Carl von Ossietzky
Universitat Oldenburg

Bachelorstudiengang Informatik

BACHELORARBEIT

General Model Difference Calculation

vorgelegt von
Christoph Alexander Kupker

Betreuender Gutachter
Prof. Dr. Andreas Winter

Zweiter Gutachter
Dilshodbek Kuryazov

Oldenburg, 10.06.2013

Abstract

Models, used to represent abstract views on a complex system, are commonly
used design documents and artefacts in the process of software development.
Differences between consecutive versions of models allow, for instance, model
evolution investigation or versioning of models. Such differences, referred to
as modelling deltas, are detected using model difference calculation algo-
rithms. Currently available tools and frameworks for model difference cal-
culation are limited either in model language capabilities or have restricted
functionalities for implementational reasons. Hence, general model difference
calculation is an open problem.

Existing algorithms, tools and frameworks for model comparison have been
investigated and a general algorithmic solution has been found. That algo-
rithm has been implemented in a prototype called GDiff which allows model
difference detection in a generic manner. The implementation is capable of
detecting differences for any model type or language. This is validated by
exemplary comparisons of UML Activity Diagrams and a domain-specific
graph type used to represent object-oriented software systems.

The solutions to a general model difference calculation algorithm and the
prototype implementation show that model difference calculation is actually
possible without restrictions to model type or language. The solution pro-
vided in this work could for example be embedded in a model versioning
system, allowing the system to make models from any language versionable
without requiring specific modelling tools or model representations.

Contents

1.

Introduction 6
1.1, Goal o 6
1.2. Approach 8
System Boundaries and Requirements for a Model Difference Calculation Al-
gorithm 9
2.1. Model Versioning System o 10
2.2. Generic Model Versioning System 11
2.3. Modelling Deltas e 12
2.4. Delta Description Language 14
2.4.1. Additions e 14
24.2. Changes o 15
2.4.3. Deletions e 15
2.5. Variable Assignment in the Delta Description Language 16
2.5.1. Forward Delta 16
2.5.2. Backward Delta 18
2.5.3. Conclusion e 19
2.6. Requirements for a Model Difference Calculation Algorithm 19
Related work 23
3.1. Persistent-identifier-based approaches 24
3.2, Diff . . . 24
3.3. Semantic difference calculation approaches 26
3.3.1. Approaches 27
3.3.2. Evaluation 28
3.4. UMLDIff 28
3.4.1. Preliminaries 29
3.4.2. Algorithm 30
3.4.3. Evaluation 33
3.5 SIDIff ..o 33
3.5.1. Preliminaries e 33
3.5.2. Algorithm 35
3.5.3. Evaluation 37
3.6. DSMDiff e 38
3.6.1. Preliminaries 38
3.6.2. Algorithm 38
3.6.3. Evaluation 42
3.7. Summarisation 43
GDiff - A General Algorithm for Model Difference Calculation 44
4.1. Architecture L 45
4.2. Model Representation Lo oo 46

4.3. Delta e
4.4. Model Traversal
4.5. Similarity Computation and Element Matching
4.5.1. Name Similarity o oo
4.5.2. Structural Similarity 0oL
4.5.3. Similarity Composition 000
4.5.4. Match Selectiono
4.6. Delta Optimisation
4.7. Deriving the Modelling Delta from Calculated Differences

. Evaluation

5.1. UML Activity Diagrams
5.2. Java TGraphs for Software Evolution Investigation
5.3. Required Implementation Improvements based on TGraph Evaluation . .

. Conclusion

. Manual for GDiff

. Manual for GUUID Applier

63
64

64

List of Figures

1.

RN

10.
11.
12.
13.
14.
15.

16.

17.

