
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

B.Sc. Computer Science

Bachelor Thesis

Natural Language Specifications for
Safety-Critical Systems

written by

Benjamin Justice

Supervisors:

Prof. Dr. Andreas Winter
Dr. Tom Bienmüller

Oldenburg, November 20, 2013

3

Abstract

ISO 26262 prescribes the usage of formal methods for the development of safety-critical sys-
tems. A very effective concept is the formalization of requirement specifications written in nat-
ural language. The BTC EmbeddedSpecifier assists in this formalization process, whereby it
requires intervention by the user. This thesis introduces a grammar and meta-model based ap-
proach for the formalization of natural language specifications. The approach, which is tailored
towards the concept of the BTC EmbeddedSpecifier, translates the natural language specifica-
tion into a semi-formal intermediate state. While the approach limits the spectrum of process-
able natural language specifications with its grammar, it is easily adaptable and extendable.

4

5

Contents

Abstract 3

1 Introduction 7
1.1 Problem Description . 7
1.2 Problem Statement . 8
1.3 Approach . 8

2 Thesis Workflow 9

3 The BTC EmbeddedSpecifier 11
3.1 Overview . 11
3.2 Concept . 12
3.3 Common Use-Cases for the BTC EmbeddedSpecifier 12
3.4 The User Interface . 14
3.5 Workflow Example . 15
3.6 Conclusion . 23
3.7 ISO 26262 . 23

4 Patterns 25
4.1 Concept . 25
4.2 Kernel Pattern . 25
4.3 Activation Mode . 34
4.4 Start-up Phase . 35

5 Grammar 37
5.1 Concept . 37
5.2 Basic Structure of all Patterns . 38
5.3 Common Structures within Example Requirements 41
5.4 Constructing the Grammar . 61
5.5 Grammar Validation . 64

6 Meta-Model 67
6.1 Meta-Model of a Pattern . 67
6.2 Meta-Model of a Kernel Pattern . 67

7 Prototype 71
7.1 Requirements . 71
7.2 Concept and Approach . 73
7.3 Implementation . 79

6 Contents

8 Extending the Prototype 85
8.1 Extending the Grammar Rules . 86
8.2 Extending the KernelPatternStructureFactory . 86

9 Outcome 87
9.1 Validating the Prototype . 87
9.2 Freedom of natural language specifications . 88
9.3 Conclusion . 88
9.4 Further Research . 89
9.5 Related Work . 89

10 Appendix 91

Abstract 105

Glossary 107

Abbreviations 111

Figures 113

Tables 117

Literature 119

Index 121

7

1 Introduction

This chapter briefly describes the content as well as the intent of this bachelors thesis. Section 1.1
gives an overview of the problem, which this thesis aims to solve. Section 1.2 describes the bachelor
thesis goal and section 1.3 describes how the goal is achieved.

1.1 Problem Description

The development of safety critical systems such as cars is obliged to follow harsh industry stan-
dards. For the automotive industry, the industry standard ISO 26262 defines strict quality criteria
for requirements specifications, test coverage, and other aspects of the software development process
[Nat12]. To meet these requirements, the ISO 26262 defines a V-Model as a reference software de-
velopment process [ISO12]. Reactive Systems, Inc. presented a simplified version of the V-Model in
their whitepaper "Achieving ISO 26262 Compliance with Reactis", which is depicted in Figure 1.1
[Rea12].

Figure 1.1: Simplified V-Model of the ISO 26262 standard [Rea12].

With the BTC EmbeddedSpecifier, BTC Embedded Systems offers software, which aids in devel-
oping safety critical systems while satisfying these requirements on the software development pro-
cess. The BTC EmbeddedSpecifier aims to enable a broader user base to formulate requirements in
a quality, which fulfills the needs of the ISO 26262. By abstracting the formal requirements towards

8 Introduction

natural language, also qualified users, which are less knowledgeable of formal methods, are enabled
to produce formal requirements. [BTC13].

The starting point for development within the development of safety-critical systems is often a
natural language specification. In order to achieve a semi-formal notation, the user must structure his
natural language specification, so that the requirement can be formalized more easily. Semi-formal
notation within the BTC Embedded Specifier consists of patterns with solid semantics, which can be
represented as automatons. To achieve this semi-formal notation, the user must chose an appropriate
pattern from the BTC Pattern Catalog and map parts of the natural language requirement to predicates
within the pattern. Further formalization requires the semi-formal notation to be connected to an
architecture, such as Matlab Simulink.

In its current state, the BTC EmbeddedSpecifier requires several manual steps in order to achieve
formal requirements. Section 3 offers an overview of this process. Prior to selecting a pattern and
mapping predicates, the user must understand the formal semantics of the patterns in order to identify
which patterns are compatible.

1.2 Problem Statement

Only very few employees in a company have the required knowledge to use formal methods by hand.
By abstracting formal methods to a natural language level, these methods can be used by a broader
range of employees. The gap between natural language specification and semi-formal notation is
greater than the gap between semi-formal notation and formal notation. Thus, an opportunity to ab-
stract the formalization process arises within the Derivation of a semi-formal notation from a natural
language specification. In order to do so, one can attempt to automate two steps of the process:
Selecting a compatible pattern as well as identifying variables to be mapped to the pattern.

1.3 Approach

This bachelor thesis aims to improve the automation of the process between natural language spec-
ification and semi-formal notation. To achieve this, a grammar will be defined, which can identify
which patterns the natural language specification complies to. This grammar will be derived from
fictional, aswell as real example requirements. Using a well-defined grammar, the natural language
specification’s elements of interest could automatically mapped to predicates within the target pat-
tern. This bachelor thesis will offer a prototype which can check if a natural language requirement
is compliant to the grammar of BTC EmbeddedSystems AG’s patterns and identify which pattern it
complies to, as well as mapping the sentences elements of interest to the patterns predicates. Addi-
tionally, example sentences based on the grammar could be displayed to the user, so he can see which
structure his natural language requirement must have, in order to conform to a given pattern.

9

2 Thesis Workflow

This chapter gives an overview of the workflow used to achieve the goal of this beachelor thesis. The
workflow is visualized as an UML Activity Diagram in Figure 2.1. The workflow is organized in four
segments: Analysis, Prerequisites, Implementation and Validation.

Figure 2.1: Thesis workflow organized in four segments.

The Analysis segment contains activities, which analyze the status quo. This includes an analysis
of the BTC EmbeddedSpecifier in chapter 3 aswell as the patterns in chapter 4, which are used to
represent semi-formal and formal requirements within the BTC EmbeddedSpecifier.

The Prerequisites segment adresses necessary prerequisites for the implementation of a pattern
recognition process. This includes the identification of linguistic structures within the patterns, as
well as the definition of a grammar and a meta-model. As the identification of the linguistic structure
is bound to the patterns, it is included in chapter 4. Based on these linguistic structures, a grammar
is defined in chapter 5. As a pattern recognition embedded in the grammar parsing process is not
very extendable, a meta-model is defined in chapter 6. The meta-model allows for a cleaner pattern
recognition implementation as well as a lucid extendability process.

The Implementation segment focusses on the implementation of the prototype for the thesis. Chap-
ter 7 includes the design of the pattern recognition process based on the grammar and meta-model,
as well as the implementation of this process within the prototype. The extendability of the approach,
which it inherits from the grammar and meta-model, is displayed in chapter 8 along with an example.

10 Thesis Workflow

The Validation segment concludes the thesis with a validation in chapter 9. The validation explains
what was achieved within the thesis and what can be achieved in further research. Furthermore an
outline of related work is given in chapter 9 as well.

11

3 The BTC EmbeddedSpecifier

This chapter describes the software BTC EmbeddedSpecifier by BTC Embedded Systems AG. Sec-
tion 3.1 provides an overview of what the BTC Embeddedspecifiers does and how it affects software
development. Section 3.2 offers an abstract explanation of the concepts behind the BTC Embedded-
Specifier. Section 3.3 describes some example use-cases of the BTC EmbeddedSpecifier. Section
3.5 presents a simple workflow example to visualize the concepts and the usage of the BTC Em-
beddedSpecifier. Section 3.6 offers a summary of the implemented and missing features of the BTC
EmbeddedSpecifier. Lastly, section 3.7 gives a short overview of ISO 26262.

3.1 Overview

The BTC EmbeddedSpecifier is a software developed by BTC Embedded Systems to support the de-
velopment of safety-critical systems which must fulfill industry standards. This chapter will regard
ISO 26262, which is described in section 3.7, as an example industry standard. The ISO 26262 spec-
ifies itelf within a V-Model software development process [FER13]. The BTC EmbeddedSpecifier
accompanies the software development in every phase of the V-Model as shown in Figure 3.1.

Figure 3.1: The V-Model in four layers with its artefacts (green), the BTC
EmbeddedSpecifiers artefacts (blue) and its C-Observers(yellow)

The V-Model is split into four layers with dashed lines. Every layer contains artefacts which are
represented by rectangles. The artefacts in green are created within development with the V-Model
described in ISO 26262 [ISO12]. The BTC EmbeddedSpecifiers artefacts are depicted in blue and are
parallel to the left-hand artefacts of the V-Model . In the Semiformal Layer, the V-Model’s Natural
Languge Requirements is extended by a Semiformal Notation on the BTC EmbeddedSpecifiers side.

12 The BTC EmbeddedSpecifier

In the Functional Model layer, aswell as in the Implementation Model and the C-Code layers, the BTC
EmbeddedSpecifier generates a Formal Notation to the V-Model’s corresponding artefacts. The BTC
EmbeddedSpecifier generates C-Observers, which are represented by yellow ellipses. C-Observers
are methods written in the C programming language which monitor the activity of a system in terms
of violation of a requirement. The BTC EmbeddedSpecifiers workflow aims to generate C-Observers
for each layer of the V-Model to offer a direct connection to the corresponding test artefacts on the
right-hand side. In it’s current version, this is only possible for the Code Layer .

3.2 Concept

The BTC EmbeddedSpecifiers workflow begins with requirements in form of a natural language spec-
ification and ends with the generation of C-Observers. This section will introduce the terminology
[BTC], concepts and indivicual operations used by the BTC EmbeddedSpecifier by means of the ab-
stract example shown in Figure 3.2 in five steps. A realistic workflow example is given in section
3.5.

In step one, the user chooses the requirements he wishes to formalize. In this case, the requirements
is “If it is dark, the lights turn on.”. The next step is to identify elements of interest within this
requirement. These elements of interest are referred to as Macros. Macros are the variables within
the natural language specification. For this requirement, the macros are it is dark and lights turn on.
After the macros have been identified, a pattern must be created, in order to achieve a semiformal
specification. This is done by mapping the requirement to a kernel pattern, which must be selected
from a kernel pattern library. The BTC EmbeddedSpecifier requires an activation mode and a startup
phase aswell, which are ignored in this example, but are explained in chapter 3.5. A kernel pattern
is an automaton, which represents a logical sequence. In this case, the automaton must be able to
represent If x, then y. The requirement is mapped to the kernel pattern via the macros. As can be
seen in step two, the resulting pattern represents If “it is dark”, then “lights turn on”. This pattern is
not formal yet, because it is dark and lights turn on can be freely interpreted. They must be mapped
to the interface of a concrete architecture, such as Matlab Simulink. Once the pattern is mapped
to a concrete architecture, the pattern is unambiguous. The formal pattern represents if (lightsensor
== 0), then (light = 1). In order to generate a C-Observer, the BTC EmbeddedSpecifier requires a
contract, which is created in step 4. A contract consists of a pattern which it refers to as commitment
and an arbitrary number of patterns which it refers to as assumptions. If the systems state conforms
to its assumptions, a contract guarantees, that the systems state also conforms to the commitment.
The BTC EmbeddedSpecifier can generate a C-Observer for the contract in step four without further
intermediate steps. In step five, the generated C-Observer is depicted. C-Observers can observe a
systems state at runtime in order to report when the system violates the C-Observers contract, thus
violating the underlying requirement. An overview of use cases for C-Observers is given in section
3.3

3.3 Common Use-Cases for the BTC EmbeddedSpecifier

A common first step with the BTC EmbeddedSpecifier for the customer is to realize that their require-
ments are not unambiguous enough to be formalized. The customer can then improve the quality of
their requirements, eventually splitting requirements up into smaller requirements. By formalizing

3.3 Common Use-Cases for the BTC EmbeddedSpecifier 13

Figure 3.2: Abstact workflow from the natural language specification to the C-Observer

14 The BTC EmbeddedSpecifier

the requirements, the customer receives a formal notation for the functional and the implementation
models aswell as for the C-Code to be used in the productive environment. This gives the customer
opportunities for verification and tracibility measurements. The C-Observers can be used within a
testing environment like the BTC EmbeddedTester to observe the test system and verify it. The C-
Observers can also be used as components within the final product to observe the state of the system
and give signals to other components if an exceptional state is observed. The formal notations and
the C-Observers can be used in a versatile manner and are used differently by each customer.

3.4 The User Interface

The BTC EmbeddedSpecifier is based on the Eclipse Platform. After creating a new profile, the
user can see the softwares user interface. The graphical user interface consists of four areas, as seen
in Figure 3.3. The Profile Navigator in the left area allows for easy navigation within the profiles
resources. After creating a new resource in the Profile Navigator or selecting an existing one, details
about the resource are displayed in the editor area at the top. BTC EmbeddedSpecifier profiles have
their requirements specification in the Pool folder. After importing an architecture, the architectures
data is located next to the Pool. In addition to the details in the editor area, the user can see properties
of the resource in the bottom area. The Interfaces of the resource can be seen on the right. If the
resource is within a requirements specification, the Macros are displayed within the interface area.
If the resource is within an imported architecture, macros are displayed along with signal interfaces
defined by the architecture.

Figure 3.3: BTC EmbeddedSpecifier after creating a new profile

Source: BTC EmbeddedSpecifier

3.5 Workflow Example 15

3.5 Workflow Example

This section will explain a simple workflow to obtain C-Observers from natural language require-
ments with the BTC EmbeddedSpecifier. The example used is provided together with the BTC Em-
beddedSpecifier and is called Power Window. It contains natural language requirements for an electric
window controller for cars. The example also contains a function model, an implementation model
and the C-Code of the window controls, so that all four levels of the V-Model can be processed within
this section. After creating a new project, the user must first import requirements, which is described
in section 3.5.1. Section 3.5.2 will describe the process of bringing the natural language requirements
into a semiformal form. In section 3.5.3 the concrete architecture will be imported and the semiformal
requirement will become fully formalized. Finally Section 3.5.4 will cover the generation and use of
C-Observers, which are the final artifacts of BTC EmbeddedSpecifier.

3.5.1 Importing Requirements

The first step while working with the BTC EmbeddedSpecifier is importing the requirements specifi-
cation. The sources from which requirements specifications can be imported are IBM Doors as well
as Microsoft Excel files. In this example the requirements specification is available as a Microsoft
Excel file.

When importing a Microsoft Excel file, the user must configure how the BTC EmbeddedSpecifier
should interpret the excel sheet’s columns. After clicking on finish, the requirements are visible in the
Profile Navigator in Pool/Requirements/. The user can click on a requirement to see the name and the
description and verify that the requirements specification was imported correctly. This example will
focus on requirement REQ_PW_4_1, which can be seen in Figure 3.4. The requirement’s description
is:
If the window moves up and an obstacle is detected, the window has to start moving down in less than
10ms.

Figure 3.4: Imported Example Requirement in BTC EmbeddedSpecifier

Source: BTC EmbeddedSpecifier

16 The BTC EmbeddedSpecifier

3.5.2 Defining Semiformal Requirements

After the requirements were imported in section 3.5.1, they should be formalized. To achieve formal
requirements, a semiformal intermediate stage is necessary. This section will explain how to create
macros and patterns, which are required to achieve the semiformal stage.

Figure 3.5: Creating macros from the natural language requirement

Source: BTC EmbeddedSpecifier

Creating Macros

Macros are the interface of the semiformal notation. They are linked to the formal notations interface
in section 3.5.3. The macros are also used to map the natural language specification to the pattern in
the next section. First the user choses the requirement he wishes to bring into a semiformal stage. In
order to define macros the user must mark elements of interest. For REQ_PW_4_1 these elements of
interest are window moves up, obstacle is detected and start moving down. The user must mark an
element of interest within the requirements description, right click on it, and select “Create Macro”
within the context menu as seen in Figure 3.5.

After doing so, the BTC EmbeddedSpecifier has linked the natural language specifications words
to a macro. This step is to be repeated for every element of interest.

Creating a pattern

After all macros within the requirement have been identified, a pattern must be created for the re-
quirement. Patterns are the formal representation for requirements within the BTC EmbeddedSpeci-
fier [BTC12]. Patterns consist of a kernel pattern, a start-up phase and an activation mode. A kernel
pattern is an automaton which contains the business logic of a pattern. BTC offers a broad selection
of pre-defined kernel patterns for the user to chose from [BTC12]. The start-up phase contains in-

3.5 Workflow Example 17

Figure 3.6: Creating a pattern from the natural language requirement

Source: BTC EmbeddedSpecifier

formation about when the pattern is activated. The activation mode determines, if the pattern can be
activated repeatedly.

Specifying a pattern for the requirement is done by selecting a part of the description, right click-
ing, and selecting create pattern from the context menu as seen in Figure 3.6. In this example, the
entire description must be selected. Note that Assumption: [...] is not selected. After creating the
pattern, BTC EmbeddedSpecifier displays errors as depicted in Figure 3.7, because the new pattern
is undefined. To define the pattern, the user must click on the ...-Button next to the dropdown Menu
after Base Pattern.

18 The BTC EmbeddedSpecifier

Figure 3.7: The newly created pattern in BTC EmbeddedSpecifier

Source: BTC EmbeddedSpecifier

This opens the BTC EmbeddedSpecifier’s pattern library which can be seen in Figure 3.8. The
kernel pattern library offers a selection of kernel patterns on the left. When a kernel pattern is cho-
sen from the list, details about the kernel pattern are displayed including a timeline along with a
description of the kernel pattern and the corresponding automaton. For each startup phase available
in conjunction with the kernel pattern, a unique representation exists. Every kernel pattern contains
variables, in which macros can be inserted into.

In this case the kernel pattern P_implies_finally_Q_B can represent the requirement REQ_PW_4_1,
because REQ_PW_4_1, as an abstract statement, can be formulated as If (“window moves up” and
“obstacle detected”) implies finally “start moving down” after “10ms”. The user must additionally
chose the startup phase and the activation mode. The startup phase Immediately matches this require-
ment, because the window control should be active after the system has started up. The activation
mode for this requirement is Cyclic, because the requirement must be fulfilled repeatedly while the
system is running. After selecting the activiation mode and start-up phase, the new kernel pattern,
cyclic_P_implies_finally_Q_B_after__N_steps.

