
SENSEI: Software Evolution Service Integration
Jan Jelschen

Carl von Ossietzky Universität Oldenburg, Germany
jelschen@se.uni-oldenburg.de

Abstract—Software evolution tools mostly implement a single
technique to assist in achieving a specific objective. Overhauling,
renovating, or migrating large and complex legacy software
systems require the proper combination of several different
techniques appropriate for each subtask. Since few tools are built
for interoperability, the setup of a toolchain supporting a given
software evolution process is an elaborate, time-consuming, error-
prone, and redundant endeavor, which yields brittle and inflexible
toolchains with little to no reusability.

This paper presents SENSEI, an approach to enable the im-
plementation of an integration framework for software evolution
tools using component-based, service-oriented, and model-driven
methods, to ease toolchain creation and enable agile execution of
software evolution projects. It will be evaluated by implementing
and using it to build the toolchains supporting two software
evolution projects, and having practitioners assess its usefulness.

I. INTRODUCTION

Large software evolution, migration, or reengineering
projects usually require a combination of different techniques
to analyze, reverse engineer, transform, and visualize (legacy)
software systems under evolution. As each project has different
goals, toolchains supporting their processes need to be tailored
individually to their specific requirements [1]. Many tools exist,
yet mostly only implement a single technique, and are usually
not designed for interoperability. The lack of interoperability
of software evolution tools is a general challenge of the field,
recognized as such, e.g. by Müller et al. [2], Sim [3], Jin and
Cordy [4], and Mens et al. [5].

Therefore, for each project, a toolchain has to be built by
selecting the techniques required, finding appropriate tools
implementing them, and then integrating these tools. With little
to no means of interoperability, this involves creating a lot of
glue code and data transformations to “wire up” all tools in the
desired ways, a tedious and error-prone task. It yields brittle and
inflexible toolchains, as extending or changing the toolchain,
or swapping one tool for an alternative implementation, will
require to also write new glue code. Consequently, this code
is also non-reusable, as it is usually hard-wired to specific
interfaces of the tools glued together.

The thesis presented in this paper proposes the SENSEI-
approach (Software EvolutioN SErvices Integration), aimed at
improving software evolution tool interoperability, and largely
automate toolchain integration. Based on the fact that a large
body of software evolution tools exist, yet they lack sufficient
interoperability means to be easily integrated into the required,
tailor-made toolchain, the following two objectives are derived:
1) Enabling software evolution practitioners to easily build
toolchains tailored to their project-specific needs, focusing
on the techniques to be employed, and the processes to be
supported, while being as implementation-agnostic as possible,

and abstract from interoperability issues. 2) Enabling tool
developers to easily build tools with standardized, interoperable
interfaces, or extend existing tools, with as little limitations to
implementation technology choices as possible.

The approach taken towards these objectives is based on
viewing software evolution techniques as services, to abstract
from interoperability issues.It entails 1) surveying tools and
techniques, and compiling them into a catalog of standardized
software evolution services, 2) utilizing existing, component-
based technology to provide an integration framework using
the catalog as a basis, and 3) providing a means to describe
software evolution processes in terms of coordinated services,
and to automatically generate toolchains based on the
integration framework.

This paper is outlined as follows: Before describing SENSEI
in detail, Section II presents related work, and highlights
differences to similar approaches. Section III introduces the
proposed solution to the software evolution tool interoperability
problem. Current and ongoing work is presented in Section IV,
followed by an evaluation method in Section V. Section VI
sums up expected contributions of the thesis.

II. RELATED WORK

Sim [3] distinguishes between three levels of tool interoper-
ability, with ad-hoc interaction on the lowest level, exchange file
interaction in the middle, and (API-based) dynamic interaction
on the highest, most desirable level, which SENSEI is aimed at
achieving. Currently, there are standard exchange file formats
such as GXL [6], and tool suites (e.g. Bauhaus [7], Moose [8]),
which are extensible, but require tools to be built specifically
for their environment.

A project sharing some ideas with SENSEI is SOFAS [9], also
aimed at tool integration by orchestrating services found in a
catalog. However, the service term of SOFAS is closely related
to the chosen technology (RESTful web services), whereas
SENSEI tries to provide a technology-independent concept, and
a correspondingly generic service catalog. SOFAS is restricted
to analysis activities, explicitly exploiting their uniformity and
thereby excluding, for example, transformations (restructurings,
refactorings). SENSEI aims at supporting all software evolution
activities and involved techniques.