Modelling delta calculation workflow from two successive versions of an
UML Activity Diagram
Reduced metamodel for UML Activity Diagrams
Collaborative Modelling
Activities of a Model Versioning System
Model difference calculation and reverting workflow
Two consecutive versions of an UML Activity Diagram
Four consecutive versions of an UML Activity Diagram starting with an
empty diagram
In- and output data for difference calculation tool
Four consecutive versions of an UML Activity Diagram
UML Activity Diagram created with Rational Software Architect [1]
SiDiff internal graph metamodel[2] L0000
General algorithm for model difference calculation
Composite structure of the GDiff implementation
TGraph schema for a subset of UML Activity Diagrams
UML Activity Diagram (left) and the corresponding TGraph representa-
tion (right) L
Model to TGraph transformation (top), Metainformation application to
TGraph (middle), input and output parameters for GDiff (bottom)
Extract of the TGraph schema to represent a Java software system [3]

1. Introduction

Versioning is a key component of collaborative software development and evolution. Fo-
cused on coding, source code management tools like CVS [4], Subversion [5] and Git
[6] allow software developers to store all the incremental versions of a software system.
This allows backtracking of development and makes software evolution and collaborative
development traceable.

The same concept could be useful for modelling in software development and evolution
in general, as well as in model driven software development methods like the Model
Driven Architecture (MDA) [7] approach. For any of these aspects, models are created
to allow abstract views of the developed or evolving system for different stakeholders.
These models are, just like the system itself, updated and changed throughout the de-
velopment process and are thereby evolving through different versions.

Versioning systems that are based on text documents, such as the previously mentioned
source code management tools CVS, Subversion and Git, could be used for the ver-
sioning of models if they were transformed into a textual representation, for example,
XML Metadata Interchange (XMI) [8] format or a proprietary, text-based model stor-
age format. That is not a suitable solution because it hides the modelling semantics
of the processed models from the versioning system and the user. Different versions of
a textually represented model would, for example, differ in line additions or character
changes. Users would however not be able to trace changes made to the models directly
or display model differences on model level.

Some of the UML modelling tools, especially Visual Paradigm [9], provide special ver-
sioning systems for created models. These, for example the teamwork client plugin in
Visual Paradigm in collaboration with the Visual Paradigm Teamwork Server [10], store
the versioned models inside a source code management system repository, for example the
one provided by Subversion, adding model versioning functionalities on top which keep
the modelling semantics available. Modellers can for example display changes between
versions on model level. But this approach binds modellers to one specific modelling
tool and thereby restricts versionable modelling languages and model types to the ones
provided by the used tool.

Therefore none of these approaches, neither source code management tools nor mod-
elling tool’s collaborative plugins, provide modellers with the versioning functionality
needed to handle arbitrary modelling projects. Thus, a model-focused but model type
and modelling language independent versioning system is needed.

1.1. Goal

Versioning systems do not store the complete model in all its successive versions but
instead store the differences between them. Every version can be recreated by trans-
forming these differences into specific versions of the object, for example by applying a
specific difference to a specific version to generate the succeeding version. All the activ-
ities inside a versioning system that provide the versioning functionalities are handling
such differences.

This work focuses on providing a general solution for the most basic activity, the differ-
ence calculation. Without this basic activity none of the other fundamental versioning
activities such as the transformation of objects to previous versions or the visualisation
of differences would be possible. Hence, difference calculation builds the foundation for
a versioning system.

Version 1 Version 2
[Action j Model Evolution
(Model)
Difference
L Calculation J

Modelling Delta

Figure 1: Modelling delta calculation workflow from two successive versions of an UML
Activity Diagram

A directed difference between two models is being referred to as the modelling delta
whose creation is sketched in figure 1. In this case the difference between two successive
versions of an UML Activity Diagram is being calculated. The modelling delta contains
information on how to modify a specific version of a model to obtain another specific
version of the same model for example by listing elements that have to be added, re-
moved or changed. A delta, in contrast to a difference, is directed from a specific host

version to a specific target version of the same model and is generally not bidirectional.
A difference calculation algorithm needs to identify these changes in the model versions
and output them in a generic delta format.