After a viable kernel pattern has been selected, the user must define boolean expressions for the
variables defined in the kernel pattern. For this example the boolean expression for P is $window-
MovesUp && $obstacleIsDetected and the boolean expression for Q is $startMovingDown. The
variable max_X must be set to 0.010 seconds for this example requirement, as the statement must be
true after a maximum time of 10 milliseconds. The BTC EmbeddedSpecifier now has a semiformal

3.5 Workflow Example 19

Figure 3.8: Selecting the kernel pattern from the kernel pattern library

Source: BTC EmbeddedSpecifier

representation of the requirement, because the automaton is a concrete model for the requirement. In
order for a formal requirement to be present, the user must link the semiformal notation to a concrete
architecture’s interface, which is explained in section 3.5.3.

20 The BTC EmbeddedSpecifier

3.5.3 Formalizing the requirements

In order to achieve a formal representation of a requirement, the BTC EmbeddedSpecifier requires
so-called contracts for the pattern’s macros to be mapped to an architecture’s signals. A contract
consists of a single pattern as an assurance and an arbitrary amount of patterns as assumptions. If the
systems state conforms to its assumptions, a contract guarantees, that the systems state also conforms
to the commitment. Contracts are used internally by the BTC EmbeddedSpecifier to link the patterns
to a concrete architecture. The user can import the EmbeddedTester profile from the PowerWindow
Example to receive a concrete architecture, which the semiformal macros can be mapped to. After
importing the architecture, the user must create a contract. For this example the user right clicks on
the pattern P_REQ_PW_4_1 in the profile navigator and selects create pattern.

The BTC EmbeddedSpecifier automatically creates a pattern without assumptions which has the
pattern P_REQ_PW_4_1 as its commitment as is visible in Figure 3.10. As this example requirement
doesn’t require any assumptions, the contract is complete. The contract along with its corresponding
patterns and macros must be copied to the architecture. This is done by simply copying the contract
and pasting it into the concrete architecture, which is the TargetLink Model in this case. As depicted
in Figure 3.9, the BTC EmbeddedSpecifier will offer to copy the macros and patterns required by the
contract aswell.

Figure 3.9: Copying contracts to an architecture

Source: BTC EmbeddedSpecifier

After confirming the copy operation, the user is confronted with errors within the architecture as
seen in Figure 3.10. This is due to the interface of the architecture being undefined. The interface
of the architecture, in contrast to the requirements specification, does not consist of Macros. The
architecture has clearly defined input and output signals. The user must map the macros to the signals.
This is done by selecting a macro within the architecture and entering a signal condition as seen in
Figure 3.11. In this example the macros must be defined as in the following table:

Macro Definition
windowMovesUp move_up == 1
obstacleIsDetected obstacle_detection == 1
startMovingDown move_down == 1

The macros are automatically synchronized between the TargetLink and the Production Code Host
folders within the BTC EmbeddedSpecifier. The BTC EmbeddedSpecifier now has a formal represen-
tation of the requirement. With this requirement, BTC EmbeddedSpecifier can generate a C-Observer
as shown in section 3.5.4.

3.5 Workflow Example 21

Figure 3.10: Erroneous requirements specification within the TargetLink architecture and
C-Code

Source: BTC EmbeddedSpecifier

Figure 3.11: Formalizing the requirements specification via signal mapping

Source: BTC EmbeddedSpecifier

22 The BTC EmbeddedSpecifier

3.5.4 Generating a C-Observer

Having a formal requirement specification, the BTC EmbeddedSpecifier can generate a C-Observer
for the contract which has P_REQ_PW_4_1 as its commitment. C-Observers are Observers written in
the C programming language and can observe the state of a system to recognize when its associated
contract, i.e. the requirement which is the contracts commitment, has been violated. This contract is
present within the TargetLink architecture and the Production Code Host architecture. In its current
version, the BTC EmbeddedSpecifier can only generate C-Observers for the Production Code Host
architecture. This is done by right-clicking the contract and selecting Generate C-Observer from
the context menu. The BTC EmbeddedSpecifier will automatically generate the C-Observer. The
C-Observers code can be viewed by selecting the C-Observer within the Profile Navigator.

Figure 3.12: The generated C-Observer

Source: BTC EmbeddedSpecifier

3.6 Conclusion 23

3.6 Conclusion

As was described in section 3.5, the BTC EmbeddedSpecifier can assist the user in the process of
translating a natural language specification to a formal requirement. These formal requirements can
even be used to automatically generate tests for the target architecture. However the workflow from a
natural language specification to a formal requirement requires many interventions by the user. This
section also demonstrated, that the transition from a semi-formal to a formal requirement only re-
quires a mapping to the target architecture. In contrast to this procedure, the transition from a natural
language requirement to a semi-formal requirement is very ambiguous and thus requires experience
with formal methods. A major improvement for the usability of the BTC EmbeddedSpecifier would
be the abstraction or automation of the process from natural language specification to formal require-
ment. By doing so, the required experience with formal methods can be reduced by a significant
amount.

3.7 ISO 26262

The ISO 26262 “Road Vehicles - Functional Safety” is an ISO norm which was released in 2011. It
consists of ten parts and contains detailed regulations for the functional security of electronic systems
within motor vehicles [ISO12]. While part one is an introduction and part ten is a glossary, parts two
to eight describe the standard within the eight phases of a V-model. The norm adresses hazards which
are caused by malfunctioning of the electronic system.

While mechanical damage is not adressed by ISO 26262, a human bodypart in between a closing
window and similar hazards are adressed by the norm. Depending on several security aspects, the
product is classified in ASIL levels (ASIL=automotive safety integrity level). There are four ASIL
levels, from A (lowest) to D (highest). A product must fulfill at least ASIL A in order to become ISO
26262 certified [Nat12].

24 The BTC EmbeddedSpecifier

25

4 Patterns

Patterns were explained very roughly in section 3.5.2. BTC Embedded Systems AG uses patterns to
represent semiformal and formal requirements in several products [BTC]. This chapter offers a more
detailed view on patterns in section 4.1. Section 4.2 focusses on the kernel pattern, which is a patterns
core component. It introduces the several kernel patterns in use by BTC EmbeddedSystems AG and
defines natural language specifications for each kernel pattern. These natural language specifications
are later used to validate the grammar-based approach proposed in section 1.3. Section 4.3 introduces
the activation modes, whereas section 4.4 introduces the start-up phases.

4.1 Concept

Each pattern consists of an activation mode, a Kernel Pattern and a start-up phase. Every kernel
pattern contains Predicates. These Predicates can be Triggers, Actions or quantities such as time
intervals. Triggers are conditions, which must be fulfilled in order for Actions to take place. Figure
4.1 displays an example pattern, in which P is a Trigger and Q is an Action. Initial is the Activation
Mode, P_implies_Q_X_steps_later is the Kernel Pattern and immediate is the Start-Up Phase. As is
visible within this example, a patterns structure can be extracted from its name. The basic logic of the
pattern is described in its kernel pattern. The activation mode and start-up phase influence the logic
of the kernel pattern, resulting in a pattern which contains the kernel patterns logic, but can support
cyclic occurrences of the kernel patterns logic, for example. Section 4.2 elucidates the concept of
Kernel Patterns in detail and offers an overview of all available kernel patterns. Section 4.3 explains
the term Activation Mode and introduces the possible activation modes. Section 4.4 explains the term
Start-Up Phase and introduces the possible start-up phases.

Figure 4.1: Composition of a patterns name.

4.2 Kernel Pattern

The Kernel Pattern is the main component of every pattern. It is represented by a Büchi automaton,
which is an extension of automata, which can accept input of infinite length and contains an error
state. Further details about Büchi automata are explained by Perrin [PP04].

The Kernel Patterns are classified by Triggers, which are depicted in yellow in Figure 4.2. The
three main categories are Progress, Invariant and Ordering kernel patterns. Every category has sev-
eral actions, which are marked in red. Invariant kernel patterns are described in section 4.2.1. Section
4.2.2 offers a detailed description of Progress kernel patterns, which are further divided into sub-
categories. Lastly section 4.2.3 introduces the Ordering kernel patterns. Predicates are depicted in
bold font within the example requirements within this section. These examples were mostly created

26 Patterns

by two english native speakers, who study computer science. Thus, most of these requirements are
formulated based on some best practices from [PR11].

Figure 4.2: Classification of the kernel patterns. Triggers are represented in yellow, while
actions are represented in red. [BTC]

4.2.1 Invariant

The Invariant kernel patterns provide an invariant condition which must be satisfied. This category
contains a single kernel pattern type: while. This pattern type consists of two kernel patterns:

• Q_while_P specifies that if the condition P is true, then the condition Q must be true as well.

Kernel Pattern Q_while_P
Examples - The wipers are active while it rains.

- The parking sensors beep while an obstacle is detected.
- The fuel display blinks while the fuel level is low.
- The fuel display blinks as long as the fuel level is low.

Common Structures - Q while P.
- Q as long as P.

• Q_while_P_B is analogous to Q_while_P, however it adds a time interval in which P must evaluate
to false.

4.2 Kernel Pattern 27

Kernel Pattern Q_while_P_B
Examples - The wipers are active for a maximum of 10 seconds while it rains.

- The parking sensors beep for a maximum of 10 seconds while an ob-
stacle is detected.
- The fuel display blinks for a maximum of 10 seconds as long as the fuel
level is low.

Common Structures - Q for a maximum of X TIME while P.
- Q for a maximum of X TIME as long as P.

4.2.2 Progress

The Progress category is divided into three subcategories: Simple Trigger, Temporal Trigger, No
Trigger. The following three subsections describe these subcategories and the corresponding kernel
patterns.

Simple Trigger

The Simple Trigger category is subdivided into two categories: triggers and implies.

implies

The implies category contains eight kernel patterns, which cover the case of one expression implicat-
ing another expression.

• P_implies_finally_Q_B specifies that if the condition P is true, then the condition Q becomes true
sometime within the next X steps.

Kernel Pattern P_implies_finally_Q_B
Examples - If a crash is detected, then an emergency signal is sent within 10 ms.

- A detected crash implies that an emergency signal is sent within 10 ms.
Common Structures - If P, then Q within B TIME.

- P implies that Q within B TIME.

• P_implies_finally_globally_Q_B extends P_implies_finally_Q_B by the property, that Q must
remain true forever.

Kernel Pattern P_implies_finally_globally_Q_B
Examples - If a crash is detected, then an emergency signal is sent continuously

within 10 ms.
- A detected crash implies that an emergency signal is sent continuously
within 10ms.

Common Structures - If P, then Q continuously within B TIME.
- P implies that Q continuously within B TIME.

• P_implies_globally_Q specifies that if the conditions P and Q evaluate to true, then Q must remain
true as long forever.

28 Patterns

Kernel Pattern P_implies_globally_Q
Examples - If a crash is detected, then an emergency signal is sent continuously.

- A detected crash implies that an emergency signal is sent continuously.
Common Structures - If P, then Q continuously.

- P implies that Q continuously.

• P_implies_Q_atleast_X_steps_after_P specifies that if the condition P is true, then the condition
Q becomes true exactly X steps after P becomes false.

Kernel Pattern P_implies_Q_atleast_X_steps_after_P
Examples - If the lights are on and it is dark, then the lights turn on at least 1

second after the lights turn off and it is dark.
- Lights on and darkness imply that the lights turn on at least 1 second
after the lights turn off and it is dark.

Common Structures - If P and not Q, then Q at least X TIME after not P and not Q.
- P and not Q implies that Q at least X TIME after not P and not Q.

• P_implies_Q_during_X_steps specifies that if the conditions P and Q are true, then the condition
Q remains true for the next X steps.

Kernel Pattern P_implies_Q_during_X_steps
Examples -If it rains and the wipers are active, then the wipers are active for 30

seconds.
-If it rains and the wipers are active, then the wipers are active during
the next 30 seconds.
- Rain and active wipers imply that the wipers are active for 30 seconds.
- Rain and active wipers imply that the wipers are active during the next
30 seconds.

Common Structures - If P and Q, then Q for X TIME.
- P and Q imply that Q for X TIME.
- P and Q imply that Q during the next X TIME.

• P_implies_Q_during_next_X_steps specifies that if the condition P is true, then the condition Q
becomes true for the next X steps.

Kernel Pattern P_implies_Q_during_next_X_steps
Examples -If it rains, then the wipers are on for 30 seconds.

-If it rains, then the wipers are on during the next 30 seconds.
-Rain implies that the wipers are on for 30 seconds.
-Rain implies that the wipers are on during the next 30 seconds.

Common Structures - If P, then Q for X TIME.
- If P, then Q during the next X TIME.
- P implies that Q for X TIME.
- P implies that Q during the next X TIME.

• P_implies_Q_at_step_X_thereafter specifies that if the condition P is true, then the condition Q
must be true exactly X steps later.

4.2 Kernel Pattern 29

Kernel Pattern P_implies_Q_at_step_X_thereafter
Examples -If it rains, then the wipers are on exactly 30 seconds later.

-If it rains, then the wipers are on exactly 30 seconds thereafter.
-Rain implies that the wipers are on exactly 30 seconds thereafter.
-Rain implies that the wipers are on exactly 30 seconds later.

Common Structures - If P, then Q exactly X TIME later.
- If P, then Q exactly X TIME thereafter.
- P implies that Q exactly X TIME later.
- P implies that Q exactly X TIME thereafter.

• P_implies_Q_X_steps_later specifies that if the condition P is true and the condition Q is not
true, then the condition Q becomes true exactly X steps later.

Kernel Pattern P_implies_Q_X_steps_later
Examples - If a crash is detected and the airbags are not released, then the airbags

are released exactly 10 ns later.
- A detected crash and unreleased airbags implies that the airbags are
released exactly 10 ns later.

Common Structures - If P and !Q, then Q exactly X TIME later.
- P and !Q imply that Q exactly TIME later.

triggers

The triggers category contains two kernel patterns, which cover the simultaneous fulfillment of two
expressions, which imply an action until a third expression, which is mutually exclusive to one of the
first two expressions, is satisfied.

• P_triggers_Q_unless_S determines that if the expression P is true, then either the expression Q or
the expression S must be true in the same step. If Q was true during that step, then it must remain
true until the expression S becomes true. Depending on whether P and Q or P and S are true, this
pattern covers two distinct behaviors.

Kernel Pattern P_triggers_Q_unless_S
Examples - If it is dark and the lights are on, then the lights are on until it is bright.

- If the vehicle in front decelerates and the vehicle decelerates, then the
vehicle decelerates until the safety distance is restored.

Common Structures - If P and Q, then Q until S.

• P_triggers_Q_unless_S_within_B is analogous to P_triggers_Q_unless_S, however it adds a
time interval in which S must evaluate to true.

Kernel Pattern P_triggers_Q_unless_S_within_B
Examples - If it is dark and the lights are on, then the lights are on until it is bright

within 10 minutes.
- If the vehicle in front decelerates and the vehicle decelerates, then the
vehicle decelerates until the safety distance is restored within 2 seconds.

Common Structures - If P and Q, then Q until S within B TIME.

30 Patterns

Temporal Trigger

The Temporal Trigger category is subdivided into four subcategories: stable implies, stable triggers
releasing, triggering stable implies, triggering within implies.

stable implies

The stable implies category contains kernel patterns, which cover implications after signals have been
stable for a given period of time.

• P_stable_X_steps_implies_afterwards_Q specifies that if the condition P is true for X steps,
then Q must be true after exactly X steps. If P is not true for the entire duration of X steps, then
the evaluation of Q is irrelevant.

Kernel Pattern P_stable_X_steps_implies_afterwards_Q
Examples - If it rains for 1 minute, then the wipers are activated.

- Rain for 1 minute implies that the wipers are activated.
Common Structures - If P for X TIME, then Q.

- P for X TIME implies that Q.

• P_stable_X_steps_implies_finally_Q_B specifies that if the condition P is true for X steps, then
Q must be true sometime within Y steps after the X steps are over. If P is not true for the entire
duration of X steps, then the evaluation of Q is irrelevant.

Kernel Pattern P_stable_X_steps_implies_finally_Q_B
Examples - If it rains for 1 minute, then the wipers are activated within 30 seconds.

- Rain for 1 minute implies that the wipers are activated within 30 sec-
onds.

Common Structures - If P for X TIME, then Q within B TIME.
- P for X TIME implies that Q within B TIME.

• P_stable_X_steps_implies_Q_within_Y_steps_unless_S specifies that if the condition P is true
for X steps, then Q must be true sometime within Y steps after the X steps are over. Q must remain
true exactly until S is true. If P is not true for the entire duration of X steps, then the evaluation of
Q is irrelevant.

Kernel Pattern P_stable_X_steps_implies_Q_within_Y_steps_unless_S
Examples - If it rains for 1 minute, then the wipers are activated within 30 seconds

until the windscreen is dry.
- Rain for 1 minute implies that the wipers are activated within 30 sec-
onds until the windscreen is dry.

Common Structures - If P for X TIME, then Q within B TIME until S.
- P for X TIME implies that Q within B TIME until S.

• P_stable_X_steps_implies_Q_stable_Y_steps_within_B_steps specifies that if the condition P
is true for X steps, then Q must be true for the duration of Y steps within B steps after the X steps
are over.

4.2 Kernel Pattern 31

Kernel Pattern P_stable_X_steps_implies_Q_stable_Y_steps_within_B_steps
Examples - If it rains for 1 minute, then the wipers are active for 30 seconds within

1 minute.
Common Structures - If P for X TIME, then Q for Y TIME within B TIME.

• P_stable_X_steps_implies_globally_Q_within_Y_steps specifies that if the condition P is true
for X steps, then Q must start holding forever within Y steps after P.

Kernel Pattern P_stable_X_steps_implies_globally_Q_within_Y_steps
Examples - If it rains for 1 minute, then the wipers are active continuously within 1

minute.
Common Structures - If P for X TIME, then Q continuously within Y TIME.

• P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter specifies that if the condi-
tion P is true for X steps, then Q must start holding for Y steps within B steps after P.

Kernel Pattern P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter
Examples - If it rains for 1 minute, then the wipers are active for 30 seconds exactly

1 minute thereafter.
Common Structures - If P for X TIME, then Q for Y TIME exactly B TIME thereafter.

stable triggers releasing

This category only contains the following kernel pattern:

• P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps specifies that if the condition P is
true for X steps, then Q must be true sometime within Y steps after the X steps are over unless S
is true. Q must remain true until the expression S is observed as true simultaneously to Q.

Kernel Pattern P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps
Examples - If it rains for 1 minute, then the wipers are active within 30 seconds

until the wipers are active and the windshield is dry.
Common Structures - If P for X TIME, then Q within Y TIME until Q and S.

triggering stable implies

This category only contains the following kernel pattern:

• P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T specifies that after the
condition P occurs, Q must be true for X steps. After X steps, T must become true until S becomes
true. Within Y steps, T must become false or S must become true.

Kernel Pattern P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T
Examples - If the windshield is dirty, then the wipers are active during the next 30

seconds, after which the wipers are active for a maximum of 30 seconds
or until the windshield is dry.

