
Architectural Design of Sensor based Environmental Information
Systems for Maintainability

Ruthbetha Kateule1, and Andreas Winter2

Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Department of Computer Science

kateule@se.uni-oldenburg.de, winter@se.uni-oldenburg.de

Keywords: Software Architecture, Sensor based Environmental Information Systems, Maintainability, Scenarios,
Architecture Design Decisions.

Abstract: The achievement of software quality attributes contributes to the success of any system. Maintainability is
one of the software quality attributes that plays a major role in attaining system quality, however, it is a time-
consuming and expensive phase of system development life cycle. Sensor based environmental information
systems have a long operational lifetime. For these reasons, It is very important for sensor based environmental
information systems to possess the maintainability quality attribute in order to remain useful during their
lifetime. However, the development process of such systems did not realize explicitly the maintainability
requirements to sustain the operation of such systems. Since the fulfilment of quality attributes of the system
has been increasing realized as a significant role of software architecture. This work extends the architecture
of sensor based environmental information systems for maintainability, using road traffic control system as a
case of study. Maintainability is assessed through the use of change scenarios. Architectural design decisions
are applied in redesigning the architecture to improve maintainability.

1 INTRODUCTION

Sensor based environmental information systems uti-
lize the sensing techniques to manage the data about
the air, water, soil and other objects revolving around
the world such as road traffic control, air pollu-
tion, and fire detection systems (Kateule and Winter,
2016). The utilization of such systems is increasingly
worldwide. This motivates the development process
of such systems to be initiated from the existing sys-
tems by reusing the developed artifacts: code and ar-
chitectural designs (Graaf, 2004). However, the de-
velopment of such systems emphasizes on the perfor-
mance, reliability, and usability. The software qual-
ity attributes pertaining the accommodation of likely
changes in the future i.e. growth and technology
are never explicitly specified, measured or architected
during the life cycle of the system.

Maintainability is an essential software quality
attribute for the long-term success of software sys-
tem. It is found that the maintenance phase consumes
a large part of a system costs such as between 50
to 80 percent of the system total costs (Lientz and
Swanson, 1980), (Clements and Kazman, 1998). The
conventional sensor based environmental information

systems are insufficient in terms of accommodating
continuous changing of the requirements, caused by
changes in the demands of various stakeholders and
environment. This could be addressed by first under-
standing the system since 47 percent of the mainte-
nance efforts are directly related to the system under-
standing (Clark and Boehm, 1995) i.e. software ar-
chitecture.

The software architecture of a program or com-
puter system is the structure or structures of the sys-
tem, which comprise software components, the ex-
ternally visible properties of those components, and
the relationships among them (Clements and Kaz-
man, 1998). Basically, the software architecture is
regarded as a blueprint for the development process
of a system. The software architecture facilitates the
achievement of systems’ functional and quality at-
tributes. Software architecture provides an appropri-
ate level of abstraction for evaluating, reasoning and
managing the software quality attributes (Kaufmann,
2014). The desired level of software quality could
be achieved via comprehensive specification and eval-
uation of a software quality attributes. System ar-
chitecture should accommodate quality attributes by
providing a foundation for achieving systems quality



attributes. Maintainability is one of software qual-
ity attributes that could be assessed in architectural
level (Wall and Land, 2008). The architecture deter-
mines the efforts required to find and fix errors as well
as moving the software to different platform or hard-
ware. Therefore, the architecture evaluation of main-
tainability is essential to determine the ability of a sys-
tem in accommodating new requirements or changes
to avoid expensive rework in the future.

Since maintainability is crucial for the long-term
success of sensor based environmental information
systems. The software architecture plays an important
role in achieving this mainly by incorporating new
and changed requirements of the system in the early
stages of system designs through various architectural
design solutions. This results in systems with reduced
risks, costs, and efforts in sustaining the effective and
efficient operations of the system. However many re-
searchers neglect the maintainability aspect while de-
signing software architecture.

In the previous conference paper, we have pro-
vided a preliminary discussion on the essential
viewpoints for the reference architecture of sensor
based environmental information systems (Kateule
and Winter, 2016). In this work, we extend the pro-
posed architectural design (mainly conceptual) with
maintainability perspective. The contribution of this
paper is the proposed architectural design (viewpoint)
that facilitate the development of maintainable sensor
based environmental information system.