A variety of model difference calculation algorithms has been developed over the last
years, for example SiDiff [2, 11|, UMLDiff [12] or DSMDiff [13], but each of these is
somehow limited in its approach or its model handling capabilities. Hence, there cur-
rently is no general solution to model difference calculation. Therefore, the main goals
of this work are:

1. Find a general algorithmic solution to model difference calculation.

2. Implement the algorithm so that any model type and language is generically pro-
cessable.

The term generality is in this case defined as the capability to handle any model with-
out requiring any model-specific or even user-set configuration as well as the generated
difference representation being generated without any further configuration.

1.2. Approach

First an algorithmic solution to graph difference calculation is needed. Related work, for
example the frameworks and tools mentioned before, will be investigated to find suitable
algorithms providing the needed results. The investigation will be focused on runtime
complexity and difference detection correctness. So that even large models, as created
for large software systems, can be processed in appropriate time.

Once a problem solving algorithm has been identified, it will be implemented in a tool
that allows model difference calculation for any model type and language.

This thesis begins with a description of a Model Versioning System in section 2 which
outlines the system boundaries for a model difference calculation algorithm and results
in its requirements. Section 3 contains a theoretical investigation of existing model
difference algorithms and section 4 describes the idea and the prototype implementation
of the resulting model difference calculation algorithm GDiff. Section 5 contains the
validation of GDiff against UML Activity Diagrams and other model types and the
thesis ends with a conclusion in section 6.

2. System Boundaries and Requirements for a Model
Difference Calculation Algorithm

The goal of this work is to find a general solution to model difference calculation inde-
pendent from the modelling language and type of the processed models. This section
describes the embedding for such an algorithm and outlines the system boundaries and
functionalities of a Model Versioning System (MVS) within which it can be used.

Examples used to explain the process of model difference calculation and underlying
methods are based on UML Activity Diagrams [14, pp.319-434]. For simplification of
the examples, a subset of UML Activity Diagrams is used for which the metamodel is
given in figure 2. Activity Diagrams thereby consist of Activities which can contain

= ObjectFlow £ ControlFlow
Q Flow
= Activity
* x [Eg name : String
-target|1 1| -source
Q Node Q Leaf Q Composite

- container() 1

£ mitialNode £ JoinNode
* - child
E Component
Q FinalNode Q ForkNode
Q ActionNode Q ObjectNode

[Eg name : String

£ FlowFinalNode £ MergeNode

Q DecisionNode

Figure 2: Reduced metamodel for UML Activity Diagrams

other Activites and Nodes, represented by a composite pattern. Nodes can be of type
Initial, Final, Action, Decision, Fork, Merge Join, Flow Final or Object Node. Nodes
and Activities can be connected using flows, which are directed associations either of
type Control or Object Flow. Hence, the metamodel contains the basic concepts of UML
Activity Diagrams.

2.1. Model Versioning System

An MVS can be used to assist collaborative modelling projects where multiple modellers
work on the same modelling project to, for example, design a software system. A figure
of the collaborative modelling process is given in figure 3.

Modelling Project

Modelling Team —
——] UML Class Diagrams

o O

L)

UML Activity Diagrams

L)

UML Sequence Diagrams

Further Models

Figure 3: Collaborative Modelling

The modelling project consists of various models of equal or different types which rep-
resent certain aspects of the designed system. Each modeller can be assigned to specific
aspects but it is also possible that modellers work on the same model at the same time.
Whenever team members apply changes to a model, the modelling project evolves to
a new version. An MVS allows the team members to store the incremental versions
of the project in a centralised repository provided by the MVS. Earlier versions of the
project can be retrieved from the repository and new versions of the project can be
stored without overwriting previous versions. Additionally, the MVS is capable of con-
flict handling. Conflicts occur, for example, whenever two or more team members make
different changes to the same model at the same time meaning that the changes have
been applied to the same version of the same model. The MVS detects such conflicts
and provides techniques to solve them, for example, by trying to merge both changes
into the model or, if that is not possible, by allowing the user to merge conflicted models
by hand.