Common Structures - If P , then Q during the next X TIME, after which S within Y TIME or
until T.

32 Patterns

triggering within implies

This category only contains the following kernel pattern:

• P_triggering_Q_within_X_steps_implies_S_within_Y_steps specifies that after P occurs, if Q
occurs within X steps, then S must occur within Y steps of Qs occurrence.

Kernel Pattern P_triggering_Q_within_X_steps_implies_S_within_Y_steps
Examples - If a crash is detected, then the airbag is activated within 5 ms, after

which an emergency signal is sent within 10 seconds.
Common Structures - If P, then Q within X TIME, after which S within Y TIME.

No Trigger

No Trigger kernel patterns contain actions, optionally with temporal constraints. They not dot require
a trigger to be fulfilled, in order to perform their action.

• P merely specifies a predicate which is to evaluate to true.

Kernel Pattern P
Examples - The electricity circuit is active.

- The light is on.
- The display elements glow.

Common Structures - P.

• finally_P_B

Kernel Pattern finally_P_B
Examples - The motor is on within 1 second.
Common Structures - P within B TIME.

• finally_globally_P_B

Kernel Pattern finally_globally_P_B
Examples - The radio is powered continuously within 5 seconds.
Common Structures - P continuously B TIME.

4.2.3 Ordering

The Ordering kernel patterns provide a solid order in which the conditions P and Q must occur. This
category contains two kernel patterns:

• Q_onlyafter_P specifies that the condition Q may only be true, if the condition P has occurred
before or parallel to Q.

Kernel Pattern Q_onlyafter_P
Examples - The airbag is activated only after a crash is detected.
Common Structures - Q only after P.

4.2 Kernel Pattern 33

• Q_notbefore_P specifies that the condition Q may only be true, if the condition P has occurred in
a previous step.

Kernel Pattern Q_notbefore_P
Examples - The airbag is not activated before a crash is detected.
Common Structures - not Q before P.

34 Patterns

4.3 Activation Mode

The first component of a pattern is its activation mode. The activation mode defines the circumstances,
under which the pattern must validate. The three available activation modes are Initial, First and
Cyclic. Activation modes are relative to the system start-up phase, which is explained in section 4.4.

The Initial activation mode determines, that the pattern must be valid immediately after the start-up
phase. The systems conformity to the pattern is checked solely 1 step after the start-up phase. The
timeline for this activation mode is depicted in Figure 4.3.

Figure 4.3: Timeline of the Initial activation mode. [BTC12]

The First activation mode determines, that the pattern must be valid once after the start-up phase.
The systems conformity to the pattern is checked after the start-up phase until the patterns conditions
are satisfied for the first time. The timeline for this activation mode is depicted in Figure 4.4.

Figure 4.4: Timeline of the First activation mode. [BTC12]

The Cyclic activation mode determines, that the pattern must be valid repeatedly after the start-up
phase. The systems conformity to the pattern is checked analogous to the First activation mode with
the addition, that the conformity is checked again after the first occurrence. Hence, a Cyclic pattern’s
conditions are examined throughout the systems entire runtime after the start-up phase. The timeline
for this activation mode is depicted in Figure 4.5.

Figure 4.5: Timeline of the Cyclic activation mode. [BTC12]

4.4 Start-up Phase 35

4.4 Start-up Phase

The final component of a pattern is its start-up phase. The activation mode defines the precondition
for a pattern to activate. The three available start-up phases are Immediately, After N Steps and After
Reading R. A Patterns start-up phase precedes its activation mode.

The Immediate start-up phase determines, that the pattern has no start-up phase and is immediately
active. Figure 4.6 depicts an empty timeline without a start-up phase.

Figure 4.6: Timeline of the Immediate start-up phase. [BTC12]

The After N Steps start-up phase determines, that the pattern is activated after a time interval has
passed. Within the BTC EmbeddedSpecifier, the time interval can be specified as a time interval or a
clock count. The timeline for this start-up phase is depicted in Figure 4.7

Figure 4.7: Timeline of the After N Steps start-up phase. [BTC12]

The After Reading R start-up phase determines, that the pattern is activated after an expression has
evaluated to true. This expression can be used to determine when the engine of an automobile system
has successfully started or to read other sensors within the system. The timeline for this start-up phase
is depicted in Figure 4.8

Figure 4.8: Timeline of the After Reading R start-up phase. [BTC12]

36 Patterns

37

5 Grammar

This chapter introduces the grammar which is used within the prototype in chapter 7. As proposed in
section 1.3, a grammar is used in order to structure the input. As natural language is ambiguous, it is
necessary to define a limited language to enable automatic mapping of macros. Section 5.1 explains
the concept behind the grammar. Section 5.2 depicts the basic components, which constitute Kernel
Patterns and defines common grammar rules. Section 5.3 outlines the common structures within the
example requirements defined in section 4. Section 5.4 processes the outcome of the previous section
to derive grammar rules. Section 5.5 examines and validates the constructed grammar.

5.1 Concept

The grammar within this chapter is to be used for the prototype in chapter 7. Thus, it must be able
to parse a natural language specification based on this grammar. Furthermore the grammar rules may
not overlap, so that the prototype can identify the applicable pattern by observing which grammar
rules are used. By means of this grammar, it shall also be possible to identify macros, which can be
mapped to a patterns predicates.

In order to create such a grammar, the kernel patterns are segmented by their triggers. Common
Structures, which can be translated into grammar rules are identified for each trigger type. Acti-
vation modes and start-up Phases are implemented as prefix and suffix within the natural language
specification.

5.1.1 Grammar Semantics

The grammar semantics used within this chapter are conform to the Extended Backus-Naur Form
(EBNF) as described in ISO 14977:1996 [ISO96] with the addition, that Non-Terminals are written
in uppercase. This definition for EBNFs includes the following basic rules:

Function Symbol Example
Terminal symbols "Symbol" "a" "house" "continuously"
Nonterminal symbols SYMBOL NUMBER DIGIT ACTION TRIGGER
Rule End ; "a";
Concatenation , ACTION, TRIGGER
Definition split | ACTION | ACTION, TRIGGER
Optional items [] [TRIGGER], ACTION, [TIME]
Group items () (Trigger, Action) | Action
Repetition { } {"a"}, "bb", "c"
(0 or more times)
Multiplication * {"a"}, 2*"b", "c"
Exclusion - NUMBER - "3"

{"a"}- This excludes the empty word

38 Grammar

5.2 Basic Structure of all Patterns

The grammar rules within this section are derived from parse trees of each kernel pattern. These
parse trees, as well as the resulting grammar rules are restricted to the corresponding kernel pattern.
As such, the grammar rules contain much redundancy when regarded together. The structures used
for these parse trees are extracted from the example requirements in section 4.2.

All Kernel Patterns consist of a Trigger, which must be satisfied and is then followed by an Action.
Many Kernel Patterns require additional Temporal Constraints. An example of such a Temporal
Constraint exists within the example of finally_P_B: "after 1 second at the latest". Together with
Trigger and Action, Time constitute the basic structure, which is shared by all Kernel Patterns and
can be seen in Figure 5.1.

Kernel Pattern

TIMEACTIONTRIGGER

Figure 5.1: Abstract parse tree for Kernel Patterns.

This parse tree represents the following grammar rules:

KERNEL_PATTERN = TRIGGER, ACTION, TIME;

5.2.1 Action and Trigger

Most Triggers and Actions are based upon Simple Actions and Simple Triggers, which are grammat-
ically equivalent and represent Predicates. For readability purposes, the grammar will include the
intermediate rules Simple Action and Simple Trigger.

Figure 5.2 displays these two rules as parse trees.

ACTION

SIMPLE_ACTION

PREDICATE

a crash is detected

TRIGGER

SIMPLE_TRIGGER

PREDICATE

an emergency signal is sent

Figure 5.2: Parse trees for ACTION and TRIGGER

5.2 Basic Structure of all Patterns 39

These parse trees represent the following grammar rules:

ACTION = SIMPLE_ACTION;
SIMPLE_ACTION = PREDICATE;
TRIGGER = SIMPLE_TRIGGER;
SIMPLE_TRIGGER = PREDICATE;

PREDICATE = UNINTERPRETED STRING;
// A common string in the context of computer science.

5.2.2 Interval

Furthermore many Kernel Patterns require time intervals. The rule for a time interval is the same in
all cases, as is depicted in figure 5.3

INTERVAL

seconds30

Figure 5.3: Parse tree for INTERVAL

These parse trees represent the following grammar rules:

INTERVAL = NUMBER, TIME_UNIT;
NUMBER = DIGIT | {DIGIT}, DIGIT;
TIME_UNIT = ("nanosecond" | "millisecond" | "second" | "minute" |

"hour" | "day" | "step"), [s];

5.2.3 Activation Mode

An activation mode defines, under which conditions a pattern must validate. It determines, if the
pattern must validate immediately after the patterns start-up phase, if the pattern must validate once
any time after the start-up phase, or if the pattern must validate repeatedly any time after the start-up
phase. The activation mode can be linguistically represented as a prefix.

5.2.3.1 Cyclic

As a natural linguistic sentence does not constrain its occurences, the cyclic activation mode does not
contain a prefix.

5.2.3.2 Initially

Initially determines, that a kernel patterns logic applies directly after the start-up phase has ended.
The grammar rules are depicted in Figure 5.4

40 Grammar

ACTIVATION_MODE

Initially

Figure 5.4: Parse tree for INITIAL

The resulting grammar for the prefix is as follows:

ACTIVATION_MODE = "Initially";

5.2.3.3 First

Initially determines, that a kernel patterns logic applies a single time, sometime after the start-up
phase has ended. The grammar rules are depicted in Figure 5.5.

ACTIVATION_MODE

For the first occurence

Figure 5.5: Parse tree for FIRST

The resulting grammar for the prefix is as follows:

ACTIVATION_MODE = "For the first occurence";

5.2.4 Start-Up Phase

The start-up Phase resembles a condition, which must be met, before the kernel patterns logic applies.
As such, it can be applied as a suffix to the kernel patterns grammar. The linguistic representation for
a start-up phase can be derived from the names of the start-up phases.

Immediate

As the Immediate start-up phase represents an empty start-up phase, a pattern implementing the Im-
mediate start-up phase does not contain a suffix.

After N Steps

After N Steps determines, that a kernel patterns logic applies n steps after start-up. The grammar rules
can be directly derived from the start-up phases name and are depicted in Figure 5.6.

The resulting grammar for the suffix is as follows:

START-UP = AFTER_WORD, INTERVAL, COMMA;
AFTER_WORD = "After";
COMMA = ",";

5.3 Common Structures within Example Requirements 41

START-UP

COMMA

,

START-UP_CONDITION

INTERVAL

5 seconds

AFTER_WORD

After

Figure 5.6: Parse tree for After N Steps

After Reaching R

After N Steps determines, that a kernel patterns logic applies after an expression has evaluated to true.
This expression can be translated to a predicate and thus, be easily integrated with the predicate based
grammar. The grammar rules are depicted in Figure 5.7

START-UP

COMMA

,

START-UP_CONDITION

PREDICATE

the audio system was activated

AFTER_WORD

After

Figure 5.7: Parse tree for After N Steps

The resulting grammar for the suffix is as follows:

START-UP = AFTER_WORD, PREDICATE, COMMA;
AFTER_WORD = "After";
COMMA = ",";

5.3 Common Structures within Example Requirements

As the common structures displayed in section 4.2 are not detailed enough to create a grammar, the
grammatical structure of the example sentences are used here to identify common structures in more
detail. The kernel patterns are segmented by their triggers, as depicted in Figure 4.2 in section 4.2.
The Kernel Patterns are grouped by their triggers and analyzed in the following order:

• Section 5.3.1: Invariant

• Section 5.3.2: Simple Trigger (implies)

• Section 5.3.3: Simple Trigger (triggers)

42 Grammar

• Section 5.3.4: Temporal Trigger (stable implies)

• Section 5.3.5: Temporal Trigger (stable triggers releasing)

• Section 5.3.6: Temporal Trigger (triggering stable implies)

• Section 5.3.7: Temporal Trigger (triggering within implies)

• Section 5.3.8: No Trigger

• Section 5.3.9: Ordering

5.3.1 Invariant

Invariant Kernel Patterns consist of of ACTION and TIME components, whereas the TIME compo-
nents contain a SIMPLE_TRIGGER.

Q_while_P

Q_while_P is comprised of an ACTION and a TIME constraint. This TIME consists of the WHILE
rule, which is represented by "while TRIGGER". The resulting parse tree, which can identify "AC-
TION while TRIGGER", is depicted in Figure 5.8.

Q_while_P

TIME

WHILE

SIMPLE_TRIGGERwhile

ACTION

SIMPLE_ACTION

Figure 5.8: Parse tree for Q_while_P

This parse tree represents the following grammar rules:

ACTION = SIMPLE_ACTION;
TIME = WHILE;
WHILE = "while", SIMPLE_TRIGGER;

Q_while_P_B

Q_while_P_B is comprised of an ACTION and a TIME constraint. The TIME constraint equals the
previous Kernel Pattern. The ACTION is extended by a MAXIMUM_INTERVAL rule, which defines
a time limit for the action. The resulting parse tree, which can identify "ACTION for a maximum of
INTERVAL while TRIGGER", is depicted in Figure 5.9.

5.3 Common Structures within Example Requirements 43

Q_while_P_B

TIME

WHILE

SIMPLE_TRIGGERwhile

MAXIMUM_INTERVAL

INTERVALfor a maximum of

ACTION

SIMPLE_ACTION

Figure 5.9: Parse tree for Q_while_P_B

This parse tree represents the following grammar rules:

ACTION = SIMPLE_ACTION, MAXIMUM_INTERVAL;
MAXIMUM_INTERVAL = "for a maximum of", INTERVAL;
TIME = WHILE;
WHILE = "while", SIMPLE_TRIGGER;

44 Grammar

5.3.2 Simple Trigger(implies)

As all implies Kernel Patterns within the Simple Trigger Category contain a form of "P implies Q",
the first step is to find a clear structure for the implication. This is done via the IMPLIES rule. It
encapsulates a SIMPLE_TRIGGER with "If" and "then", complying to the If P then Q structure found
in the example sentences. The Q within If P then Q is represented by the SIMPLE_ACTION rule. The
following sections introduce the unique attributes of each Kernel Pattern and explain how these are
integrated into the grammatical structure.

P_implies_finally_globally_Q_B

P_implies_finally_globally_Q_B introduces finally and globally as temporal constraints. Finally con-
sists of the words "within 10 seconds". As time Intervals are required for many patterns, the IN-
TERVAL rule defines, that a time interval consists of a number and a time unit. Globally is simply
represented by the word "continuously" in all example sentences. The resulting parse tree, which can
identify "If TRIGGER then ACTION continuously within X TIME_UNITS", is depicted in Figure
5.10.

P_implies_finally_globally_Q_B

TIME

FINALLY

INTERVALwithin

GLOBALLY

continuously

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenSIMPLE_TRIGGERIf

Figure 5.10: Parse tree for P_implies_finally_globally_Q_B

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", SIMPLE_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = GLOBALLY, FINALLY;
GLOBALLY = "continuously";
FINALLY = "within", INTERVAL;

P_implies_finally_Q_B

P_implies_finally_Q_B is grammatically equivalent to P_implies_finally_globally_Q_B apart from
the fact, that globally is removed. The resulting parse tree, which can identify "If TRIGGER then
ACTION within X TIME_UNITS", is depicted in Figure 5.11.

5.3 Common Structures within Example Requirements 45

P_implies_finally_Q_B

TIME

FINALLY

INTERVALwithin

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenSIMPLE_TRIGGERIf

Figure 5.11: Parse tree for P_implies_finally_Q_B

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", SIMPLE_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = FINALLY;
FINALLY = "within", INTERVAL;

P_implies_globally_Q

P_implies_globally_Q is grammatically equivalent to P_implies_finally_globally_Q_B apart from the
fact, that finally is removed. The resulting parse tree, which can identify "If TRIGGER then ACTION
continuously", is depicted in Figure 5.12.

P_implies_globally_Q

TIME

GLOBALLY

continuously

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenSIMPLE_TRIGGERIf

Figure 5.12: Parse tree for P_implies_globally_Q

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", SIMPLE_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = GLOBALLY;
GLOBALLY = "continuously";

46 Grammar

P_implies_Q_atleast_X_steps_after_P

P_implies_Q_atleast_X_steps_after_P has an extra constraint which defines, that while P must be
true, Q must be true at the same time. Thus another rule, DUAL_TRIGGER is required, which en-
ables kernel patterns to have two consecutive triggers. The resulting implication is "If P and Q, then
...". This Kernel Pattern also adds another temporal constraint: atleast X steps after In the example
sentence, this constraint is represented by "at least 1 second after TRIGGER and TRIGGER" Thus,
the rule ATLEAST_AFTER consists of "at least INTERVAL after DUAL_TRIGGER". The resulting
parse tree, which can identify "If TRIGGER and TRIGGER then ACTION at least INTERVAL after
TRIGGER and TRIGGER", is depicted in Figure 5.13.

P_implies_Q_atleast_X_steps_after_P

TIME

ATLEAST_AFTER

DUAL_TRIGGER

SIMPLE_TRIGGERandSIMPLE_TRIGGER

afterINTERVALat least

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenDUAL_TRIGGER

SIMPLE_TRIGGERandSIMPLE_TRIGGER

If

Figure 5.13: Parse tree for P_implies_Q_atleast_X_steps_after_P

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", DUAL_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = ATLEAST_AFTER;
ATLEAST_AFTER = "at least", INTERVAL, "after", DUAL_TRIGGER
DUAL_TRIGGER = SIMPLE_TRIGGER , "and", SIMPLE_TRIGGER;

P_implies_Q_during_X_steps

P_implies_Q_during_X_steps has the same implication as P_implies_Q_atleast_X_steps_after_P, in
that it requires a DUAL_TRIGGER. This Kernel Pattern introduces during as a new temporal con-
straint. Within the examples, during is represented by "for 30 seconds", thus resulting in "for IN-
TERVAL" as a rule. The resulting parse tree, which can identify "If TRIGGER and TRIGGER then
ACTION during INTERVAL", is depicted in Figure 5.14.

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", DUAL_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = DURING;
DURING = "during the next", INTERVAL;
DUAL_TRIGGER = SIMPLE_TRIGGER , "and", SIMPLE_TRIGGER;

5.3 Common Structures within Example Requirements 47

P_implies_Q_during_X_steps

TIME

DURING

INTERVALfor

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenDUAL_TRIGGER

SIMPLE_TRIGGERandSIMPLE_TRIGGER

If

Figure 5.14: Parse tree for P_implies_Q_during_X_steps

P_implies_Q_during_next_X_steps

P_implies_Q_during_next_X_steps is grammatically equivalent to P_implies_Q_atleast_X_steps_after_P
with the exception, that it does not require a DUAL_TRIGGER. The resulting parse tree, which can
identify "If TRIGGER then ACTION during INTERVAL", is depicted in Figure 5.15.