1.1 Road Traffic Control System

Before continuing with the related works section, the
road traffic control system is introduced as a case of
sensor based environmental information system. This
system aims at maximizing the efficiency of road net-
works by minimizing traffic jams. The conceptual
view of road traffic control system as presented in
figure 1. The system employs sensors i.e. Induc-
tiveloopSensors to count the number of vehicles in
road lanes at the junctions, and then the information
is sent to the Server. The Server integrates the in-
formation collected by various sensors located in dif-
ferent road lanes. Then the Server analyses the col-
lected information and execute suitable control ac-
tions through TrafficSignalActuators and TrafficLight-
sActuators that maximize the traffic flow. The col-
lected information from the sensors as well as con-
trol actions executed by the actuators are stored in the
TrafficDB. A UserInterface displays the road traffic
information of various junctions.

The remainder of this paper is organized as fol-
lows. The related works are given in Section 2. Sec-

Figure 1: Conceptual View of Road Traffic Control System.

tion 3 presents maintainability aspect on software ar-
chitecture. The software architecture description for
maintainability is presented in Section 4. The paper
ends with the conclusion in Section 5.

2 RELATED WORKS

One of the most challenging tasks in designing soft-
ware architecture is not only to design the specified
system functionality but also attaining a specific soft-
ware quality attributes i.e. performance or maintain-
ability that led to the quality of the system (Bosch and
Bengtsson, 2002). Therefore the evaluation of soft-
ware quality is crucial to both software engineers and
business expertise perspectives.

In (Lindvall and Dennis, 2009), the Tactical Sepa-
ration Assisted Flight Environment system (TSAFE)
was analyzed and investigated over the accommoda-
tion of new features. The maintainability and flexi-
bility issues were discovered and their impacts on the
software system were analyzed. Then the observed
issues were resolved via architecture design decisions
that reduce maintenance effort of such system.

In (IEEE, 2011), different views of the software
systems are proposed to address different concerns
of various stakeholders of the system. A view con-
forms to a corresponding viewpoint. Maintainability
being one of the concerns of various stakeholders is
addressed by various viewpoints for instance module
dependency viewpoint.

In (Bengtsson and Bosch, 1998), a method for re-
engineering software architecture was demonstrated.
The method addressed the quality attributes of soft-
ware architecture. This was achieved through the use
of scenarios and then the design transformations were
applied to improve the quality attributes of the re-
quired system. The method was illustrated via a beer
can inspection system.



From the literature, it is found that scenario based
technique is mostly used in assessing the maintain-
ability from the architecture point of view. Also, most
of the architectural designs that have been proposed
belong to various system domains rather than sensor
based environmental information systems. Hence this
work addresses the issue of maintainability on the ar-
chitectural level of sensor based environmental infor-
mation systems.

3 MAINTAINABILITY ON
SOFTWARE ARCHITECTURE

Any system intends to provide desired services based
on the predetermined quality attributes. The sensor
based environmental information systems is expected
to possess longer operational lifetime. The stake-
holders consider maintainability as the most impor-
tant quality attributes.

Maintainability is the ability of the system to ac-
commodate new or change requirements with a de-
gree of ease (Christensen, 2003). In general, main-
tainability is the capability of the software product to
be modified (ISO, 2001). This includes the addition
or manipulation of functionalities, fixation of errors
and fulfilment of new raised requirements to meet the
demands of the business.

Maintainability is one of the software quality at-
tributes which is highly affected by the architectural
design of a software system. This is because the
functionality of the system is decomposed into sev-
eral components. Hence the introduction of change or
new requirements led to the modification of the spec-
ified architecture by imposing the changes in several
components to accommodate the introduced require-
ments. This situation could be handled effectively
through the analysis and understandability of the soft-
ware system i.e., if the designed software architecture
is extended with the design decisions for maintain-
ability then the system would be able to accommodate
change and new requirements against minimal efforts.

4 SOFTWARE ARCHITECTURE
DESCRIPTION FOR
MAINTAINABILITY

The description of software architecture for sensor
based environmental information system that sup-
ports maintainability adopts IEEE 42010 (Recom-
mended Practice for software Architectural Descrip-
tion of Software Intensive Systems) (IEEE, 2011).