This functionality is comparable to the ones provided by source code management sys-
tems such as Subversion [5] or Git [6], but instead of their text based versioning capa-

10

bilities, an MVS handles models on model level abstracting from their, possibly textual,
internal representation.

2.2. Generic Model Versioning System

For the embedding of a general difference calculation algorithm the Generic Model Ver-
sioning System (GMoVerS) as proposed by D. Kuryazov et.al. [15, 16, 17] forms the
system boundary.

GMoVerS provides the functionalities of a versioning system as described in the previ-
ous section for models in general. It aims to be modelling language independent and
provides versioning functionalities for any model.

Model Versioning System
(N\ N ~N
Calculating Differences Reverting Merging
N J - J - J
e N N A
Representing Visualising Analysing
N J - J - J

Figure 4: Activities of a Model Versioning System

The MVS consists of six basic activities, shown in figure 4, that in combination provide
the desired functionalities of an MVS.

The calculation of differences combined with the reverting of models allow the MVS to
store and retrieve all versions of a model without having to store each model completely.
Therefore, model differences are the main artefact used by the MVS. The general work-
flow of using model differences in an MVS is given in figure 5.

The difference calculation activity, preferably a standalone tool in the MVS, detects
differences between two consecutive versions n and n + 1 of the same model. The meta-
model is used to get information about the general structure of the processed models.
The resulting output is used in the reverting activity, also preferably a standalone tool,
to apply the detected differences to one of the original models and thereby generate the
other version of the same model. In figure 5 the reverting activity produces the version
n of the model by receiving the model difference and version n + 1 of the same model.
Again, the metamodel might be used to get information about the general structure of
the processed model. By relying on this workflow, the MVS can easily keep track of all
model versions without needing to store them completely.

The merging activity handles conflicts whenever two or more modellers made changes
to the same version of a model at the same time. Such conflicts are handled either
by providing automatic conflict solving algorithms, which result in a merged version of

11

Metamodel

Model (Version n)

Difference

Calculation

Model (Version n+1)
|Model Difference

Reverting
At

Figure 5: Model difference calculation and reverting workflow

1Y ||||',JL 1

Model (Version n)

both changes, or by letting the users of the MVS merge their changes by hand. Model
differences are represented in an MVS-specific delta description language. This differ-
ence representation is generated by the difference calculation and used by all activities
using model differences. Differences can also be visualised using the visualising activity
so users can directly see applied changes on model level, for example, by highlighting
added, changed or deleted elements in different colors. The analysis activity provides
model evolution investigation functionalities.

Because model differences are the main artefact within the MVS, the model difference
calculation algorithm researched in this work will be the foundation for any other activ-
ity of the MVS. But, as the generated output of that algorithm should be in the format
of the MVS’s delta representation format, this format has to be defined before.

2.3. Modelling Deltas

The differences between models are represented by using so-called modelling deltas which
are a directed representation of the model differences. The distinction between a model
difference and a modelling delta can be explained using natural language.

The two UML Activity Diagrams given in figure 6 are consecutive versions of the same
model with version 2 being the most recent version. The difference between these two
models can be naturally expressed by saying: ”The action node is missing.” This infor-
mation however does not allow the generation of the second version of the model by only
knowing the first version and the described difference. Therefore, modelling deltas, even
if represented in natural language, contain more specific and especially directed informa-

12

Version 1 Version 2

O | O
)
O O

Figure 6: Two consecutive versions of an UML Activity Diagram

tion on how to obtain the second version of the model. A natural language example of a
delta for the given example would be: ”To generate version 2 of the model from version
1 of the model, remove the action node, the control flow outgoing the action node, and
redirect the remaining control flow’s target to the final node.” This information is com-
plete and allows the retrieval of version 2 by only knowing the given delta and version
1 of the model. With this information given, the reverting activity can generate any
model version stored in the MVS.