P_implies_Q_during_next_X_steps

TIME

DURING

INTERVALfor

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenSIMPLE_TRIGGERIf

Figure 5.15: Parse tree for P_implies_Q_during_next_X_steps

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", SIMPLE_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = DURING;
DURING = "during the next", INTERVAL;

P_implies_Q_at_step_X_thereafter

P_implies_Q_at_step_X_thereafter introduces a new temporal constraint which results in the EX-
ACTLY_THEREAFTER rule. This rule is constructed as "exactly INTERVAL thereafter". The result-
ing parse tree, which can identify "If TRIGGER then ACTION exactly INTERVAL thereafter", is
depicted in Figure 5.16.

48 Grammar

P_implies_Q_at_step_X_thereafter

TIME

EXACTLY_THEREAFTER

thereafterINTERVALexactly

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenSIMPLE_TRIGGERIf

Figure 5.16: Parse tree for P_implies_Q_at_step_X_thereafter

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", SIMPLE_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = EXACTLY_THEREAFTER;
DURING = "exactly", INTERVAL, "thereafter";

P_implies_Q_X_steps_later

P_implies_Q_X_steps_later is grammatically equivalent to P_implies_Q_at_step_X_thereafter with
the exception of it requiring a DUAL_TRIGGER. The resulting parse tree, which can identify "If
TRIGGER and TRIGGER then ACTION exactly INTERVAL thereafter", is depicted in Figure 5.17.

P_implies_Q_X_steps_later

TIME

EXACTLY_THEREAFTER

thereafterINTERVALexactly

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenDUAL_TRIGGER

SIMPLE_TRIGGERandSIMPLE_TRIGGER

If

Figure 5.17: Parse tree for P_implies_Q_X_steps_later

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", DUAL_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = EXACTLY_THEREAFTER;
DURING = "exactly", INTERVAL, "thereafter";
DUAL_TRIGGER = SIMPLE_TRIGGER , "and", SIMPLE_TRIGGER;

5.3 Common Structures within Example Requirements 49

5.3.3 Simple Trigger(triggers)

Grammatically, The triggers Kernel Patterns use the same IMPLIES structure as implies Kernel pat-
terns. The triggers Kernel Patterns, however, all require a DUAL_TRIGGER, whereas the trigger P
and the action Q are inserted for the two triggers. This determines, that the trigger P and the action Q
must occur simultaneously.

P_triggers_Q_unless_S

In addition to the constraint mentioned in the previous section, P_triggers_Q_unless_S introduces the
UNLESS rule, which is constructed as "until TRIGGER". The resulting parse tree, which can identify
"If TRIGGER and TRIGGER then ACTION until TRIGGER", is depicted in Figure 5.18.

P_triggers_Q_unless_S

TIME

UNLESS

SIMPLE_TRIGGERuntil

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenSIMPLE_TRIGGERIf

Figure 5.18: Parse tree for P_triggers_Q_unless_S

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", SIMPLE_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = UNLESS;
UNLESS = "until" SIMPLE_TRIGGER;

P_triggers_Q_unless_S_within_B

P_triggers_Q_unless_S_within_B extends P_triggers_Q_unless_S by a FINALLY rule after the UN-
LESS rule. The resulting parse tree, which can identify "If TRIGGER and TRIGGER then ACTION
until TRIGGER within INTERVAL", is depicted in Figure 5.19.

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
IMPLIES = "If", SIMPLE_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = UNLESS, FINALLY;
UNLESS = "until" SIMPLE_TRIGGER;
FINALLY = "within", INTERVAL;

50 Grammar

P_triggers_Q_unless_S_within_B

TIME

FINALLY

INTERVALwithin

UNLESS

SIMPLE_TRIGGERuntil

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenSIMPLE_TRIGGERIf

Figure 5.19: Parse tree for P_triggers_Q_unless_S_within_B

5.3.4 Temporal Trigger(stable implies)

The Kernel Patterns of this category expect the TRIGGER to be satisfied for a given period of time.
As this cannot be represented by the current IMPLIES rule for Triggers, a new rule is required. This
new rule, STABLE, must accept "If SIMPLE_TRIGGER for INTERVAL, then" and can be identified
within the Kernel Patterns name, as all these Kernel Patterns’ names contain "P_stable_X_steps". The
parse tree is depicted in Figure 5.20

STABLE

thenDURING

INTERVALfor

SIMPLE_TRIGGERIf

Figure 5.20: Parse tree for the STABLE rule.

This parse tree represents the following grammar rules:

TRIGGER = STABLE;
STABLE = "If", SIMPLE_TRIGGER, "for", INTERVAL, "then";

P_stable_X_steps_implies_afterwards_Q

P_stable_X_steps_implies_afterwards_Q simply implies the Action Q, if the Trigger P was stable
for a given interval. Thus, it consists of the STABLE rule for the Trigger and a SIMPLE_ACTION
rule for the Action. The resulting parse tree, which can identify "If TRIGGER for INTERVAL, then
ACTION.", is depicted in Figure 5.21.

This parse tree represents the following grammar rules:

TRIGGER = STABLE;
STABLE = "If", SIMPLE_TRIGGER, "for", INTERVAL, "then";
ACTION = SIMPLE_ACTION;

5.3 Common Structures within Example Requirements 51

P_stable_X_steps_implies_afterwards_Q

ACTION

SIMPLE_ACTION

TRIGGER

STABLE

thenDURING

INTERVALfor

SIMPLE_TRIGGERIf

Figure 5.21: Parse tree for P_stable_X_steps_implies_afterwards_Q

P_stable_X_steps_implies_finally_Q_B

P_stable_X_steps_implies_finally_Q_B simply implies the Action Q, if the Trigger P was stable for a
given interval. Thus, it consists of the STABLE rule for the Trigger and a SIMPLE_ACTION rule for
the Action. The resulting parse tree, which can identify "If TRIGGER for INTERVAL, then ACTION
within INTERVAL.", is depicted in Figure 5.22.

P_stable_X_steps_implies_finally_Q_B

TIME

FINALLY

INTERVALwithin

ACTION

SIMPLE_ACTION

TRIGGER

STABLE

thenDURING

INTERVALfor

SIMPLE_TRIGGERIf

Figure 5.22: Parse tree for P_stable_X_steps_implies_finally_Q_B

This parse tree represents the following grammar rules:

TRIGGER = STABLE;
STABLE = "If", SIMPLE_TRIGGER, "for", INTERVAL, "then";
ACTION = SIMPLE_ACTION;
TIME = FINALLY;
FINALLY = "within", INTERVAL;

P_stable_X_steps_implies_Q_within_Y_steps_unless_S

P_stable_X_steps_implies_finally_Q_B introduces "within_Y_steps" in its name. Indeed this is an al-
ternative representation of the FINALLY rule. The TIME component consists of the known FINALLY
and UNLESS rules. The resulting parse tree, which can identify "If TRIGGER for INTERVAL, then
ACTION within INTERVAL unless TRIGGER.", is depicted in Figure 5.23.

52 Grammar

P_stable_X_steps_implies_Q_within_Y_steps_unless_S

TIME

UNLESS

SIMPLE_TRIGGERuntil

FINALLY

INTERVALwithin

ACTION

SIMPLE_ACTION

TRIGGER

STABLE

thenDURING

INTERVALfor

SIMPLE_TRIGGERIf

Figure 5.23: Parse tree for P_stable_X_steps_implies_Q_within_Y_steps_unless_S

This parse tree represents the following grammar rules:

TRIGGER = STABLE;
STABLE = "If", SIMPLE_TRIGGER, "for", INTERVAL, "then";
ACTION = SIMPLE_ACTION;
TIME = FINALLY, UNLESS;
FINALLY = "within", INTERVAL;
UNLESS = "until", SIMPLE_TRIGGER;

P_stable_X_steps_implies_Q_stable_Y_steps_within_B_steps

P_stable_X_steps_implies_Q_stable_Y_steps_within_B_steps extends the P_stable_X_steps_implies_finally_Q_B
kernel pattern by the property, that the action must hold for Y steps. The resulting parse tree, which
can identify "If TRIGGER for INTERVAL, then ACTION for INTERVAL within INTERVAL.", is
depicted in Figure 5.24.

P_stable_X_steps_implies_Q_stable_Y_steps_within_B_steps

TIME

FINALLY

INTERVALwithin

DURING

INTERVALfor

ACTION

SIMPLE_ACTION

TRIGGER

STABLE

thenDURING

INTERVALfor

SIMPLE_TRIGGERIf

Figure 5.24: Parse tree for P_stable_X_steps_implies_Q_stable_Y_steps_within_B_steps

This parse tree represents the following grammar rules:

TRIGGER = STABLE;
STABLE = "If", SIMPLE_TRIGGER, "for", INTERVAL, "then";
ACTION = SIMPLE_ACTION;
TIME = DURING, FINALLY;
DURING = "during the next", INTERVAL;
FINALLY = "within", INTERVAL;

5.3 Common Structures within Example Requirements 53

P_stable_X_steps_implies_globally_Q_within_Y_steps

P_stable_X_steps_implies_globally_Q_within_Y_steps extends P_stable_X_steps_implies_finally_Q_B
by the GLOBALLY rule. The resulting parse tree, which can identify "If TRIGGER for INTERVAL,
then ACTION continuously within INTERVAL.", is depicted in Figure 5.25.

P_stable_X_steps_implies_globally_Q_within_Y_steps

TIME

FINALLY

INTERVALwithin

GLOBALLY

continuously

ACTION

SIMPLE_ACTION

TRIGGER

STABLE

thenDURING

INTERVALfor

SIMPLE_TRIGGERIf

Figure 5.25: Parse tree for P_stable_X_steps_implies_globally_Q_within_Y_steps

This parse tree represents the following grammar rules:

TRIGGER = STABLE;
STABLE = "If", SIMPLE_TRIGGER, "for", INTERVAL, "then";
ACTION = SIMPLE_ACTION;
TIME = GLOBALLY, FINALLY;
GLOBALLY = "continuously";
FINALLY = "within", INTERVAL;

P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter

P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter requires the DURING and
EXACTLY_THEREAFTER rules within its TIME component. The resulting parse tree, which can
identify "If TRIGGER for INTERVAL, then ACTION for INTERVAL exactly INTERVAL there-
after.", is depicted in Figures 5.26 and 5.27.

These parse trees represent the following grammar rules:

TRIGGER = STABLE;
STABLE = "If", SIMPLE_TRIGGER, "for", INTERVAL, "then";
ACTION = SIMPLE_ACTION;
TIME = DURING, EXACTLY_THEREAFTER;
DURING = "during the next", INTERVAL;
EXACTLY_THEREAFTER = "exactly", INTERVAL, "thereafter";

54 Grammar

P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter

TIMEACTION

SIMPLE_ACTION

TRIGGER

STABLE

thenDURING

INTERVALfor

SIMPLE_TRIGGERIf

Figure 5.26: Parse tree for
P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter

TIME

EXACTLY_THEREAFTER

thereafterINTERVALexactly

DURING

INTERVALfor

Figure 5.27: TIME subtree for
P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter

5.3.5 Temporal Trigger(stable triggers releasing)

The Temporal Trigger(stable triggers releasing) category consists of a single Kernel Pattern, which
extends P_stable_X_steps_implies_Q_within_Y_steps_unless_S by the property, that the Action must
be "released" by a second Action.

P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps

P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps extends
P_stable_X_steps_implies_Q_within_Y_steps_unless_S by a DUAL_TRIGGER within the UNLESS
rule, whereas the two Triggers within the UNLESS rule are the predicates Q and S. The resulting
parse tree, which can identify "If TRIGGER for INTERVAL, then ACTION within INVERVAL until
TRIGGER and TRIGGER.", is depicted in Figures 5.28 and 5.29.

These parse trees represent the following grammar rules:

TRIGGER = STABLE;
STABLE = "If", SIMPLE_TRIGGER, "for", INTERVAL, "then";
ACTION = SIMPLE_ACTION;
TIME = FINALLY, UNLESS;
FINALLY = "within", INTERVAL;
UNLESS = "until", DUAL_TRIGGER;
DUAL_TRIGGER = SIMPLE_TRIGGER, "and", SIMPLE_TRIGGER;

5.3 Common Structures within Example Requirements 55

P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps

TIMEACTION

SIMPLE_ACTION

TRIGGER

STABLE

thenDURING

INTERVALfor

SIMPLE_TRIGGERIf

Figure 5.28: Parse tree for P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps

TIME

UNLESS

DUAL_TRIGGER

SIMPLE_TRIGGERandSIMPLE_TRIGGER

until

FINALLY

INTERVALwithin

Figure 5.29: TIME subtree for P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps

5.3.6 Temporal Trigger(triggering stable implies)

P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T

P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T combines DURING, AFTER_WHICH
and UNLESS with a DUAL_TRIGGER to constitute its TIME component. This is a complex Kernel
Pattern which has an additional constraint for the DUAL_TRIGGER within the UNLESS rule. For the
grammar structure, this constraint is not relevant at this step.

The resulting parse tree, which can identify "If TRIGGER, then ACTION for INTERVAL, after
which ACTION for a maximum of INTERVAL or until TRIGGER.", is depicted in Figures 5.30 and
5.31.

These parse trees represent the following grammar rules:

TRIGGER = IMPLIES;
STABLE = "If", SIMPLE_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = DURING, AFTER_WHICH_OR;
DURING = "for", INTERVAL;
AFTER_WHICH_OR = AFTER_WHICH, MAXIMUM_INTERVAL, "or", UNLESS;
AFTER_WHICH = "after which", SIMPLE_TRIGGER;
MAXIMUM_INTERVAL = "for a maximum of", INTERVAL;
UNLESS = "until", SIMPLE_TRIGGER;

56 Grammar

P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T

TIMEACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenSIMPLE_TRIGGERif

Figure 5.30: Parse tree for
P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T

TIME

AFTER_WHICH_OR

UNLESS

SIMPLE_TRIGGERuntil

orMAXIMUM_INTERVAL

INTERVALfor a maximum of

AFTER_WHICH

SIMPLE_ACTIONafter which

DURING

INTERVALfor

Figure 5.31: TIME subtree for
P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T

5.3.7 Temporal Trigger(triggering within implies)

P_triggering_Q_within_X_steps_implies_S_within_Y_steps

P_triggering_Q_within_X_steps_implies_S_within_Y_steps

The resulting parse tree, which can identify "If TRIGGER, then ACTION within INTERVAL, after
which ACTION within INTERVAL." , is depicted in Figure 5.32.

P_triggering_Q_within_X_steps_implies_S_within_Y_steps

TIME

FINALLY

INTERVALwithin

AFTER_WHICH

SIMPLE_ACTIONafter which

FINALLY

INTERVALwithin

ACTION

SIMPLE_ACTION

TRIGGER

IMPLIES

thenSIMPLE_TRIGGERif

Figure 5.32: Parse tree for P_triggering_Q_within_X_steps_implies_S_within_Y_steps

5.3 Common Structures within Example Requirements 57

This parse tree represents the following grammar rules:

TRIGGER = IMPLIES;
STABLE = "If", SIMPLE_TRIGGER, "then";
ACTION = SIMPLE_ACTION;
TIME = FINALLY, AFTER_WHICH, FINALLY;
FINALLY = "within", INTERVAL;
AFTER_WHICH = "after which", SIMPLE_TRIGGER;

5.3.8 No Trigger

No Trigger Kernel Patterns do not contain any TRIGGER as part of its structure. The resulting maxi-
mum structure of a No Trigger Kernel Pattern is depicted in Figure 5.33.

Kernel Pattern

TIMEACTION

Figure 5.33: Abstract parse tree for Kernel Patterns.

P

P merely consists of an ACTION. The resulting parse tree, which can identify "ACTION.", is depicted
in Figure 5.34.

P

ACTION

SIMPLE_ACTION

Figure 5.34: Parse tree for P

This parse tree represents the following grammar rules:

ACTION = SIMPLE_ACTION;

finally_P_B

finally_P_B extends P by a FINALLY rule. The resulting parse tree, which can identify "ACTION
within INTERVAL.", is depicted in Figure 5.35.

58 Grammar

P

TIME

FINALLY

INTERVALwithin

ACTION

SIMPLE_ACTION

Figure 5.35: Parse tree for finally_P_B

This parse tree represents the following grammar rules:

ACTION = SIMPLE_ACTION;
TIME = FINALLY;
FINALLY = "within", INTERVAL;

5.3 Common Structures within Example Requirements 59

finally_globally_P_B

finally_globally_P_B extends finally_globally_P_B by a GLOBALLY rule. The resulting parse tree,
which can identify "ACTION continuously within INTERVAL.", is depicted in Figure 5.36.

P

TIME

FINALLY

INTERVALwithin

GLOBALLY

continuously

ACTION

SIMPLE_ACTION

Figure 5.36: Parse tree for finally_globally_P_B

This parse tree represents the following grammar rules:

ACTION = SIMPLE_ACTION;
TIME = GLOBALLY, FINALLY;
GLOBALLY = "continuously";
FINALLY = "within", INTERVAL;

5.3.9 Ordering

Ordering Kernel Patterns are grammatically similar to Invariant Kernel Patterns in section 5.3.1, as
both have their Trigger within a temporal constraint after the Action.

Q_onlyafter_P

Q_onlyafter_P consists of a SIMPLE_ACTION and a TIME rule, which must evaluate to "only after"
SIMPLE_TRIGGER. This rule is introduced with ONLY_AFTER. The resulting parse tree, which can
identify "ACTION only after TRIGGER.", is depicted in Figure 5.37.

P

TIME

ONLY_AFTER

SIMPLE_TRIGGERonly after

ACTION

SIMPLE_ACTION

Figure 5.37: Parse tree for finally_globally_P_B

60 Grammar

This parse tree represents the following grammar rules:

ACTION = SIMPLE_ACTION;
TIME = ONLY_AFTER;
FINALLY = "only after", SIMPLE_TRIGGER;

Q_notbefore_P

Q_notbefore_P requires that its Action is negated. Due to the versatility of negation within natural
language, the grammar cannot check this constraint. It is therefore assumed, that the ACTION is
negated. The TIME rule BEFORE can be used to parse for "before TRIGGER", which completes
the Kernel Pattern given the aforementioned assumption. The resulting parse tree, which can identify
"ACTION before TRIGGER.", is depicted in Figure 5.38.

P

TIME

BEFORE

SIMPLE_TRIGGERbefore

ACTION

SIMPLE_ACTION

Figure 5.38: Parse tree for Q_notbefore_P

This parse tree represents the following grammar rules:

ACTION = SIMPLE_ACTION;
TIME = BEFORE;
FINALLY = "before", SIMPLE_TRIGGER;

5.4 Constructing the Grammar 61

5.4 Constructing the Grammar

By concatenating the grammar rules of all kernel patterns in section 5.3, a grammar can be con-
structed. In order to construct an extendable, readable grammar, abstraction is required. The combi-
nation of the rules Q_while_P and Q_while_P_B for example, results in a single ruleset, whereby the
non-terminal symbol MAXIMUM_INTERVAL becomes optional, as can be seen in Figure 5.39.

