Program Comprehension
through Dynamic Analysis,” Software Engineering, IEEE Trans-
actions on, vol. 35 (5), pp. 684–702, 2009.

[39] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. De
Man, “Global communication and memory optimizing transforma-
tions for low power systems,” in IEEE International Workshop on
Low Power Design. IEEE, 1994, pp. 203–208.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Professional, 1995.