Due to the fact that modelling deltas are directed, they are not bidirectionally applica-
ble. The delta given before is referred to as a forward delta, because it is directed to
the newer version of the model. The opposite is referred to as a backward delta which
would be directed from version 2 to version 1. It is obvious that the backward delta is
the inverse of the forward delta. The natural language representation of this delta would
be: ”To generate version 1 of the model from version 2 of the model, add an action node
with the name Action, redirect the existing control flow’s target to the new action node,
and add a control flow going from the new action node to the final node.”

A formal notation for forward and backward deltas is given by the equations

mi + Aq 2 =my

ma + Ao =my

where mj, mg are the models in version 1 and 2, A;9 is the forward delta leading
from version 1 to version 2, and Ag; is the backward delta leading from version 2
to version 1. The +-Operator is defined as the application of a delta to a model. This
formal representation of delta application and delta direction representation will be used
throughout this thesis.

Because a natural language delta representation is hardly processable by automatic tools,
a more detailed and linguistically restricted delta description language should be used
to represent deltas. That representation can be used by all MVS activities which handle

13

modelling deltas, such as the reverting activity, without requiring delta transformations.

2.4. Delta Description Language

The differences expressed in a delta can be categorised into additions, removals and
changes of elements. By having these, all possible changes a model has gone through
can be expressed. Several approaches to model difference representation exist [18, 11].
However, due to the fact that the target of this work is to embed the resulting algorithm
in the MVS described before, the operation-based delta description language [16, 17]
used in that system is used to represent modelling differences.

The delta description language provides a simple set of instructions that can be used
to generate another version of a model. These operations are, just like the difference
categorisation given before, categorised into additions, removals and changes. The op-
erations are named according to the metamodel of the processed model and are given
in the context of complete models or in the context of an existing model element. The
sequential execution of the operations given in a delta can be used to generate another
version of a model.

2.4.1. Additions

To create a new element in the target version of the model, an add operation is added
to the delta. This operation defines the type of the element and assigns the resulting
element to a variable that can later be referred to. An exemplary use of the operation is

gl = addActionNode (” Name”);

where g1 is the variable to which the element is assigned and ActionNode is the name
of the type of the created element as defined by the metamodel. Attribute values are
directly passed as parameters, such as the name of the created Action Node in the
example above, ordered according to the order of attributes in the metamodel. The add
operations for other element types are named accordingly.

As elements can be contained within other elements, additions of elements to other
elements also have to be possible in the delta description language. This is achieved by
referring to the desired container via a dot-notation as in

gl = g0.addActionNode ();

where g0 is the delta variable of the desired container. In the case of UML Activity
Diagrams this could for example be an Activity.

When adding relations between two existing elements, source and target of the created
relation must be defined within the add operation which changes the add operation to

g2 = addControlFlow (sourceNode , targetNode);
Again, just like when creating standalone elements, the resulting element is assigned to
a variable named g2 and the type of the element is given by the operation name. The

parameters sourceNode and targetNode must however be defined elsewhere in the delta
so that they actually point to the correct source and target model elements.

14

2.4.2. Changes

Change operations are used to change attribute values of elements. These operations can
be called on any element that has previously been assigned to a variable, for example by
using a add operation. To change the name attribute of an action node which is assigned
to the variable g1 to the new value ” Action”, the operation

gl.changeActionNodeName (” Action”);

is added to the delta. Again, the type of the changed element as well as the name of the
attribute are given by the operation name and are conforming to the names within the
metamodel. The parameter defines the new value of the attribute. The ”.”-notation,
similar to object-oriented programming languages, allows the execution of operations on
unique elements.

Because source and target elements of relations in a model can also be expressed using
attributes, the same change operations are used to redirect existing relations. But instead
of setting a parameter with the type of the changed attribute, the parameter must be
another model element that has been assigned to a variable elsewhere in the delta:

g.changeControlFlowSource (newSource);
g.changeControlFlowTarget (newTarget);

The change of a containment can be expressed by changing the Container attribute of
an existing element as in

g.changeActionNodeContainer (container);

where container is the delta variable referring to the desired container.