Within the SENSORIA [10] project, concepts for model-
driven generation of integrated software systems from higher-
level descriptions like BPEL-based orchestrations [11] have
been developed. A similar approach is taken by SENSEI to
automatically derive toolchains from process-oriented descrip-
tions. SENSORIA was neither focused on software evolution,
nor was tool interoperability its central concern, though. The

978-1-4799-3752-3/14 c© 2014 IEEE CSMR-WCRE 2014, Antwerp, Belgium
Doctoral Symposium

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

469



work by Biehl et al. [12] is similar to SENSEI in several
regards, e.g. it is based on services and their orchestration,
and model-driven techniques to derive executable toolchains.
They address the domain of embedded software development.
Discovery and description of relevant services, their cataloging
and their standardization is not covered.

A central part of SENSEI is the creation of a comprehensive,
rigorous catalog of services relevant to software evolution.
There are no surveys of techniques covering the entire field
of software evolution, only specific sub-areas or groups of
techniques, e.g. clone detection [13], refactoring [14], or
slicing [15] are covered. Naturally, neither are such surveys
tailored towards service identification, nor do publications on
specific techniques describe them in terms of services. There
are taxonomies of software evolution or sub-fields, e.g. Buckley
et al. [16], which aid the organization of the field, but do not
provide an in-depth survey of relevant techniques.

In summary, approaches for tool integration in domains
other than software evolution exist, and are partly built around
ideas which are also part of SENSEI. Using services and
their orchestration as high-level descriptions, and model-driven
techniques to derive toolchains has therefore been proven a
viable for tool interoperability. However, these approaches have
been tailored for different application domains, are less generic
than SENSEI, or are limited to subfields of software evolution.
Moreover, no service standardization is offered, limiting
reusability and flexibility, e.g. to exchange one implementation
for another without changing integration logic. To achieve this
level of interoperability, SENSEI aims to establish a catalog of
software evolution services, including a seamless approach to
the orchestration of appropriate implementations.

III. APPROACH

To give an overview of SENSEI, the following is a description
of the different artifacts of the approach, and how they relate
to each other: First, there is the service catalog, containing
rigorous descriptions of software evolution services. With this,
the processes of a software evolution project in need of tool
support can be specified by selecting required services from
the catalog, and describing the way in which they should
interoperate as workflows in an appropriate language. The
service-component registry provides a mapping between ab-
stract services and concrete implementations by tools. The tools
are encapsulated in, or developed as, components, conforming
to the component model of the underlying framework. A set
of model transformations embodies the mapping to a specific
component framework. With all these artifacts, a model-driven
code generator produces the required platform-specific glue
code which realizes tool integration. The final result is a set
of tools integrated into an application framework to execute
the specified software evolution processes.

A deliberate distinction is made between services and
components (cmp. e.g. [17]). The service term is used to
refer to abstract descriptions of functionalities. Components
are viewed as concrete implementations of provided services.
Moreover, the use of service-oriented principles should not be

taken to imply SOA (cmp. [18]), SaaS, or cloud computing.
Due to confidentiality issues, SENSEI is expected to be used
to produce toolchains which can be fully controlled by the
organizations owning the systems under evolution.

SENSEI is thus based on concepts from service-oriented,
component-based, and model-driven software engineering:
Service-orientation provides high-level, implementation-
agnostic descriptions of software evolution techniques.
Component-based frameworks offer the necessary uniformity
to plug in service-providing tools in a generic way. Model-
driven technology provides the link between the two, by
generating concrete toolchains from services orchestrated to
support desired processes using model transformations.

Using these three views, the approach and its challenges
are explained in more detail in the following sections, with
deliverables highlighted in italics.

A. The Service-Oriented View

Taking a service-oriented view towards software evolution
activities lies at the very center of SENSEI. Because services
reside on a conceptual level, they are technology-independent,
which hides interoperability concerns. This only defers the
integration question to a lower level, but it allows to define
meaningful services without regard to their implementation, and
focus on the task of designing processes supporting software
evolution projects (Objective 1 in Section I). To enable this, a
service description meta-model [19] has to be created, naming
all relevant information necessary to choose and use a service,
among them its semantics, input and output artifacts and their
datatypes, as well as classifications into categories, to ease
service discovery. Also, a means to associate services with
capabilities is required, allowing to specify abstract services,
e.g. having a single metrics calculating service in the catalog,
instead of one service for each metric (see Sec. III-C).