PATTERN = KERNEL_PATTERN
KERNEL_PATTERN = ACTION, TIME;
ACTION = SIMPLE_ACTION, [MAXIMUM_INTERVAL];
MAXIMUM_INTERVAL = "for a maximum of", INTERVAL;
TIME = WHILE;
WHILE = "while", SIMPLE_TRIGGER;

Figure 5.39: Grammar for the kernel patterns Q_while_P and Q_while_P_B

By adding the ACTIVATION_MODE and START-UP phase to the PATTERN and adding all KER-
NEL_PATTERN rules one after another, the complete grammar comes into existance. This grammar
is very primitive and is extended in section 5.5, so that it can be used for the prototype within this
thesis.

Grammar for the example requirements
1 PATTERN = [ACTIVATION_MODE], KERNEL_PATTERN, [START-UP];

2 // - Activation Mode
3 ACTIVATION_MODE = INITIAL_AM
4 | FIRST_AM;

5 INITIAL_AM = "initially" | "Directly after start-up" | "After start-up";
6 FIRST_AM = "For one occurence" | "For the first occurence" | "For the first time";

7 // - Start-Up Phase
8 START-UP = AFTER_REACHING_R
9 | AFTER_N_STEPS;

10 AFTER_REACHING_R = "After", INTERVAL;
11 AFTER_N_STEPS = "After", PREDICATE;

12 // - Kernel Pattern

13 KERNEL_PATTERN =
14 [TRIGGER], ACTION, [TIME];

15 // - Trigger
16 TRIGGER =
17 IMPLIES | STABLE;
18 IMPLIES =
19 IF, SIMPLE_TRIGGER, THEN
20 | IF, DUAL_TRIGGER, THEN;
21 DUAL_TRIGGER =
22 SIMPLE_TRIGGER, AND, SIMPLE_TRIGGER;
23 SIMPLE_TRIGGER =
24 PREDICATE;
25 STABLE =
26 IF, SIMPLE_TRIGGER, DURING, THEN;
27 PREDICATE =
28 UNINTERPRETED_STRING; // A common string in the context of computer science.
29 IF =

62 Grammar

30 "If" | "When";
31 THEN =
32 ", then" | ",";

33 // - Action
34 ACTION =
35 SIMPLE_ACTION;
36 SIMPLE_ACTION =
37 PREDICATE;

38 // - Time
39 TIME =
40 WHILE | MAXIMUM_INTERVAL | ATLEAST_AFTER | DURING | ONLY_AFTER | BEFORE
41 | [(GLOBALLY | DURING | UNLESS | FINALLY, AFTER_WHICH)], FINALLY | GLOBALLY
42 | [DURING], EXACTLY_THEREAFTER | [FINALLY], UNLESS | DURING, AFTER_WHICH_OR;
43 WHILE =
44 "while", SIMPLE_TRIGGER;
45 MAXIMUM_INTERVAL =
46 MAXIMUM, INTERVAL;
47 GLOBALLY =
48 "continuously";
49 FINALLY =
50 WITHIN, INTERVAL;
51 ATLEAST_AFTER =
52 ATLEAST, INTERVAL, AFTER, DUAL_TRIGGER;
53 DURING =
54 DURING_WORD, INTERVAL;
55 EXACTLY_THEREAFTER =
56 EXACTLY, INTERVAL, THEREAFTER;
57 UNLESS =
58 UNLESS_WORD, (SIMPLE_TRIGGER | DUAL_TRIGGER);
59 AFTER_WHICH_OR =
60 AFTER_WHICH, MAXIMUM_INTERVAL, OR, UNLESS;
61 AFTER_WHICH =
62 AFTER_WHICH_WORD, SIMPLE_TRIGGER;
63 ONLY_AFTER =
64 "only after", SIMPLE_TRIGGER;
65 BEFORE =
66 "before", SIMPLE_TRIGGER;

67 INTERVAL =
68 NUMBER, TIME_UNIT;
69 NUMBER =
70 {DIGIT}-;
71 DIGIT =
72 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";
73 TIME_UNIT =
74 {"nanosecond" | "millisecond" | "second" |
75 "minute" | "hour" | "day" | "step"}, ["s"];

76 MAXIMUM =
77 "for a maximum of";
78 ATLEAST =
79 "at least";
80 AFTER =
81 "after";
82 AND =
83 "and";
84 OR =
85 "or";

5.4 Constructing the Grammar 63

86 DURING_WORD =
87 "for" | "for the next" | "during the next";
88 EXACTLY =
89 "exactly" | "precisely";
90 THEREAFTER =
91 "thereafter" | "later";
92 UNLESS_WORD =
93 "until";
94 AFTER_WHICH_WORD =
95 "after which";

64 Grammar

5.5 Grammar Validation

The grammar in section 5.4 covers all kernel patterns along with the start-up Phases and activation
modes presented in chapter 4. This grammar, however, was built upon the fictional example require-
ments from section 4.2. The required extension of the grammar, to comply with variable natural
language specifications, is displayed in section 5.5.6. As this grammar is to be used to parse real
world requirements, this section analyzes the structure of example requirements by end consumers of
BTC EmbeddedSystems AG, which are not named due to confidentiality.

The common structures of five requirements documents are analyzed within the following sections.

5.5.1 Implications

The implication, If TRIGGER, then ACTION, is the most common structure within the grammar
and also the most commonly used structure within requirements. Within the requirements documents,
ACTION when TRIGGER, TRIGGER triggers ACTION, ACTION when TRIGGER, Once
TRIGGER, then ACTION and ACTION if TRIGGER are used to represent implications.

While most of these formulations are used very rarely, ACTION when TRIGGER is used very
commonly by different customers. Thus, it should be included as an alternative rule within the gram-
mar. As the Trigger component is present behind the Action component, a new type of Trigger
component is required. This is denoted as the Post-Trigger.

5.5.2 Requirement complexity

Many requirements within the documents grouped several different Triggers or several different Ac-
tions within a single requirement. As the BTC EmbeddedSpecifier can produce Observers which
"test" the system, one should attempt to cover a single case with one requirement. This is also men-
tioned as a best-practice by Pohl and Rupp, despite the fact, that requirements documents may become
very large and hard to navigate [PR11].

5.5.3 Temporal constraints

The documents include heavy use of until and within in the requirements. These keywords are used
exactly as they are used within the fictional examples, thus not posing any problem at all. Other tem-
poral constraints are not used within the example documents. Further conditions, which are attached
to the Triggers and Actions indicate that the requirement should be split into multiple requirements,
as these conditions can be checked in another requirement far more easily.

5.5.4 The Kernel Pattern P

The Kernel Pattern P can be found very often within most requirement documents. The content of
these requirements are often similar to these examples:

• Signal A is transferred via the global Bus system.

5.5 Grammar Validation 65

• The emergency light blinks in a frequency of 2 Hertz.

• The fuel display shows the amount of fuel within the tank in liters.

These requirements cannot be tested in this state. Using Temporal Trigger Kernel Patterns, features
such as the 2 Hertz frequency can be tested. Other requirements would have to be tested in more
detail.

5.5.5 Start-Up Phase and Activation Mode

Rarely, a sentence is formulated like After TRIGGER, If TRIGGER, then ACTION. This corre-
sponds to an implication as it is implemented within the grammar, in addition of an Activation Mode.
No start-up phases were used within the example documents. Instead, the start-up Phase was often
described in advance before the requirements were noted.

5.5.6 Extending the Grammar

The grammar in section 5.4 covers the exact structures found within the example requirements in
section 5.3. In order to also accept the example requirements from customers of BTC EmbeddedSys-
tems, as well as many unknown natural language specifications and their structures, the grammar must
offer freedom in both linguistic structure and wording. Extending the freedom in wording is done by
adding synonyms to non-terminal symbols. Freedom in structure is a more complex task. Implica-
tions, which are resembled by the IMPLIES non-terminal symbol, are the most common structure
within the kernel patterns. By allowing TRIGGER, ACTION and TIME to occur in any reasonable
order, the linguistic structure of implications can adopt several forms. This structural freedom, which
is displayed in Figure 5.40 is applied to nearly all kernel patterns, allowing the extended grammar to
accept a multiple of the previously defined grammar.

KERNEL_PATTERN = TRIGGER, ACTION, TIME
| ACTION, TIME, TRIGGER
| TIME, ACTION, TRIGGER

Figure 5.40: Possible orders for Trigger, Action, and Time

The extended grammar, which is implemented in the prototype, is depicted within the appendix in
section 10.

5.5.7 Freedom of Natural Language

Natural language offers superior freedom in its structure, as well as in its words. A single requirement
can have a vast amount of representations in natural language. A natural language requirement can be
represented by multiple structurally different sentences, while preserving most of the words. While
the grammar can be extended to accept multiple synonyms to replace keywords, such as while or if,
covering all synonyms or all structures, which the natural language requirement can assume is not
achievable. Even if it was possible to cover 100 percent of the possible linguistic representations,

66 Grammar

an unambiguous mapping to a kernel pattern and its macros would remain impossible due to the
ambiguity of natural language.

5.5.8 Conclusion

While the grammar can detect all Kernel Patterns, it cannot identify all real world requirements.
While many requirements would only require small changes, such as When Trigger, then Action
would be changed to If Trigger, then Action, other requirements pose a problem. These are usually
requirements, which could also not be unambiguously tested. By reducing requirements to a single,
testable aspect, the formulation of the requirement in a grammar compliant language becomes is
significantly simplified. Many requirements exist, which are not accepted by the grammar even after
reduction. The grammar can be extended to accept a greater spectrum of requirements, as long as
these are not ambiguous. This property can be used to adapt the grammar to different customer’s
needs.

67

6 Meta-Model

The grammar defined in section 5 techniques described in the previous sections can be used to suc-
cessfully identify patterns. By confining oneself to using a grammar, the pattern recognition must
be made directly while parsing the input. This approach is very difficult to extend and it is directly
bound to the linguistic grammar of the input sentence.

6.1 Meta-Model of a Pattern

The prototypes parser can transfer the natural language specification into an abstract data type. This
abstract data type must be able to represent instances of every kernel pattern in the BTC Embedded-
Validator Pattern Library Release 3.7 [BTC12] As a pattern is an instance of a kernel pattern with a
start-up phase and an activation mode, every parsed requirement must be representable as an instance
of the meta-model. Figure 6.1 represents this meta-model while taking into account, that in natural
language, one can omit the start-up phase and activation mode. In this case, a default behaviour is
implemented for the activation mode and start-up phase. Meta-Models are extendable, allowing for
an easy addition of new kernel patterns.

Figure 6.1: Meta-model for patterns.

6.2 Meta-Model of a Kernel Pattern

The models of kernel patterns differ from each other by the number of predicates and intervals, as
well as the various keywords they contain. Thus, the meta-model must be able to hold multiple key-
words and an arbitrary number of intervals and predicates. The keywords must containt all keywords
contained in the common structures of the patterns in section 4. Also, keywords can occur multiple
times in a single part of a kernel pattern, such as the Time component. Reliable identification of kernel
patterns is not possible solely based on the quantity of these three components. By preserving some
of the natural language specifications structure, namely the action, trigger and the temporal constraint
(hereafter denoted as time), the pattern recognition becomes much preciser. The parser can aggregate
the trigger, action and time while parsing, thus creating a stuctured instance of the meta-model in
Figure 6.2. As is visible in this figure, an action merely contains predicates, whereas a trigger and a
time can additionally comprise intervals and keywords.

Figure 6.3 depicts an instance of the simple finally_P_B kernel pattern. The pattern has one predi-
cate as its action component. Its time component consists of one interval with one FINALLY keyword.

68 Meta-Model

Figure 6.2: Meta-model for all kernel patterns.

Figure 6.3: Model for finally_P_B.

Figure 6.4 displays an instance of the complex P_triggering_Q_within_X_steps_implies_S_within_Y_steps
pattern. The pattern has one predicate as its action component. Its trigger component consists of one
predicate and one interval with one IF_THEN and one DURING keywords. Its time component con-
sists of one predicate and two intervals with one AFTER_WHICH aswell as two FINALLY keywords.

A complete collection of models for all kernel patterns is in the attachment in chapter 10.

6.2 Meta-Model of a Kernel Pattern 69

Figure 6.4: Model for P_triggering_Q_within_X_steps_implies_S_within_Y_steps.

70 Meta-Model

71

7 Prototype

This chapter describes a prototype, which accepts a natural language specification as input and, pro-
vided the input conforms to the grammar defined in chapter 5, identifies applicable patterns from BTC
EmbeddedSystems’ BTC EmbeddedValidator Pattern Library Release 3.7 [BTC12] by means of the
meta-model from section 6. The prototype is to be showcased to customers of BTC EmbeddedSys-
tems to demonstrate the possibilities of automated pattern recognition. First the requirements for the
prototype are established in section 7.1. The concept and approach , which are implemented in the
prototype are introduced in section 7.2. Lastly, section 7.3 depicts the finished prototype. All UML
models displayed within this chapter comply to the UML 2.4.1 superstructure [Obj13].

7.1 Requirements

The requirements for the prototype are classified in the three categories "constraints", "functional
requirements" and "quality requirements", as defined by Pohl and Rupp [PR11]. Constraints in section
7.1.1 represent requirements, which must be satisfied due to limitations given by stakeholders, the
environment of the software, or similar sources. The functional requirements in section 7.1.2 describe
the functionality, which is to be implemented by the prototype. Quality requirements in section 7.1.3
describe non-functional properties, such as efficiency, maintainability or user-friendliness, which the
prototype must satisfy. The key words "must", "must not", "required", "shall", "shall not", "should",
"should", "recommended", "may", and "optional" in this document are to be interpreted as described
in RFC 2119 [Bra97].

7.1.1 Constraints

The following constraints describe limits given by sources like stakeholders or the softwares envi-
ronment, which the prototype must comply to. For this prototype, the constraints originate from the
stakeholders at BTC EmbeddedSystems AG and the environment of the BTC EmbeddedSpecifier.

C.1) The prototype must use the grammar specified in chapter 5, in order to analyze its input. By
defining a formal language using a grammar, the language can be parsed easily. A clearly defined
grammar can be read by many computer scientists and is easily extendable.

C.2) The prototype must use the meta-model from section 6 for pattern recognition. Meta-models
can easily be extended. This enables BTC EmbeddedSystems to incorporate new kernel patterns,
which may be requested by customers.

C.3) The meta-model used for pattern recognition must be able to represent all kernel patterns spec-
ified in the BTC EmbeddedValidator Pattern Library Release 3.7 [BTC12]. The Pattern Library
contains all kernel patterns, which are used by the BTC EmbeddedSpecifier in chapter 3.

C.4) The prototype should be implemented in Java. This prototype can be used as a reference to
implement a plugin for BTC EmbeddedSpecifier described in section 3, which is written in Java
and based on the Eclipse project.

72 Prototype

7.1.2 Functional Requirements

The prototype’s purpose is to accept a natural language specification as input and recognize appli-
cable patterns. In order to guarantee the fulfilment of this functionality, the following functional
requirements are defined for the prototype:

F.1) The prototype must accept a natural language specification as input. The starting artifact in the
BTC EmbeddedSpecifier is a natural language specification.

F.2) The prototype must accept input up to at least 50 words in length. Natural language specifica-
tions can become very lengthy, especially is taking complex kernel patterns into consideration. 50
words should cover most requirements.

F.3) The prototype must recognize, if the natural language specifications structure corresponds to a
pattern specified in the BTC EmbeddedValidator Pattern Library Release 3.7 [BTC12]. This is the
intent and core functionality of the prototype. This requirement is bound to constraint C.2.

F.4) The prototype must display, which kernel pattern the natural language specification corresponds
to, if a match is found. By precisely identifying the pattern, a plugin could automate the selection
of this pattern within the BTC EmbeddedSpecifier.

F.5) The prototype must display, which activation mode the natural language specification corre-
sponds to, if a match is found. By precisely identifying the pattern, a plugin could automate the
selection of this pattern within the BTC EmbeddedSpecifier.

F.6) The prototype must display, which start-up phase the natural language specification corresponds
to, if a match is found. By precisely identifying the pattern, a plugin could automate the selection
of this pattern within the BTC EmbeddedSpecifier.

F.7) The prototype must display an error, if the input doesn’t conform to the grammar specified in
chapter 5. As stated by Shneiderman, a user interface must react to every action, even if this action
is not succesful. [SP86]

F.8) The prototype must display predicates and map them to the identified patterns macros. If the
macros are already identified, a plugin for the BTC EmbeddedSpecifier using this concept could
automatically create a semi-formal representation of the requirement.

F.9) The prototype must display possible alternative patterns, if no exact pattern match is found. As
the user must formalize all his requirements, the system ca help the user in case of a failed pattern
recognition, by displaying patterns, which are similar to the natural language specification. The
user can then update his natural language specification and attempt another pattern recognition.

7.1.3 Quality Requirements

This section defines the quality requirements for the prototype:

Q.1) The pattern recognition should not take longer than 1 second. While performance is not of high
priority for the prototype, the pattern recognition must take place in a reasonable amount of time.

7.2 Concept and Approach 73

Q.2) The meta-model for pattern recognition must be extendable by new kernel patterns. BTC Em-
beddedSystems’ customers can request new kernel patterns. Thus the collection of kernel patterns
is not static. In addition, patterns can be updated, as it has happened in Release 3.7 of the BTC
EmbeddedValidator Pattern Library [BTC12].

Q.3) The grammar for the natural language specification must be extendable. BTC EmbeddedSys-
tems’ customers can request new kernel patterns. Thus the collection of kernel patterns is not
static. In addition, patterns can be updated, as it has happened in Release 3.7 of the BTC Embed-
dedValidator Pattern Library [BTC12].

Q.4) The grammar must cover at least 3 structurally different natural language specifications for
at least 5 patterns. The grammar must be able to accept structurally different natural language
specifications, as natural language requirements are formulated differently by different customers.
Additionally, a system which only supports one static structure could not be easily adapted to
different regional natural languages.

7.2 Concept and Approach

This section introduces the concept and approach used to fulfill the requirements defined in section
7.1. The prototype’s goal is the translation of a natural language specification into a semi-formal
specification in the form of a pattern. This workflow is depicted in Figure 7.1. After specifying
the natural language specification, it must be parsed into an instance of the meta-model defined in
chapter 6. This process is described in section 7.2.1. Section 7.2.2 describes the workflow required
to recognize the pattern and its macros, thus resulting in a semi-formal requirement.

Figure 7.1: Conceptual workflow of the prototype.