2.4.3. Deletions

Deletions are again called on elements that have been previously assigned to a variable
name. The delete operation syntax is

g.deleteActionNode ();

where g is the assigned variable and ActionNode is the type of the removed element.

The forward delta A resulting from a difference calculation of the models given in

figure 6 using this delta description language contains the following operations:
g2.deleteActionNode ();

gd . deleteControlFlow ();
gh.changeControlFlowTarget (g3);

The backward delta As 1 contains the following operations instead:

g2 = addActionNode ();
g2.changeActionNodeName (” Action”);
g4 .changeControlFlowTarget (g2);

gb = addControlFlow (g2,g3);

Important is the fact that multiple deltas representing the same difference are possible.
This applies for a natural language delta representation as well as for the used delta
description language. For example, it makes no difference which one of the control flows

15

is redirected and which one is deleted in the forward delta, as long as one is removed
and one is redirected.

These deltas are however incorrect. As stated before, the variables used must be defined
within the delta document so that they refer to an existing or created element. This is
not the case for both of the deltas given above due to the fact that the delta description
language does not define how an existing element can be uniquely selected and assigned
to a variable other than using an add operation. To solve this issue a deeper investigation
of the consecutive version delta creation is necessary.

2.5. Variable Assignment in the Delta Description Language

In figure 6 two consecutive versions of an UML Activity Diagram are given. That
example is extended by two more versions of the same diagram which are shown in
figure 7. The first version of the diagram is now an empty model whilst the previously
existing versions are now referred to as version 2 and 3. Additionally, version 4 of the
diagram has been added where the action node has been re-added and the diagram is
extended by a fork and a merge node.

Version 1 Version 2 Version 3 Version 4

O @,

O O O

Figure 7: Four consecutive versions of an UML Activity Diagram starting with an empty
diagram

The solution to unique and distinguishable variable names within the delta is based on
the idea of creation deltas that are solely used to create a specific version of a model.
These deltas can be applied to an empty model to generate the desired version of the
model and are therefore formally referred to as Ay ,, where n is the desired version of the
model. This idea is explained using the above example and by theoretically generating
all forward and backward deltas between these consecutive versions.

2.5.1. Forward Delta

The first difference to calculate is the difference between versions 1 and 2. Because
version 1 is the empty model, the delta will only contain add operations. Because all the

16

elements in version 2 are newly created, the referral to previously existing elements is not
a problem. Additionally, the new elements will immediately have variable assignments
due to the fact that the add operations of the delta must assign the elements to new
variables. By providing a starting number for variable numbering to the difference
calculation, it can additionally be guaranteed, that each variable name has never been
used before. In this case, the numbering would start at 1 so that the first element added
will receive the variable name gi1. By using these preliminaries, the resulting delta A o,
which is equal to the delta Ap 5, contains the following operations:

gl = addInitialNode ();

g2 = addActionNode(” Action”);
g3 = addFinalNode ();

gd = addControlFlow (gl,g2);
gb = addControlFlow (g2,g3);

The difference between version 2 and 3 now somehow has to refer to elements that are
already existing. If the previous delta is provided to the difference calculation tool, it
can easily be detected that the action node to be removed has previously been added
as an element assigned to the variable g2. The same conclusion can be applied to any
other element that has to be referenced. This leads to the resulting delta Ag 3:

g4 .changeControlFlowTarget (g3);

gh.deleteControlFlow ();
g2.deleteActionNode ();