Next, the description meta-model has to be populated with
data, i.e. a survey of relevant software evolution tools and
techniques has to be performed [20], to extract services and
compile them into a service catalog, a central deliverable of
the thesis, on which the remaining parts of SENSEI are based
on. The model serves as a template to describe all services of
the catalog consistently. While surveying, it would be natural
to also perform a classification of identified services, yielding a
taxonomy which aids the catalog’s user in finding and choosing
the right service for a given task. The service-oriented view is
a prerequisite for leveraging workflow technology for service
orchestration, based, e.g. on a language like BPEL [21].

B. The Component-Based View

The service-oriented view of SENSEI abstracts from concrete
implementations. The component-based view complements this
with a tangible technology basis for its realization. A component
registry, described by the component description meta-model,
is used to map services to providing components, with concrete
capabilities specified (cmp. Sec. III-C).

SENSEI is designed to be generic with respect to the chosen
implementation technology, however, the choice does have an

470



impact on Objective 2 (Sec. I), i.e. how easy it is to integrate
(existing) tools. A challenge is therefore the elicitation of
requirements for a component model and framework, which
can support software evolution service integration. To ease
integration of existing tools, which are based on completely
different technologies and platforms, a suitable integration
framework should be platform independent, supportive of
diverse integration and implementation technologies, and allow
distribution over a network. To execute processes defined in
a language like BPEL, it should also allow to incorporate
workflow engine technology. After comprehensive evalua-
tion [22], [23], the most promising candidate to serve as target
infrastructure is SCA [24], a set of standards for building
service-oriented and component-based applications. Based on
SCA, a working prototype will be implemented.

C. The Model-Driven View

The model-driven view to SENSEI “ties it all together”:
Here, the high-level artifacts of the service-oriented view –
services and process definitions – are taken and mapped to
implementing components and an interoperability framework
provided through the component-based view. In a way, the
opposite is also true: the model-driven view decouples service-
oriented view from the component-based view, thereby allowing
to replace the technologies chosen for implementation, or parts
thereof, while the conceptual layer remains untouched.

To leverage model-driven technology, all required informa-
tion has to be available as models, conforming to appropriate
meta-models. SENSEI defines four integrated meta-models,
some of which have already been introduced:

1) The service description meta-model, as already introduced,
is used to describe services and create a service catalog. 2) The
component description meta-model is used to register tools
implementing services, forming a component registry. 3) The
orchestration meta-model (possibly instantiated by an existing
process language) is needed to describe software evolution
processes as workflows, i.e. how services should be coordinated
to form the desired toolchain (Objective 1). 4) The service
capability meta-model is used as part of all other models for
different purposes. In the service catalog, it allows to specify
abstract reference services with sets of possible capabilities (e.g.
the actual metrics a metric calculating service can provide). In
a workflow, required capabilities are listed for each referenced
service, and in the registry, the capabilities actually provided
by a component are defined.

Using model transformations, these high-level artifacts
will automatically be turned into platform-specific integration
code, by matching up selected services with implementing
components, respecting specified capabilities, and deploying
the workflow definition to a workflow engine.

IV. CURRENT AND ONGOING WORK

To become familiar with the different fields relevant to the
thesis, extensive literature research into software evolution and
its sub-fields, as well as into service-oriented, component-based,
and model-driven software development has been performed.
A first sketch of the approach was published in 2011 [25].

A number of available service-oriented or component-based
frameworks have been reviewed [23], and some feasibility
experiments have been performed [26], [22].

Current work is focused on framing and populating the
service catalog, arguably the centerpiece of the thesis, from
which the other parts derive. To create the catalog, relevant
software evolution services have to be discovered, first, and then
described with all necessary information to implement, find,
and use them. This is done by an extensive literature survey,
taking into account over 3,000 publications from the field
of software evolution published in roughly the last 15 years,
and using text-mining techniques like automatic clustering and
classification to group and filter out those publications likely
to describe services. A first, simple service description meta-
model has been created to capture the information gathered
this way. This approach, along with early results, has recently
been presented at a workshop [20]. The service description
meta-model has since evolved, and is the subject of a report
presented at “CoNaIISI” [19].

The literature survey, and with it the first version of
the service catalog, is expected to be concluded within the
year 2013. Further work packages will be concerned with
implementing the prototype, extending it with the model-
driven superstructure in a separate step, evaluating SENSEI,
and writing the actual thesis, for a submission in mid-2015.

V. EVALUATION

As a proof-of-concept, the SENSEI-approach will be proto-
typically implemented. To demonstrate its benefits, it is planned
to be used in the context of the following two projects:

Q-MIG. This project [27] is aimed at building and evaluating
a quality-driven, generic toolchain for software migration. An
industry-provided set of tools for reverse engineering and
COBOL-to-Java migration will be embedded in the SENSEI-
framework, complemented by tools for measuring, monitoring,
and comparing software quality metrics evaluated at reading
points situated in between successive migration steps. The
project aims at investigating the impact language migrations
have on a software system’s quality. The quality measurement
can also be used to compare different migration strategies, or
migration tools – provided they can be easily swapped against
each other, a feature SENSEI is expected to provide.