7.2.1 Parsing

In linguistics, parsing describes the decomposition of sentences grammatical structure in order to
derive a respresentation of their semantic and syntactic structure [Sla13]. A parse tree can be used
to visualize the decomposition precedure step-by-step, as depicted in chapter 4. In computer sci-
ence, a lexical analyzer, which is oftened shortened as lexer, preprocesses the sentence for the parser
[ALSU86]. The interaction between a lexer and a parser is visualized in Figure 7.2. The lexer is
responsible for two tasks:

74 Prototype

Figure 7.2: Token-based interactions between Lexer and Parser. [ALSU86]

• Scanning – The lexer scans the input as plaintext and removes previously defined parts of the
input, such as comments in sourcecode, multiple whitespaces or other semantically unimportant
parts.

• Lexical Analysis – The lexer analyzes the textual input, such as sourcecode or natural language
specifications and replaces the textual charactersets with tokens, which are defined in the symbol
table. The symbol table includes keywords, definitions of charactersets which define what a word
or a number is in the context of the lexer and parser. The symbol table can also contains character-
sets with constraints, such as variable names in java, which consists of alphanumerical characters,
but must start with a letter [Ora13].

A parser is written for a specific language, which is usually defined by a context-free grammar or a
regular expression. The parser iterates over the tokens offered by the lexer and evaluates, if the chain
of tokens can be created using a given grammar. If it can be created, the input is successfully parsed.
The parser can define semantic actions, which are executed while parsing and can directly interpret
the language or make a statement about the input’s structure. Within the prototype, semantic actions
transfer the natural language specification into a datastructure based on the meta-model in section 6.

7.2.1.1 JavaCC

The prototype uses the Java Compiler Compiler (furthermore JavaCC) in order to parse the input.
JavaCC is a parser generator and lexical analyzer which generates java classes, which can parse the
given language [Nor13]. It was chosen due to its user friendliness and its good documentation. In
addition, an employee at the university of oldenburg was able to give support when Parsers generated
by JavaCC cannot handle left recursion, such as A := A, B in its grammar rules. Parsers, which
are generated by JavaCC, throw a ParseException, if the input is not part of the parsers language.
Otherwise the parsing operation runs successfully without further feedback. The language is defined
in a single file which contains the Java class definition, the token definitions for the lexer, and the
parsing rules [Jav13].

The structure of a JavaCC file is shown in Table 7.1. JavaCC offers many options which can be
set to true or false, in order to enable complex features such as detailed debug output for the parser
and the lexer, or unicode support. SKIP-Tokens define, which charactersets are removed within the
scanning task of the lexer. The content of the symbol table for the parser and lexer are directly defined
as tokens. The parse() method is the entry point for the language definition as regular language.

7.2 Concept and Approach 75

Section Explanation
Options Configuration flags for JavaCC, such as debug output.
SKIP-Token Defines, which characters are to be ignored by the parser.
Tokens Defines, which character sequences are represented as tokens by the lexer.
parse() Method The parsing entry point. contains regular expressions and java code.

Table 7.1: Structure of a JavaCC file

7.2.1.2 JavaCC Lexer

Each token defined JavaCC’s Lexer is an object and has two fields: type holds the tokens name;
image contains the represented text. Figure 7.3 represents an example lexer in JavaCC with token
definitions. SKIP in line 2 is a special token, which defines the symbols removed from the input
in the scanning task. The SKIP-Token’s content is removed after the lexical analysis and before
the input is offered to the parser. Thus characters within the SKIP-Token may be used within other
tokens. Ordinary TOKENs in lines 4-10 are split into keywords, such as if, then or continuously and
generic definitions for letters, words and numbers. EOL represents the ”End of Line” character in
all JavaCC regular expressions.

Lexer example in JavaCC
1 // TOKEN : { < $tokenname$: $regex$ > }

2 SKIP : { " " | "\t" | "," | "." }

3 // Keywords
4 TOKEN : { < IF : "If" | "When" > }
5 TOKEN : { < THEN : "then" | ", then" | "," > }
6 TOKEN : { < DURING : "during the next" > }

7 // Generic definitions
8 TOKEN : { < WORD : (<LETTER>)+ > }
9 TOKEN : { < LETTER : (["A"-"Z"] | ["a"-"z"])+ > }

10 TOKEN : { < NUMBER : (["0"-"9"])+ > }

Figure 7.3: Lexer example in JavaCC

7.2.1.3 JavaCC Parser

An excerpt of a JavaCC parser is depicted in Figure 7.4. Lines 1 to 25 depict parsing rules, which
contain regular expressions. The parse() method in line 1 is the starting point. Tokens in regular
expressions are embedded in angle brackets, like <IF> in line 7.

LOOKAHEAD(50) in line 9 applies to the or between _dualTrigger() and _simpleTrigger() and
specifies, that the parser simulates 50 tokens into the future before determining, which of the rules
applies. In this context, it means that a _simpleTrigger() can be 50 words in size. Because _dual-
Trigger() begins with a _simpleTrigger(), the parser cannot tell the difference without looking ahead
until it recognizes, if an <AND> token exists. The precise behaviour of LOOKAHEAD() in JavaCC
is explained in the JavaCC documentation [Nor13].

76 Prototype

Semantic actions in JavaCC are Java-Blocks, which are embedded in curly brackets, as seen in
lines 29, 33 and 35. The method getToken(int) gets a token from the Lexer within a semantic action.
GetToken(0) returns the last token, which was read by the parser. By using a number greater than 0 as
parameter, tokens can be retrieved from the lexer, before they are read by the parser itself. This must
be used with caution, as these tokens are not parsed yet and the tokens can be used within semantic
actions, even though they might result in a parsing error, when the parser reads them.

Parser example in JavaCC
1 void parse() : {}
2 {
3 _triggerImplies()
4 }

5 void _triggerImplies() : {}
6 {
7 <IF>
8 (
9 LOOKAHEAD(50)

10 _dualTrigger()
11 |
12 _simpleTrigger()
13)
14 (<DURING>)?
15 }

16 void _dualTrigger() : {}
17 {
18 _simpleTrigger()
19 <AND>
20 _simpleTrigger()
21 }

22 void _simpleTrigger() : {}
23 {
24 _predicate()
25 }

26 // output all tokens in the predicate as String
27 void _predicate() : {}
28 {
29 { String temp = new String(); }
30 (
31 LOOKAHEAD(10)
32 (<WORD> | <OR>)
33 { temp = temp + " " + getToken(0); }
34)+
35 { System.out.println(temp.trim()); }
36 }

Figure 7.4: Parser example in JavaCC

7.2.2 Pattern Recognition

Using the parser from section 7.2.1 and the meta-model defined in section 6, natural languages spec-
ifications can be analyzed for their pattern conformity. The complete workflow is depicted in Figure
7.5. This workflow is demonstrated by example of the natural language specification If it rains for 1
minute, then the wipers are activated within 30 seconds until the windscreen is dry..

7.2 Concept and Approach 77

Figure 7.5: Pattern recognition workflow as UML activity diagram.

Initially, the lexer receives the natural language specification as input. The example contains a
punctuation, which is removed by the scanning process, leaving If it rains for 1 minute then the wipers
are activated within 30 seconds until the windscreen is dry to be transfered to tokens. The keyword if
is represented by the token <IF>, for is represented by <DURING>, seconds and minute are repre-
sented by <TIME_UNIT>, then is represented by <THEN> and until is represented by <UNLESS>.
Every other word or number is represented by a respective generic token <WORD> or <NUMBER>.
The token-based representation offered by the lexical analysis is depicted in Figure 7.6. The tokens
values, which are the corresponding substrings from the natural language specification, can be ac-
cessed via the token’s image field, which was mentioned in section 7.2.1.2.

<IF> <WORD> <WORD>
<DURING> <NUMBER> <TIME_UNIT>
<THEN> <WORD> <WORD> <WORD> <WORD>
<FINALLY> <NUMBER> <TIME_UNIT>
<UNLESS> <WORD> <WORD> <WORD> <WORD>

Figure 7.6: Result of the lexical analysis.

The first action carried out by the parser is the identification of the activation mode and start-
phase. As this example contains neither, the default activation mode CYCLIC and the default start-
up phase IMMEDIATE are chosen. Next the parser recognizes the kernel patterns base structure
which, in this case, is <Trigger> <Action> <Time>. The parser then aggregates the <WORD>

78 Prototype

tokens to <PREDICATE> tokens and <NUMBER> <TIME_UNIT> tokens to <INTERVAL> tokens.
The intermediate result is shown in Figure 7.7.

Activation Mode: CYCLIC
Start-Up Phase: IMMEDIATE
Trigger: <IF> <PREDICATE> <DURING> <INTERVAL> <THEN>
Action: <PRECIATE>
Time: <FINALLY> <INTERVAL> <UNLESS> <PREDICATE>

Figure 7.7: Intermediate parsing result.

The parser can now identify the structure of the trigger, action and time components of the kernel
pattern in order to create an instance of the meta-model. The tokens <IF> and <THEN> are aggregated
to the <IF_THEN> token. All other tokens are representable with the meta-model. The unidentified
kernel pattern component of the instance is depicted in Figure 7.8.

Figure 7.8: Meta-model instance generated by the parser.

The Prototype now compares the meta-model instance with the structure of each kernel pattern
defined by BTC EmbeddedSystems AG. This is done by comparing the core properties, which are the
quantity of predicates and intervals, aswell as the occuring keywords. If a kernel pattern has exactly
the same amount of components, a match is detected and the predicates are mapped to the kernel
patterns macros based on their location in the natural language specification. The result is the pattern

7.3 Implementation 79

including activation mode and start-up phase aswell as the mapped macros. This information, which
is visible in Figure 7.9, can be entered into the BTC EmbeddedSpecifier.

Figure 7.9: Final result of the pattern recognition process.

7.3 Implementation

The prototype implements the workflow explained in section 7.2.2. Section 7.3.1 explains how the
prototype was developed. Section 7.3.2 describes the prototype’s architecture, whereas section 7.3.3
describes the prototype from a user perspective.

7.3.1 Development Process

As the prototype uses JavaCC, the parser’s code is autogenerated. This autogenerated code is hard to
read or to verify. Thus it was considered a blackbox component during development. A test-driven
approach was used throughout the development process, in order to identify errors with the parser.
A unit test was written for every linguistic structure, which was to be accepted by the parser. Any
faulty behaviour by the parser could be identified by the results of the several test cases and could be
isolated efficiently. This property is vital when extending the parsers grammar, as debugging a gram-
mar without test coverage is a very difficult task. The entire prototype was developed strictly using
test-driven development to ensure a high test coverage. The workflow of test-driven development is
depicted in Figure 7.10 and consists of three steps: red, green and refactor.

The first step is to write a test, which fails. This is known as a red test. Then the code is written
to conform to make this test case succeed. A successful test is known as a green test. After the test

80 Prototype

Figure 7.10: Test-driven development workflow. [Hey13]

succeeded, the code is refactored in order to become extendable and maintainable. These three steps
are repeated, until the code has implemented the required functionality. This development cycle was
applied for all kernel patterns and for every linguistic structure, which the prototype supports.

7.3.2 Architecture

This section outlines the prototypes architecture. This includes its classes along with their public
interface, as well as relations to other classes nd is visualized in the UML class diagram in Figure
7.11. This class diagram omits irrelevant details and displays additional details, which increase un-
derstandability.

The entry point is the main() method within the JusticePrototype class. From here, the Window is
created as a JFrame, which contains various graphical elements, most of which are unimportant for
the prototypes functionality. Among these graphical elements, is the Detect Pattern-Button, which
initiates the workflow on press.

The DetectButtonActionListener triggers the pattern recognition. This is done in two processes,
which are encapsulated in two classes: PatternParser and PatternMatcher.

The PatternParser contains the automatically generated code by JavaCC, thus offering the parse()
method.As JavaCC’s parse() method must return void, a second method, getModel() returns the meta-
model compliant model as output of the parsing process. PatternParser contains further automatically
generated methods, which are publicly accessible. Due to their large quantity and their low expres-
siveness, they are omitted from this class diagram.

The PatternMatcher holds a structural representation of every KernelPattern within the BTC Em-
beddedValidator Pattern Library Release 3.7 in a list. This list is created by the KernelPatternStruc-
tureFactory, which holds the structure of all KernelPatterns.The match() method compares the model
from the PatternParser with every KernelPattern in the Pattern Library to find structural equality.

The KernelPatternStructureFactory creates empty instances of KernelPatterns, which solely repre-
sent the structure of these. This factory class contains the structural information of all KernelPatterns.
In order to extend the prototype by more KernelPatterns, their structure must be defined within this
factory. A thorough explanation on extending the prototype is given in section 8.

7.3 Implementation 81

JusticePrototype

+ main()

PatternParser

+ parse()
+ getModel()

JFrame DetectButtonActionListener

+ actionPerformed(event: ActionEvent)11

Auto-generated methods,
which are required by
the parser, are omitted.

PatternMatcher

+ match()

11

1

1

 1

 1

KernelPattern

+ equalsStructure(obj: Object): boolean
+ /equals(obj: Object): boolean
+ /toString(): String
+ setName(name: String)
+ printPredicates(): String
+ getAction()
+ getTrigger()
+ getTime()
+ setAction(action: PredicateComponent)
+ setTrigger(trigger: ConditionalComponent)
+ setTime(time: ConditionalComponent)
+ setTriggerIDs(keys: String...)
+ setTriggerIntervalIDs(keys: String...)
+ setActionIDs(keys: String...)
+ setTimeIDs(keys: String...)
+ setTimeIntervalIDs(keys: String...)

PredicateComponent

setPredicate(value: Predicate)
getPredicate(): Predicate

ConditionalComponent

setTrigger()

Predicate

- text: String

1

1

 1
action1 *

 1

*

 1Interval

- value: Integer
- unit: String

«Enumeration»
KeyWords

DURING
WHILE
ONLY_AFTER
BEFORE
FINALLY
GLOBALLY
EXACTLY_THEREAFTER
MAXIMUM
AFTER_WHICH
ATLEAST_AFTER
UNLESS
IF_THEN

*

 1
1

1
 time

KernelPatternStructureFactory

+ createAllKernelPatterns(): ArrayList<KernelPattern>
+ createP(): KernelPattern
+ createP_implies_finally_globally_Q_B(): KernelPattern
+ createP_implies_finally_Q_B(): KernelPattern
+ createP_implies_globally_Q(): KernelPattern
+ createFinally_P_B(): KernelPattern
+ createFinally_globally_P_B(): KernelPattern
[...]
+ createQ_notbefore_P(): KernelPattern
+ createQ_onlyafter_P(): KernelPattern
+ createQ_while_P(): KernelPattern
+ createQ_while_P_B(): KernelPattern

«Enumeration»
StartUpPhase

IMMEDIATE
AFTER_N_STEPS
AFTER_REACHING_R

«Enumeration»
ActivationMode

INITIAL
FIRST
CYCLIC

*

1

1

1

Pattern

+ getName()
+ getActivationMode()
+ getKernelPattern()
+ getStartUpPhase()
+ setActivationMode()
+ setKernelPattern()
+ setStartUpPhase()
+ printPredicates()

11

11

1

1

1

 . trigger

1

Figure 7.11: UML class diagram of the prototype.

Every Pattern consists of an ActivationMode, a StartUpPhase, and a KernelPattern, as described
in section 6. A Pattern instance does not have a name after its creations, but instead receives a name
after it has successfully been matched with a KernelPattern.

The available ActivationModes and StartUpPhases are implemented as enumerations.

The KernelPattern offers many methods to set and change its Trigger, Action and Time Compo-
nents. Every component within the KernelPattern has an ID, which represents the order in which the
PatternParser returned the components. These IDs are used to map the components to the Identifiers
defined in the Pattern Library, such as P, Q, S and X.In addition to these, it contains an overwritten
toString() method to offer formatted output. Every KernelPattern can be compared with other Ker-
nelPatterns in order to determine structural equality or exact equality with the equalsStructure() and
equals() methods respectively.

82 Prototype

PredicateComponents are containers for an arbitrary number of Predicates, which contain the text,
which the Predicate represents. A KernelPattern’s Action component is a PredicateComponent.

ConditionalComponents are containers which can hold an arbitrary number of KeyWords and In-
tervals. ConditionalComponents extend PredicateComponents and thus also contain an arbitrary
number of Predicates. A KernelPattern’s Trigger and Time components are ConditionalComponents.

7.3.3 Final Prototype

This section describes the prototype from the user’s point of view. Figure 7.12 depicts the prototypes
user interface (UI), as it is presented to the user after startup. The UI is kept very simple and consists
of three components:
The Input Area accepts the users input. The input can be split into multiple lines to maintain clarity
in larger natural language specifications. Pressing the Detect Pattern-Button inititiates the parsing of
the string in he Input Area. The output of the parsing process is written to the Output Area.

Figure 7.12: Graphical user interface of the prototype.

Figure 7.13 depicts the UI after an input text was entered and the Detect Pattern-Button was
pressed: The Output Area displays the identified Pattern including the activation mode and start-up
phase, aswell as the Macros and their corresponding text from the natural language specification.

7.3 Implementation 83

Figure 7.13: Input and output of the prototype.

84 Prototype

85

8 Extending the Prototype

This section describes the extension of the prototype by a new kernel pattern. As the prototype was
developed using a test-driven approach, the extension of the prototype is test-driven aswell. The
prototype can be extended at two points: the grammar and the meta-model. Figure 8.1 gives an
overview of the workflow required to extend the prototype. This workflow can be applied wether
the intent is to extend the prototype by a kernel pattern, or to extend the grammar by synonyms or
linguistic structures. The extension of the grammar can be done using this approach, as the test will
subsequently correctly identify a pattern and thus complete successfully.

Figure 8.1: Test-driven workflow for extending the prototype by a kernel pattern.

Firstly the linguistic structure of the natural language specification for the new kernel pattern must
be identified. This can be done by writing natural language requirements, whereby their logic must
comply to the new kernel pattern’s büchi automaton. Among these natural language requirements,
common structures must be identified. This process was applied in chapter 4.

86 Extending the Prototype

After a common structure has been found, keywords for tokens within the parser must be identified.
New keywords should only be defined then, when existing keywords cannot be reapplied to the new
context.

As the prototype was developed with a test-driven approach, the extension by a new kernel pat-
tern occurs test-driven aswell. The developer must write a test case for every common structure in
ParserTest. Each test case simply calls the parse(String) method with the common structure as param-
eter. Subsequently the parsed model’s kernel pattern’s name is compared to the new kernel patterns
name. The existing test cases can be used as a reference for this procedure.

The further procedure is determined by the result of the next test run. The test can succeed, fail due
to a falsely identified kernel pattern or fail due to a ParserException. In the case of a ParserExcep-
tion, the grammar must be extended as explained in section 8.1. In the case of a falsely determined
kernel pattern, the KernelPatternStructureFactory must be extended as explained in section 8.2. This
procedure is repeated until the test run is successful. In the case of a succesful test run, the new kernel
pattern is fully implemented.