When computing the difference between versions 3 and 4, the variable names for elements
which already exist in version 3 cannot be concluded because there is no delta Ay 5 given.
However, because whenever the newest version of a modelling project is retrieved from
the MVS, for example when a team member checks out the current state of the project,
the retrieval of the newest version of a model might be the most common case. The
complete storage of the newest version n of a model therefore seems adequate. But, due
to the fact that the delta Ay, also helps creating the delta it makes sense to store this
delta instead of the newest model itself. This also has the advantage that the MVS only
has to handle deltas internally because every model is internally represented as a delta.
The delta Ay 3 has not been given in the previous step of the given example but as it
is needed to compute the difference for succeeding versions, it also has to be generated
while calculating the difference between versions 2 and 3. The elements in version 2
have already been assigned to unique variables and it is undesirable behaviour to change
these assignments when generating the delta Ay 3 because it would make backtracking
of model element evolution impossible. Therefore, the generated delta contains add
operations which assign the elements to their previously given variables:

gl = addInitialNode ();
g3 = addFinalNode ();
g4 = addControlFlow (gl,g3);

If Ap 3 is known when calculating Ag 4 the variables of already existing elements, such
as the initial and final node, can easily be derived. Because the last newly assigned
variable occured in Ao with the unique numbering value 5, the numbering for newly

17

added elements in version 4 starts at the value 6 to guarantee unique variable names for
all versions:

g6 = addDecisionNode ();

addActionNode (” Action”);

addMergeNode ();

g9 = addControlFlow (g6,g7);

¢gl0 = addControlFlow (g6,g8);

gll = addControlFlow (g7,g8);
);
(

02 0”9
N
Il

gl2 = addControlFlow (g8, g3
g4 .changeControlFlowTarget (g6);

Ay 4 also has to be generated for consecutive versions and contains the following opera-
tions, again using previously assigned variables only by knowing Ay s:

gl = addInitialNode ();

g3 = addFinalNode ();

g4 = addControlFlow (gl,g6);
g6 = addDecisionNode ();

g7 = addActionNode(” Action”);
g8 = addMergeNode ();

g9 = addControlFlow (g6,g7);
gl0 = addControlFlow (g6,g8);
gll = addControlFlow (g7,g8);
gl2 addControlFlow (g8,g3)

)

2.5.2. Backward Delta

The generation of backward deltas does not change the order of difference calculation but
instead changes the direction of the generated deltas. Just like before, the first version
comparison occurs between versions 1 and 2. The resulting delta is the backward delta
Ag;1 = Ay g which in this case would only contain delete operations. But as the elements
in version 2 have never been assigned to variables before, they have all been added in
version 2, Ay, is needed to have these variable assignments. But, as said before, this
delta again can be used for retrieval of the newest version of the model within the MVS.
The unique element numbering again starts at 1 which results in Ay o being equal to the
same delta given before when investigating forward deltas. Thereby, Ag; contains the
following set of operations:

gl.deletelnitialNode ();

g2.deleteActionNode ();

g3.deleteFinalNode ();

g4 . deleteControlFlow ();
gh.deleteControlFlow ();

By knowing Ag o, the delta Ay s which is needed for variable assignment and model
retrieval, can easily be derived. It contains the same operations that were in Ay 3 when
investigating forward deltas. The backward delta Aso then contains add operations
which assign the elements to the variables already used in Ay ,:

g2 = addActionNode(” Action”);
g5 addControlFlow (g2,g3);

18

g4 .changeControlFlowTarget (g2);

For comparison of version 3 and 4 the delta Ay, is created using variable assignments
from A@Jﬂ' The unique numbering for new elements that did not exist in version 3 starts
at 6. It contains the same operations that were in Ay, when investigating forward
deltas. The backward delta A4 3 now contains delete operations for elements added in
version 4:

g6 .deleteDecisionNode ();

g7.deleteActionNode ();

g8.deleteMergeNode ();

g9.deleteControlFlow ();

gl0.deleteControlFlow ();

gll.deleteControlFlow ();

gl2.deleteControlFlow ();

g4 .changeControlFlowTarget (g3);

Concluding from this backward delta investigation, whenever a newest consecutive ver-
sion n is processed, a virtual empty model is assumed to follow that model version to
allow a backward delta calculation which generates Agp,. This specific backward delta
assigns all variables needed for A, ,_1 and additionally allows a direct retrieval of the
newest version of the model from the MVS by simply executing

0+ A@,n = Mn

and returning the resulting m,,. This makes it obsolete for the MVS to handle any model
representation other than its own delta representation.