Experts from industry will participate in this project, and
will be asked to assess the expected benefits of using SENSEI,
compared to setting up a project’s tool support without it.

Energy-efficient applications. Software evolution tech-
niques like dynamic and static analysis, and refactoring, can
also be used to monitor and rate an application’s energy
consumption, detect energy code smells, and subsequently
remove them. To support the study of different research
questions in this area (cf. [28], [29], [30]), a suitable tool
infrastructure has to be built, combining tools for static
and dynamic code analysis, metrics evaluation, refactoring,
and visualization, as well as “helper” tools, e.g. for parsing,
unparsing, or data transformation. This research focus therefore
provides the second application for SENSEI’s evaluation.

471



VI. EXPECTED CONTRIBUTIONS

This paper proposed a PhD thesis centered around developing
an approach towards better tool interoperability in software
evolution. SENSEI has been conceived around modern software
engineering principles, making use of concepts borrowed from
service-oriented, component-based, and model-driven software
development. It is designed to make use of existing technology
as much as possible. The main products to be created as
part of SENSEI and the planned thesis in general are: 1) A
service description meta-model, providing a taxonomy and
a classification scheme of software evolution activities and
techniques. 2) A software evolution service catalog instantiating
this meta-model, filled by a comprehensive, structured literature
review, naming, describing, and standardizing services used in
the context of software evolution. 3) An integration framework,
utilizing existing, component-based technology for the target
platform, and a model-driven layer as both the link to, and the
decoupling from, the conceptual service level.

With these contributions, the following are regarded as the
central expected benefits: First, the provision of an integration
framework for software evolution tools is expected to ease
project execution in several ways. The ability to design project
workflows solely based on services frees practitioners from
having to worry about technical issues, allowing them to
focus completely on their main tasks. The automation of tool
integration frees up time and engineering capacity, to get more
actual work done, or execute software evolution projects more
cost-efficiently, or in a more timely manner. The flexibility
gained through automatic integration also enables more agile
processes, giving room for experimentation and the ability to
properly react to unexpected obstacles.

The model-driven approach provides an abstraction layer
between concept and technology level. This decoupling permits
the realization of the SENSEI framework using different
technological spaces, and facilitates independent evolution
of both levels. Through the service catalog and taxonomy,
a comprehensive, structured overview of the whole field of
software evolution, and all major techniques is contributed to
the (research) community. This will organize the field, make
differences and similarities of techniques visible more plainly,
and help identify synergetic potential and avoid redundant
developments. In general, it gives a clearer picture of past and
present research, and the state of the art. It can show research
trends and reveal opportunities for further research.

SENSEI will be validated by applying it in the context of two
software evolution projects, one including an industry partner,
whose software evolution experts will help to assess the value
of using the approach.

REFERENCES

[1] J. Borchers, “Erfahrungen mit dem Einsatz einer Reengineering Factory
in einem großen Umstellungsprojekt,” HMD Themenh. Migr., 34(194),
pp. 77–94, Mar. 1997.

[2] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley,
and K. Wong, “Reverse engineering: a roadmap,” in Proc. Conf. Futur.
Softw. Eng., New York, NY, USA. ACM, 2000, pp. 47–60.

[3] S. E. Sim, “Next generation data interchange: Tool-to-tool application
program interfaces,” in WCRE, 2000, pp. 278–280.

[4] D. Jin and J. R. Cordy, “Ontology-based software analysis and
reengineering tool integration: the OASIS service-sharing methodology,”
21st IEEE Int. Conf. Softw. Maint., pp. 613–616, 2005.

[5] T. Mens, M. Wermelinger, S. Demeyer, R. Hirschfeld, S. Ducasse, and
M. Jazayeri, “Challenges in software evolution,” Proc. Int. Work. Princ.
Softw. Evol. (IWPSE 2005), pp. 13–22, 2005.

[6] R. C. Holt, A. Schürr, S. E. Sim, and A. Winter, “GXL: A graph-based
standard exchange format for reengineering,” Sci. Comput. Program.,
vol. 60, no. 2, pp. 149–170, 2006.