The developers, architects, and sensor experts are
identified as the main stakeholders with maintainabil-
ity concerns. Since maintainability is one of the soft-
ware quality attributes that could be expressed natu-
rally through change scenarios, then a scenario-based
approach is utilized for the identification of the desir-
able set of viewpoints. A scenario-based method is
a technique of evaluating a software quality attribute
of an architecture mainly maintainability by express-
ing the software quality attribute in terms of scenar-
ios (R. Kazman and Webb, 1994). Therefore for our
case, change scenarios in road traffic control system
as a case of study are utilized as described in the fol-
lowing section.

4.1 Scenarios

A scenario represents an action or sequence of actions
that might occur as related to the system. It describes
a certain maintenance task. Some of the potential
change scenarios of road traffic control system that
could arise as new requirements in the future are as
described below;

• Hardware change: The sensor, servers, user inter-
faces and actuators hardware in the system might
be changed or added to increase the accuracy or
performance of the system hence the correspond-
ing software need to be updated. For instance,
the system employed inductive loop detectors and
there was a need of adding CCTV camera sen-
sor to increase accuracy. Also, initially the sys-
tem utilized traditional traffic lights as actuators,
the emergence of smart traffic lights enforce the
system to replace the traditional traffic lights with
new smart traffic lights to increase the perfor-
mance of the system.

• The change of road traffic algorithms, database or
sensor measuring types. Normally the road traffic
algorithms serve the traffic demands in the lanes,
hence when the traffic demands change mainly
due to weather, road maintenance activities, ac-
cidents, and others, then there is a need of chang-
ing the algorithms to suit the demands. Change of
one database schema to another i.e. from SQL to
Oracle requires the road traffic control system to
be updated. The sensor measuring types could be
changed to meet the traffic demands and increas-
ing the accuracy of the system, for instance, the
extension of measuring only vehicle counts to in-
clude other measuring types such as length, and
speed of vehicles.

• Extension of the system with some external sys-
tems via data exchange. Rise of new requirements



or some events such as travellers need to be up-
dated on the status of road traffic to plan their trips
and also occurrence of accidents and some other
criminal acts on the roads require the road traffic
control system to be extended or provide some in-
formation to other systems such as traveller infor-
mation, emergence and security control systems.

These scenarios are representative scenarios for the
maintenance of sensor based environmental informa-
tion systems.

4.2 Effects on the Architecture

The aforementioned change scenarios are evaluated
based on their impacts on the software architecture of
road traffic control systems described in section 1.1.
The impacts of those change scenarios are as follows:

• The introduction of new or change of hardware in
the road traffic control system requires the change
of all concerned components since the compo-
nents are directly connected to each other.

• The road traffic algorithm change affects the
Server component, database change affects the
TrafficDB component, user interface change af-
fects the UserInterface and Server components
and also the change of sensor measuring types af-
fect the Sensor and TrafficDB components.

• To accommodate the extension with new systems
the Server component need to be reconfigured.

The realization of these scenarios in the architecture
of road traffic control system presented in section 1.1
revealed that the accommodation of those scenarios
impose the reconfiguration of the whole architecture
since many components are affected. This implies
that the demonstrated architecture of road traffic con-
trol system posses low maintainability.The main ob-
jective of software architectural design is to optimize
the potential of the designed architecture in order
to fulfil the software quality requirements (Bengts-
son and Bosch, 1999).Therefore there is a need of
redesigning the software architecture of road traffic
control system taking into consideration the maintain-
ability as the crucial requirement.

4.3 Proposed Architectural View for
Maintainability

The effects of those scenarios on the described road
traffic control system revealed that the system pos-
sesses low maintainability. The main objective of sys-
tem architecture redesign is to utilize the architectural
design decisions to accommodate those requirements.

An architectural design decision concerns with the ap-
plication of the architectural styles and patterns in the
system to satisfy the system requirements (Jansen and
Bosch, 2005). The following are critical architectural
design decisions that have been applied to extend the
architecture design of road traffic control system with
maintainability as illustrated in figure 2;

• Addition of New Classes: This handles the clear
distribution of activities or functionality of partic-
ular component. For instance, a new class Con-
troller implements the Server is responsible with
coordinating the activities of all other components
in the system, hence reduce inter-components
coupling. The expansion of road traffic control
system with other systems or functionality could
be executed by Controller. Analyser responsible
with analysing the collected traffic information,
executing specified algorithm that optimise traffic
flow. Parser handle various database schemas by
facilitating the insertion and updation of database.

• Interfaces: Each component has been designed
with an Interface class that facilitates the inter-
components communication. This implies that the
hardware and software changes (communication
protocols, user-interfaces etc.) could be easily ac-
commodated through interfaces.