8.1 Extending the Grammar Rules

If the ParserTest fails with a ParserException, the input’s structure is not covered by the grammar.
The grammar is split into three main components: trigger, action and time. These are explained in
chapter 5 and are easily extendable, as they constitute of OR-constructions.

After extending the grammar rules, the JavaCC Parser’s code must be synchronized to accept the
same input. As the parser’s code is in a different, yet functionally equivalent format, adopting the new
grammar rules is straight-forward. The parser must be furthermore be extended by semantic actions,
which build the meta-model instance. The parser is generated by running the commandline operation
javacc *.jj followed by compiling the complete prototype including the generated .java files.

8.2 Extending the KernelPatternStructureFactory

If the ParserTest fails without a ParserException, the parsed kernel pattern’s name doesn’t correspond
to the expected name. This indicates, that the kernel pattern is not properly defined in the KernelPat-
ternStructureFactory. The KernelPatternStructureFactory contains a factory method for each kernel
pattern with the naming convention create<KernelPatternName>(). Every factory methods create an
empty instance of a KernelPattern with a structurally correct Trigger, Action and Time. The Predi-
cateComponent and ConditionalComponent classes have constructors to create empty instances. See
existing factory methods within the KernelPatternStructureFactory as reference.

After adding the factory method in the KernelPatternStructureFactory, the factory method must be
used in order to add an empty instance of the kernel pattern to the ArrayList, which is built within the
createAll() method. If the kernel pattern’s structure was correctly defined in the factory method, the
prototype will now correctly identify the parsed model’s kernel pattern structure and apply the name
to it, thus resulting in a succesful test run.

87

9 Outcome

This chapter evaluates, if the prototype created in chapter 7 solves the problem defined in chapter 1.2.
Section 9.1 validates the prototype’s efficiency with fictional, as well as real-world examples as input.
Section 9.2 adresses the freedom of natural language and the resulting problem of interpretation.
Section 9.3 gives a brief summary of what has been achieved in the thesis as well as the limits of the
approach. Section 9.4 gives an overview of possible fields for further research.

9.1 Validating the Prototype

This section validates the prototype’s efficiency by testing the fictional requirements from chapter
4 as input in section 9.1.1. Subsequently real-world example requirements from customers of BTC
EmbeddedSystems are tested in section 9.1.2.

9.1.1 Fictional Examples

The prototype was based on the grammar defined in chapter 5. This grammar was mostly based on
the example requirements defined in chapter 4. In order to validate the prototype, it is necessary to
evaluate, if the prototype can correctly identify the example requirements, which were the origin of the
grammar, to determine if the prototype eached its goal. The example requirements were entered into
the input mask of the prototype. The prototype proofed to identify all example requirements and map
their macros correctly. The prototype had problems when encountered by a newline or hyphenation,
which had to be removed. Newlines were replaced with whitespaces before the input was passed on
to the parser, in order to resolve the issue with newlines. Hyphens remain a problem, because they are
followed by a newline, which splits the word. These must be resolved by hand. Apart from these two
issues, the prototype successfully recognized the patterns including the corresponding macros for all
example requirements defined in chapter 4.

9.1.2 Real-World Examples

As the BTC EmbeddedTester is a product for customers, the formalization approach within this thesis
should ideally process real requirements formulated by customers as well. This approach was tested
with input data from three documents from customers of BTC EmbeddedSystems. For reasons of
confidentiality, the documents and their content is not described. The content of requirement excerts
within this section are purely fictional, whereas the original requirement’s linguistic structure was
preserved.

The first problem were symbols and numbers within predicates in the requirements. These were
vital, as they were used to refer to other requirements with identifiers such as <REQ_5>. The parser
did not accept words with symbols and numbers, as the fictional examples only contained letters. As
the approach uses a grammar, it was easily extended to accept words with the following rule: WORD
= LETTER (LETTER> | <NUMBER)*.Thus a word within the parser can begin with a letter followed
by an arbitrary amount of letters or numbers.

88 Outcome

The second major problem was the occurence of keywords within the natural language specifica-
tions. In some cases, it was sufficient to replace the keyword-occurence with a synonym. In some
cases, however, it was impossible to remove the keyword-occurence without altering the require-
ment’s linguistic structure. The most problematic keywords are while and and, as these can easily
occur within a trigger in natural language specifications. A workaround would be to summarize two
signals into one, so that the parser doesn’t attempt to parse a DUAL_TRIGGER rule.

Common linguistic structures within the requirement documents are short implications, which are
very unambiguous and easy to parse. These requirements are the best-case scenario for this approach
and lead to a very easy formalization. A possible drawback might be, that these very short require-
ments require a large amount of requirements to offer complete requirement coverage.

The most common structure within one document was the cyclic_P_triggers_Q_unless_S__immediate
pattern. This pattern represents an implication with a temporal constraint in form of a signal S. The
requirements within this document all had similar structures, which suggests that these requirements
could have been created using boilerplates or similar structural constraints. As such, many require-
ments could be parsed efficiently. About one third of the requirements had the temporal constraint
formulated in a structure, which was not recognized by the parser. The grammar can be altered to
accept this linguistic structure. It was not implemented in the prototype of this thesis, as the rules
had a conflict with existing rules to represent temporal constraints. Thus, this new structure would
replace the old structure.

Many requirements described components and their basic functionality, as well as their commu-
nication with other components. These requirements were mostly formulated in the structure of a
pattern cyclic_P__immediate. An example for such a requirement would be Component A sends its
output to Component B via TCP/IP. These requirements are very high level and do not contain sig-
nals, which can be mapped to a signal within a target architecture. In order to efficiently formalize
these requirements, many more details, especially those about the used signals for the implementa-
tion, are required. As the input and output signals must be mapped within a formal requirement, a
clear interface definition is sufficient.

9.2 Freedom of natural language specifications

Natural language offers freedom in its formulation and its interpretation. This makes it very difficult
to automatically parse and interpret natural language specifications. Even an optimal parser, which
could automatically recognize and interpret all natural language specifications would be challenged by
the ambiguity of natural language. While the ambiguity can be reduced by identifying the context of
the natural language specification, it cannot be eradicated. The prototype in section 7 only processes
a very limited spectrum of natural language, which is limited by the grammar. Due to this restriction
in functionality, ambiguity is minimized for the limited spectrum, thus enabling a precise mapping to
a semi-formal requirement and its macros.

9.3 Conclusion

The goal of this thesis was to automate the transition from natural language specifications to semi-
formal requirements in context of the BTC EmbeddedSpecifier. The prototype created in section 7

9.4 Further Research 89

successfully parsed the fictional example requirements and a significant amount of real-world exam-
ple requirements into semi-formal requirements, thus fulfilling the required basic functionality. As
stated in section 9.2, ambiguity poses a great challenge for automatic interpretation.

The prototype only accepts a strongly limited set of natural language as its input, in order to min-
imize ambiguity without interpreting the input. This allows for the prototype to precisely identify
patterns and macros, but it also means that the amount of accepted natural language specifications
is very limited. As a result, many natural language specifications within the real-world example re-
quirements were not parsed, although some of them were very unambiguous. When considering the
complete set of natural language specifications possible, it is also very difficult to precisely identify
a single applicable pattern. Many natural language specifications can be mapped to several patterns,
before considering ambiguity.

As the prototype is based on a grammar and a meta-model, its limited input spectrum can be
extended according to the customer’s needs. By extending the grammar to support the structure of
the customer’s natural language specifications, the boundaries of the input limitations can be shifted
towards the customer’s needs. Not only can the boundaries be shifted, but they can also be broadened
to accept a much wider spectrum of natural language specifications than the current prototype. Also
th meta-model is not bound to its current set of kernel patterns. Kernel patterns can be added or
changed as described in section 8. This can also be used to support an alternative to the current kernel
pattern system, by defining a new meta-model. In conclusion, the approach can be adopted to the
need of each individual user and the input spectrum can be broadened as required.

9.4 Further Research

The outcome of this thesis reveals the following topics for further research: The grammar contained in
this thesis is not optimal for all customers. Although customers have specific needs and very different
linguistic structures within their natural language specifications, an optimal generic grammar could be
constructed in order to fulfill most needs. However this would require a large amount of customer’s
requirements. Apart from the problematics of natural language specifications in english or other
western languages, the grammar does not take asian languages and their linguistic structures into
account. Japanese, for example, has a very complex linguistic structure when compared to european
languages. Thus it is not evaluated if this approach is efficient with asian languages. The approach can
also be extended to interpret the natural language specification in order to directly identify ambiguity
and react accordingly. The approach could prioritize applicable patterns according to different factors.
Another possibility of research is the replacement of the meta-model. BTC EmbeddedSystems has a
generic alternative to the kernel pattern library, which was used within this thesis. This thesis does
not adress the replacemenet of the kernel pattern meta-model with an alternative meta-model. While
the approach is metamodel-generic, it would have to be adopted to support such an alternative meta-
model.

9.5 Related Work

In his master’s thesis "CESAR - text vs. boilerplates: What is more effcient - requirements written as
free text or using boilerplates (templates)?" Vegard Johannessen analyzed the differences between free
text requirements and boilerplate requirements [Joh12]. His approach reduces ambiguity in natural

90 Outcome

language specifications by using boilerplates, as opposed to the grammar-based approach within this
thesis, which resembles limited free text. In his thesis, Johannessen did not come to an obvious
conclusion, whether boiler plates or free text requirements are to be preferred. He did note that boiler
plates have the advantage of producing requirements with less complexity. Due to the reduction of the
spectrum of natural language specifications, the complexity is reduced with the approach introduced
in this thesis as well. As such, the grammar-based approach does not suffer from the disadvantages of
free text requirements and could be compared to boilerplate requirements in terms of complexity. In
order to determine, if a grammar-based or a boilerplate approach have any advantage over the other
further research would be necessary.

91

10 Appendix

This chapter contains figures, which are omitted to not impede the readability of the thesis.

Final Grammar
Extended grammar used in the prototype

1 PATTERN = [ACTIVATION_MODE], KERNEL_PATTERN, [START-UP];

2 // - Activation Mode
3 ACTIVATION_MODE = INITIAL_AM
4 | FIRST_AM;

5 INITIAL_AM = "initially" | "Directly after start-up" | "After start-up";
6 FIRST_AM = "For one occurence" | "For the first occurence" | "For the first time";

7 // - Start-Up Phase
8 START-UP = AFTER_REACHING_R
9 | AFTER_N_STEPS;

10 AFTER_REACHING_R = "After", INTERVAL;
11 AFTER_N_STEPS = "After", PREDICATE;

12 // - Kernel Pattern
13 KERNEL_PATTERN =
14 TRIGGER, ACTION, [TIME]
15 | ACTION, [POST_TRIGGER]
16 | ACTION, TIME, [POST_TRIGGER]
17 | [TIME], ACTION, TRIGGER;

18 // - Trigger
19 TRIGGER =
20 IF, TRIGGER_IMPLIES, [THEN]
21 | TRIGGER_IMPLIES, IMPLIES;
22 POST_TRIGGER =
23 IF, TRIGGER_IMPLIES;
24 TRIGGER_IMPLIES =
25 (DUAL_TRIGGER | SIMPLE_TRIGGER), [DURING];
26 DUAL_TRIGGER =
27 SIMPLE_TRIGGER, AND, SIMPLE_TRIGGER;
28 SIMPLE_TRIGGER =
29 PREDICATE;
30 STABLE =
31 IF, SIMPLE_TRIGGER, DURING, THEN;
32 PREDICATE =
33 (WORD)+;
34 IF =
35 "if" | "when";
36 THEN =
37 "then" | ", then" | ",";
38 IMPLIES =
39 "implies that" | "imply that";

40 // - Action
41 ACTION =
42 SIMPLE_ACTION;
43 SIMPLE_ACTION =
44 PREDICATE;

92 Appendix

45 // - Time
46 TIME =
47 (ONLY_AFTER | NOT_BEFORE)
48 |
49 (FINALLY, AFTER_WHICH, FINALLY)
50 |
51 ((GLOBALLY, [FINALLY]) | (FINALLY, [UNLESS]))
52 |
53 (ATLEAST_AFTER)
54 |
55 ([DURING], EXACTLY_THEREAFTER)
56 |
57 (DURING, [FINALLY | AFTER_WHICH_OR])
58 |
59 (UNLESS, [FINALLY])
60 |
61 ([MAXIMUM_INTERVAL], WHILE);

62 WHILE =
63 WHILE_WORD, SIMPLE_TRIGGER;
64 WHILE_WORD =
65 "while" | "as long as" ;
66 MAXIMUM_INTERVAL =
67 MAXIMUM, INTERVAL;
68 GLOBALLY =
69 "continuously";
70 FINALLY =
71 WITHIN, INTERVAL;
72 ATLEAST_AFTER =
73 ATLEAST, INTERVAL, AFTER, DUAL_TRIGGER;
74 DURING =
75 DURING_WORD, INTERVAL;
76 EXACTLY_THEREAFTER =
77 EXACTLY, INTERVAL, THEREAFTER;
78 UNLESS =
79 UNLESS_WORD, (SIMPLE_TRIGGER | DUAL_TRIGGER);
80 AFTER_WHICH_OR =
81 AFTER_WHICH, MAXIMUM_INTERVAL, OR, UNLESS;
82 AFTER_WHICH =
83 AFTER_WHICH_WORD, SIMPLE_TRIGGER;
84 ONLY_AFTER =
85 "only after", SIMPLE_TRIGGER;
86 NOT_BEFORE =
87 "before", SIMPLE_TRIGGER;

88 INTERVAL =
89 NUMBER, TIME_UNIT;
90 NUMBER =
91 {DIGIT}-;
92 DIGIT =
93 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";
94 WORD =
95 LETTER {LETTER | NUMBER};
96 TIME_UNIT =
97 (("nanosecond" | "millisecond" | "second" |
98 "minute" | "hour" | "day" | "step"), ["s"])
99 | s | ms | ns | m ;

100 WITHIN =
101 "within" | "after";
102 MAXIMUM =
103 "for a maximum of";
104 ATLEAST =
105 "at least";
106 AFTER =

93

107 "after";
108 AND =
109 "and";
110 OR =
111 "or";
112 DURING_WORD =
113 "for" | "for the next" | "during the next";
114 EXACTLY =
115 "exactly" | "precisely";
116 THEREAFTER =
117 "thereafter" | "later";
118 UNLESS_WORD =
119 "until";
120 AFTER_WHICH_WORD =
121 "after which";

Meta-Model Compliant Models for Kernel Patterns

This section contains an instance of the meta-model in section 6 for each of the 24 kernel patterns
defined in the BTC EmbeddedValidator Pattern Library Release 3.7 [BTC12]. These patterns act as
an exhaustive reference for section 6.

Figure 10.1: Model for finally_globally_P_B.

94 Appendix

Figure 10.2: Model for finally_P_B.

Figure 10.3: Model for P.

Figure 10.4: Model for P_implies_finally_globally_Q_B.

95

Figure 10.5: Model for P_implies_finally_Q_B.

Figure 10.6: Model for P_implies_globally_Q.

96 Appendix

Figure 10.7: Model for P_implies_Q_atleast_X_steps_after_P.

Figure 10.8: Model for P_implies_Q_at_step_X_thereafter.

97

Figure 10.9: Model for P_implies_Q_during_next_X_steps.

Figure 10.10: Model for P_implies_Q_during_X_steps.

98 Appendix

Figure 10.11: Model for P_implies_Q_X_steps_later.

Figure 10.12: Model for P_stable_X_steps_implies_afterwards_Q.

99

Figure 10.13: Model for P_stable_X_steps_implies_finally_Q_B.

Figure 10.14: Model for P_stable_X_steps_implies_globally_Q_within_Y_steps.

100 Appendix

Figure 10.15: Model for P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter.

Figure 10.16: Model for P_stable_X_steps_implies_Q_stable_Y_steps_within_B_steps.

101

Figure 10.17: Model for P_stable_X_steps_implies_Q_within_Y_steps_unless_S.

Figure 10.18: Model for P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps.

102 Appendix

Figure 10.19: Model for
P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T.

Figure 10.20: Model for P_triggering_Q_within_X_steps_implies_S_within_Y_steps.

103

Figure 10.21: Model for P_triggers_Q_unless_S.

Figure 10.22: Model for P_triggers_Q_unless_S_within_B.

104 Appendix

Figure 10.23: Model for Q_notbefore_P.

Figure 10.24: Model for Q_onlyafter_P.

105

CD-Contents

• justice2013-2.pdf – This is the thesis in portable document format.

• JusticePrototype.jar – This is the prototype as executable java .jar file.

• JusticePrototype.zip – This archive contains the netbeans project for the prototype with the fol-
lowing folder structure:

– nbproject – contains the project files for the netbeans IDE.

– src – contains the project’s source files.

– src/justiceprototype/parser/ – contains the files for the parser.

∗ mkParser.sh – is a shortcut to build the java files with javacc and compile them with
javac.
∗ PatternParser.jj – is the source file for the JavaCC Parser.

– test – contains the JUnit tests.

– sanitizeParser.sh – removes the .class files within the project. This is required before com-
piling the auto-generated parser .java files.

106 Appendix

107

Glossary

This chapter elucidates the terms used in this document. The ∼ symbol represents a reference to the
word being explained. The ↑symbol marks a term which is listed in this chapter.

Automaton An ∼ is a mathematical model, which consists of states which are connected to ea-
chother via transitions. When it receives an input signal, it can omit an output signal and traverse
a transition to change the active state. An ∼ can process computational logic.

Finite Automaton A ∼ is a type of ↑automaton which accepts input of finite length.

Stream Automaton A∼ is an extension of a ↑finite automaton which accepts input of infinite length.

A∼ does not necessarily stop. To determine if a∼ accepts the input various acceptance conditions
must be defined.

Büchi Automaton A ∼ is a type of ↑stream automaton. A ∼ only accepts an infinite input if at least
one end state is visited infinitely often with the input.

Pattern A ∼ is an instantiation of a ↑Kernel Pattern in conjunction with a ↑start-up phase and an
↑activation mode.

Kernel Pattern A ∼ is the main component of a ↑pattern. It comprises of a ↑Trigger, an ↑Action
and a ↑Temporal Constraint component.

Activation Mode The ∼ determines when a ↑kernel pattern is active. The 3 available ∼ are initial,
first and cyclic.
initial: An initial∼ defines that the ↑kernel pattern should be valid after the system was initialized.
first: A first ∼ defines the condition to be satisfied in order for the ↑kernel pattern to be valid if the
condition occurs for the first time.
cyclic: In contrast to the first ∼ , the cyclic ∼ can be triggered again after the previous execution
of the ↑kernel pattern is finished.

Start-up Phase The ∼ determines a precondition, before a ↑kernel pattern is active. The 3 available
∼ are immediate, after n steps and after reaching r
immediate: An immediate ∼ defines, that the ↑kernel pattern has no precondition.
after n steps: A after n steps ∼ defines, that the ↑kernel pattern is active n steps after system start-
up.
after reaching r: A after reaching r ∼ defines, that the ↑kernel pattern is active after the first
occurrence of r after system start-up.