[7] A. Raza, G. Vogel, and E. Plödereder, “Bauhaus–a tool suite for
program analysis and reverse engineering,” in Reliab. Softw. Technol. –
Ada Eur. 2006, LNCS, 4006. Heidelberg: Springer, 2006, pp. 71–82.

[8] S. Ducasse, T. Gîrba, and O. Nierstrasz, “Moose: an agile reengineering
environment,” ACM SIGSOFT Soft. Eng. Notes, 30(5), pp. 99–102, 2005.

[9] G. Ghezzi and H. C. Gall, “A framework for semi-automated software
evolution analysis composition,” Autom. Softw. Eng., 20(3), pp. 463–496,
2013.

[10] M. Wirsing and M. Hölzl, Eds., Rigorous Software Engineering for
Service-Oriented Systems, LNCS 6582. Springer, pp. 541-560, 2011.

[11] L. Gönczy, A. Hegedüs, and D. Varró, Methodologies for model-driven
development and deployment: an overview, LNCS, M. Wirsing and
M. Hölzl, Eds. Heidelberg: Springer, 2011, 6582.

[12] M. Biehl, J. El-Khoury, F. Loiret, and M. Törngren, “On the modeling
and generation of service-oriented tool chains,” Software and Systems
Modeling, pp. 1–20, 2012.

[13] R. Koschke, “Survey of research on software clones,” in Duplic.
Redundancy, Similarity Softw., R. Koschke, E. Merlo, and A. Walenstein,
Eds., vol. 06301. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, 2006.

[14] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Trans.
Softw. Eng., 30(2), pp. 126–139, 2004.

[15] F. Tip, “A survey of program slicing techniques,” J. Program. Lang.,
3(3), pp. 121–189, 1995.

[16] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards a
taxonomy of software change,” J. Softw. Maint. Evol. Res. Pract., 17(5),
pp. 309–332, 2005.

[17] M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou, “Managing
Evolving Services,” IEEE Softw., v28(3), pp. 49–55, 2011.

[18] A. T. Manes, “SOA Is Dead; Long Live Services,”
2009. [Online]. Available: http://apsblog.burtongroup.com/2009/01/
soa-is-dead-long-live-services.html

[19] J. Jelschen, J. Meier, M.-C. Ostendorp, and A. Winter, “A Description
Model for Software Evolution Services,” in CoNaIISI’2013, ISSN
2346-9927, Cordoba, Argentina, Nov. 2013.

[20] J. Jelschen, “Discovery and Description of Software Evolution Services.”
Softwaretechnik-Trends, 33(2), pp. 59–60, 2013.

[21] OASIS, “Web Services Business Process Execution Language Version
2.0,” 2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

[22] J. Meier, “Eine Fallstudie zur Interoperabilität von Software-Evolutions-
Werkzeugen in SCA,” Bachelor’s thesis, University of Oldenburg, 2012.

[23] M. Ringe, “Vergleich komponentenbasierter Frameworks zur Werkzeug-
integration,” Master’s thesis, University of Oldenburg, 2013.

[24] OASIS, “Service Component Architecture Assembly Technical
Committee,” 2013. [Online]. Available: https://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=sca-assembly

[25] J. Jelschen and A. Winter, “Towards a Catalogue of Software Evolution
Services,” Softwaretechnik-Trends, 31(2), 2011.

[26] J. Jelschen and A. Winter, “A Toolchain for Metrics-based Comparison
of COBOL and Migrated Java Systems,” Softw. Trends, 32(2), pp.
67–68, 2012.

[27] Software Engineering Group of Carl von Ossietzky University and pro
et con Innovative Informatikanwendungen GmbH, “Q-MIG: Building
a Quality-Driven, Generic Tool-Chain for Software Migration,” 2013.
[Online]. Available: http://se.uni-oldenburg.de/Q-MIG

[28] J. Jelschen, M. Gottschalk, M. Josefiok, C. Pitu, and A. Winter, “Towards
Applying Reengineering Services to Energy-Efficient Applications,” in
16th Eur. Conf. Softw. Maint. Reengineering, 2012, pp. 353–358.

[29] M. Gottschalk, M. Josefiok, J. Jelschen, and A. Winter, “Removing
Energy Code Smells with Reengineering Services,” in Informatik 2012,
U. Goltz, M. Magnor, H.-J. Appelrath, H. K. Matthies, W.-T. Balke, and
L. Wolf, Eds., LNI 208. Bonner Köllen Verlag, 2012, pp. 441–455.

[30] M. Gottschalk, J. Jelschen, and A. Winter, “Energy-Efficient Code by
Refactoring.” Softwaretechnik-Trends, 33(2), 2013.

472