• Design Patterns: Client-Server Architectural
Style is employed to decouple the GUI from the
program logic by separating the program logic
Server Interface from the display Client.

Figure 2: Redesigned View of Road Traffic Control System.



4.4 Generalised Viewpoint

The generic architectural design (viewpoint) of sensor
based environmental information systems for main-
tainability is derived from the representation of the
road traffic control system architecture view pre-
sented in the previous section. The viewpoint of
sensor based environmental information system as
shown in figure 3, consists of the following compo-
nents Sensor, Actuator, Server, Database and Client.
For Maintainability, the architectural design employs
new classes for specific functionalities, interfaces for
facilitating the communication between the afore-
mentioned components and client-server architectural
style for separating the processing of information
from the actual displaying functionality. Therefore
the development of any maintainable sensor based en-
vironmental information system could be facilitated
by deduction of concrete system architecture view
from this proposed viewpoint.

Figure 3: Conceptual Viewpoint of Sensor based Environ-
mental Information Systems

5 CONCLUSION

The architecture of sensor based environmental infor-
mation systems has been identified as an important
aspect in the development of sensor based environ-
mental information system. A well-defined software
architecture led into the fulfilment of software quality
attributes mainly maintainability. The incorporation
of maintainability demands in an early phase of sys-
tem design is crucial for achieving a well-functional
and reasonable cost system since the resulted system
will be able to accommodate the changes or new re-
quirements throughout its lifetime.

This paper presents the architectural design of
sensor based environmental information systems for
maintainability. The approach utilizes a scenario-
based technique and employs architectural design de-

cisions to achieve the maintainability software qual-
ity attributes. The selected scenarios are aligned with
stakeholders’ concerns on the aspect of maintainabil-
ity. An architectural view of improving maintainabil-
ity of road traffic control system is proposed. And
finally, the viewpoint for maintainable sensor based
environmental information systems is derived.

REFERENCES

Bengtsson, P. and Bosch, J. (1998). Scenario-based soft-
ware architecture reengineering. Proceedings of 5th
International Conference on Software Reuse.

Bengtsson, P. and Bosch, J. (1999). Architecture level pre-
diction of software maintenance. Proceedings of 3rd
European Conference on Software Maintenance and
Re-engineering, pages 139–147.

Bosch, J. and Bengtsson, P. O. (2002). Assessing optimal
software architecture maintainability. Proceedings of
Fifth European Conference on Software Maintenance
and Reengineering, pages 168–175.

Christensen, H. B. (2003). Using software architectures for
designing distributed embedded systems. Technical
Report, University of Aarhus, Denmark.

Clark, C. G. A. A.-A. B. and Boehm, B. (1995). On the
definition of software system architecture. Technical
report: USC/CSE-95-TR-500.

Clements, L. B. P. and Kazman, R. (1998). Software Archi-
tecture in Practice. MA: Addison Wesley Longman.

Graaf, B. (2004). Maintainability through architecture de-
velopment. European Workshop on SA.

IEEE (2011). Recommended practice for architectural de-
scription of software-intensive systems 42010.

ISO (2001). International organization for standardization ,
iso 9126-1:2001.

Jansen, A. and Bosch, J. (2005). Software architecture as
a set of architectural design decisions. Proceedings of
5th Working IEEE or IFIP Conference.

Kateule, R. and Winter, A. (2016). Viewpoints for sen-
sor based environmental information systems. Envi-
roInfo: 30th edition, Berlin-Germany.

Kaufmann, M. (2014). Relating system quality and soft-
ware architecture. Elsevier Inc., pages 41–73.

Lientz, B. and Swanson, E. (1980). Software maintenance
management. Mass.: Addison-Wesley.

Lindvall, C. A. . M. and Dennis, G. (2009). Redesign
for flexibility and mantainability: A case study. Pro-
ceedings of European Conference on Software Main-
tenance and Re-engineering.

R. Kazman, L. Bass, G. A. and Webb, M. (1994). Saam:
A method for analyzing the properties software archi-
tectures. Proceedings of the 16th International Con-
ference on Software Engineering, Sorrento, Italy.

Wall, M. L. C. N. A. and Land, R. (2008). Importance of
software architecture during release planning. Pro-
ceedings of the Seventh Working IEEE/IFIP Confer-
ence on Software Architecture, pages 253–256.