Natural Language Specification A ∼ is a requirement formulated in natural human language. As
the language of this document is english, all requirements said to be a ∼ are formulated in english
unless explicitly stated otherwise.

Semiformal Notation Within the context of the ↑BTC EmbeddedSpecifier, a ∼ is an instanciated
pattern with defined macros.

Formal Notation Within the context of the ↑BTC EmbeddedSpecifier, a ∼ is a semiformal notation,
which is mapped to a target architecture, such as a TargetLink model. This mapping is done via
↑contracts.

108 Glossary

Contract A ∼ consists of a single ↑pattern as an assurance and an arbitrary amount of ↑patterns
as assumptions. If the systems state conforms to its assumptions, a contract guarantees, that the
systems state also conforms to the commitment. ∼ are used to link the ↑patterns to a concrete
architecture.

Macro The interface of a ↑semiformal notation consists of∼ . ∼ are equivalent to a logical predicate.
These are later mapped to signals within a ↑formal notation.

BTC EmbeddedSpecifier The ∼ is a software released in march 2013 by BTC Embedded Systems
AG to simplify development with formal moethods. Due to its central role within this document,
it is explained in further detail in chapter 3.

V-Model A ∼ is a software development process.

Meta-Model ∼ are defined in the UML 2.4.1 superstructure [Obj13] and is a special class diagram.
A ∼ is a model of a model, thus resulting in the term ∼ .

UML ∼ stands for Unified Modeling Language and is a modeling language, which is standardized
by the Object Management Group (OMG). This document complies to the UML standard version
2.4.1 [Obj13].

Requirement ∼ for software development are usually obligatory demands by the customer, which
are negotiated between the customer and the developers. As software systems are complex to
understand for most customers, the developers assist the customer by eliciting requirements.

Prototype A ∼ is a piece of software, which is developed as a proof of concept. A ∼ is discarded
after it has fulfilled its purpose. A ∼ should never be processed into a product.

Grammar A ∼ is a set of rules, with which one can produce strings. The set of strings, which can
be produced by a ∼ are called a ↑formal language.

Formal Language A ∼ is the set of strings, which can be produced by a ↑grammar.

Parser A ∼ is a program which can determine, if a given string is within a given ↑formal language.
The ↑formal language, which the strings must conform to, is usually described with a ↑grammar.

Lexer See ↑Lexical Analyzer.

Lexical Analyzer A ∼ is a program, which traverses a text and replaces the plain text with ↑tokens.

Token ∼ are generated by a ↑lexical analyzer and offer a structured representation for the ↑parser.

Java ∼ is an object-oriented programming language developed by Oracle.

JavaCC ∼ is a ↑parser generator and ↑lexical analyzer, which generates ↑parsers in ↑Java.

Trigger A ∼ is a component of a ↑kernel pattern. A ∼ is a condition, which must be met, in order
for the ↑action to take place.

Action A∼ is a component of a ↑kernel pattern. A∼ is an action, which takes place, after a ↑triggers
condition is fulfilled.

109

Temporal Constraint A∼ is a component of a ↑kernel pattern. A∼ defines conditions which apply
to the ↑action.

Parse Tree A ∼ is a tree, which represents the structure of a string in the context of a grammars
deduction rules.

EBNF A ∼ is a structured textual representation of a grammars deduction rules. The

within this document are conform to ISO 14977 [ISO96].

Terminal Symbol A ∼ is a symbol within a ↑grammar’s rule, which is deducted to a symbol, which
cannot be deducted further.

Non-Terminal Symbol A ∼ is a symbol within a ↑grammar’s rule, which is deducted to a symbol,
which can be deducted further to another ∼ .

ISO 26262 ∼ defines obligatory requirements for the development of safety-critical systems. ∼ clas-
sifies safety critical systems into ↑ASIL-Levels depending on criteria of the development process.

ASIL-Level ↑ISO 26262 classifies safety critical systems into ∼ depending on criteria of the devel-
opment process.

TargetLink ∼ is an extension to Mathworks MATLAB. It takes ↑Simulink models and generates
code directly for a target architecture. It is an alternative to Mathworks Embedded Coder.

C ∼ is an imperative programming language.

C-Observer A ∼ is an end product of the BTC EmbeddedSpecifier. It is generated from formal-
ized requirements and can verify, if the system conforms to the requirement the C-Observer was
generated for.

Simulink ∼ is a module for Mathworks MATLAB, which enables model-driven development of
embedded systems.

Safety Critical System ∼ are systems, which can directly endanger human lives in the case of er-
roneous behaviour. Among others, systems for transportation, such as cars and planes, are ∼
.

110 Glossary

111

Abbreviations

AG Aktiengesellschaft (english: joint-stock company)
ASIL Automotive Safety Integrity Levels
BTC Business Technology Consulting
EBNF Extended Backus-Naur Form
EOL End Of Line
ISO International Organization for Standardization
JavaCC Java Compiler Compiler
Lexer Lexical Analyzer
RFC Request For Comments
SUT System Under Test
UML Unified Modeling Language
OMG Object Management Group

112 Abbreviations

113

Figures

1.1 Simplified V-Model of the ISO 26262 standard [Rea12]. 7

2.1 Thesis workflow organized in four segments. 9

3.1 The V-Model in four layers with its artefacts (green), the BTC EmbeddedSpecifiers
artefacts (blue) and its C-Observers(yellow) . 11

3.2 Abstact workflow from the natural language specification to the C-Observer 13
3.3 BTC EmbeddedSpecifier after creating a new profile 14
3.4 Imported Example Requirement in BTC EmbeddedSpecifier 15
3.5 Creating macros from the natural language requirement 16
3.6 Creating a pattern from the natural language requirement 17
3.7 The newly created pattern in BTC EmbeddedSpecifier 18
3.8 Selecting the kernel pattern from the kernel pattern library 19
3.9 Copying contracts to an architecture . 20
3.10 Erroneous requirements specification within the TargetLink architecture and C-Code 21
3.11 Formalizing the requirements specification via signal mapping 21
3.12 The generated C-Observer . 22

4.1 Composition of a patterns name. 25
4.2 Classification of the kernel patterns. Triggers are represented in yellow, while actions

are represented in red. [BTC] . 26
4.3 Timeline of the Initial activation mode. [BTC12] 34
4.4 Timeline of the First activation mode. [BTC12] . 34
4.5 Timeline of the Cyclic activation mode. [BTC12] 34
4.6 Timeline of the Immediate start-up phase. [BTC12] 35
4.7 Timeline of the After N Steps start-up phase. [BTC12] 35
4.8 Timeline of the After Reading R start-up phase. [BTC12] 35

5.1 Abstract parse tree for Kernel Patterns. 38
5.2 Parse trees for ACTION and TRIGGER . 38
5.3 Parse tree for INTERVAL . 39
5.4 Parse tree for INITIAL . 40
5.5 Parse tree for FIRST . 40
5.6 Parse tree for After N Steps . 41
5.7 Parse tree for After N Steps . 41
5.8 Parse tree for Q_while_P . 42
5.9 Parse tree for Q_while_P_B . 43
5.10 Parse tree for P_implies_finally_globally_Q_B . 44
5.11 Parse tree for P_implies_finally_Q_B . 45

114 Figures

5.12 Parse tree for P_implies_globally_Q . 45
5.13 Parse tree for P_implies_Q_atleast_X_steps_after_P 46
5.14 Parse tree for P_implies_Q_during_X_steps . 47
5.15 Parse tree for P_implies_Q_during_next_X_steps 47
5.16 Parse tree for P_implies_Q_at_step_X_thereafter 48
5.17 Parse tree for P_implies_Q_X_steps_later . 48
5.18 Parse tree for P_triggers_Q_unless_S . 49
5.19 Parse tree for P_triggers_Q_unless_S_within_B . 50
5.20 Parse tree for the STABLE rule. 50
5.21 Parse tree for P_stable_X_steps_implies_afterwards_Q 51
5.22 Parse tree for P_stable_X_steps_implies_finally_Q_B 51
5.23 Parse tree for P_stable_X_steps_implies_Q_within_Y_steps_unless_S 52
5.24 Parse tree for P_stable_X_steps_implies_Q_stable_Y_steps_within_B_steps 52
5.25 Parse tree for P_stable_X_steps_implies_globally_Q_within_Y_steps 53
5.26 Parse tree for P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter . . . 54
5.27 TIME subtree for P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter . 54
5.28 Parse tree for P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps 55
5.29 TIME subtree for P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps 55
5.30 Parse tree for P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T 56
5.31 TIME subtree for P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T 56
5.32 Parse tree for P_triggering_Q_within_X_steps_implies_S_within_Y_steps 56
5.33 Abstract parse tree for Kernel Patterns. 57
5.34 Parse tree for P . 57
5.35 Parse tree for finally_P_B . 58
5.36 Parse tree for finally_globally_P_B . 59
5.37 Parse tree for finally_globally_P_B . 59
5.38 Parse tree for Q_notbefore_P . 60
5.39 Grammar for the kernel patterns Q_while_P and Q_while_P_B 61
5.40 Possible orders for Trigger, Action, and Time . 65

6.1 Meta-model for patterns. 67
6.2 Meta-model for all kernel patterns. 68
6.3 Model for finally_P_B. 68
6.4 Model for P_triggering_Q_within_X_steps_implies_S_within_Y_steps. 69

7.1 Conceptual workflow of the prototype. 73
7.2 Token-based interactions between Lexer and Parser. [ALSU86] 74
7.3 Lexer example in JavaCC . 75
7.4 Parser example in JavaCC . 76
7.5 Pattern recognition workflow as UML activity diagram. 77
7.6 Result of the lexical analysis. 77

115

7.7 Intermediate parsing result. 78
7.8 Meta-model instance generated by the parser. 78
7.9 Final result of the pattern recognition process. 79
7.10 Test-driven development workflow. [Hey13] . 80
7.11 UML class diagram of the prototype. 81
7.12 Graphical user interface of the prototype. 82
7.13 Input and output of the prototype. 83

8.1 Test-driven workflow for extending the prototype by a kernel pattern. 85

10.1 Model for finally_globally_P_B. 93
10.2 Model for finally_P_B. 94
10.3 Model for P. 94
10.4 Model for P_implies_finally_globally_Q_B. 94
10.5 Model for P_implies_finally_Q_B. 95
10.6 Model for P_implies_globally_Q. 95
10.7 Model for P_implies_Q_atleast_X_steps_after_P. 96
10.8 Model for P_implies_Q_at_step_X_thereafter. 96
10.9 Model for P_implies_Q_during_next_X_steps. 97
10.10Model for P_implies_Q_during_X_steps. 97
10.11Model for P_implies_Q_X_steps_later. 98
10.12Model for P_stable_X_steps_implies_afterwards_Q. 98
10.13Model for P_stable_X_steps_implies_finally_Q_B. 99
10.14Model for P_stable_X_steps_implies_globally_Q_within_Y_steps. 99
10.15Model for P_stable_X_steps_implies_Q_stable_Y_steps_B_steps_thereafter. 100
10.16Model for P_stable_X_steps_implies_Q_stable_Y_steps_within_B_steps. 100
10.17Model for P_stable_X_steps_implies_Q_within_Y_steps_unless_S. 101
10.18Model for P_stable_X_steps_triggers_S_releasing_Q_within_Y_steps. 101
10.19Model for P_triggering_Q_stable_X_steps_implies_S_within_Y_steps_if_stable_T. . 102
10.20Model for P_triggering_Q_within_X_steps_implies_S_within_Y_steps. 102
10.21Model for P_triggers_Q_unless_S. 103
10.22Model for P_triggers_Q_unless_S_within_B. 103
10.23Model for Q_notbefore_P. 104
10.24Model for Q_onlyafter_P. 104

116 Figures

117

Tables

7.1 Structure of a JavaCC file . 75

118 Tables

119

Literature

[ALSU86] AHO, A. V. ; LAM, M. S. ; SETHI, R. ; ULLMAN, J. D.: Compilers principles, techniques,
and tools. 2nd Edition. Reading, MA : Addison-Wesley, 1986

[Bra97] BRADNER, S.: RFC 2119 - Key words for use in RFCs to Indicate Requirement Levels.
(1997), mar

[BTC] BTC ES: BTC Specification Patterns - Nomenklatura

[BTC12] BTC ES: BTC Embedded Validator Pattern Library. Release 3.7. 2012

[BTC13] BTC EMBEDDED SYSTEMS AG: BTC EmbeddedSpecifier: Step into the formal
world with ease. http://www.btc-es.de/index.php?lang=2&idcatside=
13&mod6_26_page=1. Version: may 2013

[FER13] FERCHAU ENGINEERING GMBH: Funktionale Sicherheit im Zehn-
erpack: ISO 26262. http://www.ferchau.de/news/details/
funktionale-sicherheit-im-zehnerpack-iso-26262-969/?ref=
atFERCHAU. Version: may 2013

[Hey13] HEYER, Sascha: TEST DRIVEN DEVELOPMENT – EINLEITUNG. http://wukat.
de/wordpress/2013/11/08/test-driven-development-einleitung/.
Version: November 2013

[ISO96] ISO/IEC: Information technology - Syntactic metalanguage - Extended BNF. (1996),
December

[ISO12] ISO TC22/SC3: Road vehicles – Functional safety – Part 10: Guideline on ISO 26262.
(2012), August

[Jav13] JAVACC PROJECT: JavaCC [tm]: Documentation Index. https://javacc.java.
net/doc/docindex.html. Version: may 2013

[Joh12] JOHANNESSEN, Vegar: CESAR - text vs. boilerplates: What is more effcient - require-
ments written as free text or using boilerplates (templates)? (2012), august

[Nat12] NATIONAL INSTRUMENTS: What is the ISO 26262 Functional Safety Standard? (2012),
February

[Nor13] NORVELL, T.S.: The JavaCC FAQ. http://www.engr.mun.ca/~theo/
JavaCC-FAQ/javacc-faq-moz.htm. Version: oct 2013

[Obj13] OBJECT MANAGEMENT GROUP: OMG Unified Modeling Language(TM) (OMG UML),
Superstructure. http://www.omg.org/spec/UML/2.4.1/Superstructure/
PDF/. Version: November 2013

[Ora13] ORACLE CORPORATION: Variables (The Java Tutorials > Learning the Java Language
> Language Basics). http://docs.oracle.com/javase/tutorial/java/
nutsandbolts/variables.html. Version: november 2013

http://www.btc-es.de/index.php?lang=2&idcatside=13&mod6_26_page=1
http://www.btc-es.de/index.php?lang=2&idcatside=13&mod6_26_page=1
http://www.ferchau.de/news/details/funktionale-sicherheit-im-zehnerpack-iso-26262-969/?ref=atFERCHAU
http://www.ferchau.de/news/details/funktionale-sicherheit-im-zehnerpack-iso-26262-969/?ref=atFERCHAU
http://www.ferchau.de/news/details/funktionale-sicherheit-im-zehnerpack-iso-26262-969/?ref=atFERCHAU
http://wukat.de/wordpress/2013/11/08/test-driven-development-einleitung/
http://wukat.de/wordpress/2013/11/08/test-driven-development-einleitung/
https://javacc.java.net/doc/docindex.html
https://javacc.java.net/doc/docindex.html
http://www.engr.mun.ca/~theo/JavaCC-FAQ/javacc-faq-moz.htm
http://www.engr.mun.ca/~theo/JavaCC-FAQ/javacc-faq-moz.htm
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

120 Literature

[PP04] PERRIN, D. ; PIN, J.É.: Infinite Words: Automata, Semigroups, Logic and Games. El-
sevier Science, 2004 (Pure and Applied Mathematics). http://books.google.de/
books?id=S7hHhJc4iNgC. – ISBN 9780080525648

[PR11] POHL, K. ; RUPP, C.: Requirements Engineering Fundamentals: A Study Guide for the
Certified Professional for Requirements Engineering Exam - Foundation Level - IREB com-
pliant. Rocky Nook Computing, 2011

[Rea12] REACTIVE SYSTEMS: Achieving ISO 26262 Compliance with Reactis. (2012), June

[Sla13] SLAMECKA, V.: Information Processing - Semantic Content Analysis. http://www.
britannica.com/EBchecked/topic/444705/parsing. Version: oct 2013

[SP86] SHNEIDERMAN, B. ; PLAISANT, C.: Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Boston, MA : Addison-Wesley, 1986

http://books.google.de/books?id=S7hHhJc4iNgC
http://books.google.de/books?id=S7hHhJc4iNgC
http://www.britannica.com/EBchecked/topic/444705/parsing
http://www.britannica.com/EBchecked/topic/444705/parsing

121

Index
Abstract, 3
Activation Mode, 34
Approach, 8

CD-Contents, 105

Grammar, 37
Construction, 61
Extended Version, 91
Semantics, 37
Validation, 64

Introduction, 7

JavaCC, 74

Kernel Patterns, 25
Invariant, 26
No Trigger, 32
Ordering, 32
Patterns

Triggers, 29
Progress, 27

Implies, 27
Temporal Trigger, 30

Stable Implies, 30
Stable Triggers Releasing, 31
Triggering Stable Implies, 31
Triggering Within Implies, 32

Meta-Model, 67
Kernel Pattern, 67
Pattern, 67

Outcome, 87

Parsing, 73
Patterns, 25

Action, 38
Structure, 38
Trigger, 38

Problem Description, 7
Problem Statement, 8
Prototype, 71

Requirements, 71
Validation, 87

Related Work, 89

Thesis Workflow, 9

122 Index

Versicherung

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt habe. Außerdem versichere ich, dass ich die allgemeinen Prinzip-
ien wissenschaftlicher Arbeit und Veröffentlichung, wie sie in den Leitlinien guter wissenschaftlicher
Praxis der Carl von Ossietzky Universität Oldenburg festgelegt sind, befolgt habe.

Oldenburg, den November 20, 2013

Benjamin Justice

	Abstract
	Introduction
	Problem Description
	Problem Statement
	Approach

	Thesis Workflow
	The BTC EmbeddedSpecifier
	Overview
	Concept
	Common Use-Cases for the BTC EmbeddedSpecifier
	The User Interface
	Workflow Example
	Conclusion
	ISO 26262

	Patterns
	Concept
	Kernel Pattern
	Activation Mode
	Start-up Phase

	Grammar
	Concept
	Basic Structure of all Patterns
	Common Structures within Example Requirements
	Constructing the Grammar
	Grammar Validation

	Meta-Model
	Meta-Model of a Pattern
	Meta-Model of a Kernel Pattern

	Prototype
	Requirements
	Concept and Approach
	Implementation

	Extending the Prototype
	Extending the Grammar Rules
	Extending the KernelPatternStructureFactory

	Outcome
	Validating the Prototype
	Freedom of natural language specifications
	Conclusion
	Further Research
	Related Work

	Appendix
	Abstract
	Glossary
	Abbreviations
	Figures
	Tables
	Literature
	Index