2.5.3. Conclusion

Seeing that both approaches, forward as well as backward delta generation, solve the
possible problem of variable assignment, the decision about delta direction can solely
be based on the aspects of model retrieval. As said before, the most common case is
the retrieval of the newest version n of the model. It therefore makes sense to store the
delta leading to this newest version, formally Ay ,,. The version k& < n of the same model
can then be generated by applying a concatenation of consecutive backward deltas to
an empty model:
mp =0+ 8, +Apn1+ oo+ D1k

Another advantage of using creation deltas within an MVS, is the possible improve-
ment to calculate differences between creation deltas instead of models. Comparing the
creation deltas Ags and A, reveals some text based differences. These differences
can actually be used to derive the backward delta Ay3 as well as the forward delta
A3z 4. However, due to the fact that this thesis aims for a solution to model difference
calculation, such a delta difference calculation is out of this work’s scope.

2.6. Requirements for a Model Difference Calculation Algorithm

The functionalities of a model difference algorithm have been described in sections 2.3
to 2.5 but the requirements for the algorithm, respectively a model difference calculation

19

—] Unique numbering value
Metamodel for delta variable assignment
Model (Version n)

Difference
Calculation

Model (Version n+1)

T I I

@,n

Figure 8: In- and output data for difference calculation tool

tool, have still to be defined.

The algorithm should generally process two models and output the delta in the described
format. Because of the used delta description language and the resulting variable as-
signment investigations in the previous section, the in- and output parameters for the
algorithm have to be changed from the ones given in figure 5. The new in- and output
parameters are given in figure 8.

Instead of only receiving two consecutive versions of the same model and the metamodel
to which these models conform, the algorithm also needs the creation delta which gen-
erates the older version of the model. The information contained in these four input
parameters is then used to generate two deltas: A creation delta Ay, which generates
the newest version of the model and a delta A, 11, representing the difference between
the two given versions of the model. To allow unique and distinguished variables within
these created deltas, a unique numbering value that can be used to create new variable
names also has to be provided to the algorithm.

As the algorithm shall be capable of handling any modelling language and model type,
the processed models must in some way be generalised so that the algorithm has not to
be adjusted to the processed model in any way. To achieve this, some MVS provided ex-
ternal preprocessing component might be necessary. That component would be used to
transform the internal model representation of the MVS into the model representation
used internally by the model difference calculation tool. This internal representation
however must represent models in such a generic way, that it allows the algorithm to
actually handle any modelling language without further configuration.

This however does not mean that the algorithm will not have any knowledge about the
processed models type and language as the metamodel also has to be known to the
algorithm to be able to generate operation names for the created modelling delta. The
metamodel must therefore also be provided to the difference calculation algorithm in a

20

representation that is applicable to the internal model representation.

Because model as well as metamodel representation are required to be as generic as no
model-specific configuration is necessary, user-set difference calculation algorithm con-
figurations should also be avoided if possible.

The resulting output should be as minimal as possible to reduce storage space costs of
the modelling delta. This includes the avoidance of redundant information. Such infor-
mation can occur when an element has been changed between two consecutive versions
of a model but instead is being detected as a removal of the original and a creation of
the changed element. Erroneous results, especially false-positive difference detections,
must also be avoided by any means to reduce storage space costs.

The performance of the algorithm has yet only been spoken of in terms of storage space
costs. As modelling projects of software systems might consist of large diagrams, con-
sisting of hundreds of model elements per diagram [11], time efficiency also is a key
requirement for the algorithm if it should be used in a productive system. Imagining
the case that some changes have been applied to such a model and should be stored in
an MVS, users should not have to wait for minutes until the difference information has
been gathered. Whenever possible, runtime complexity optimising methods should be
used by the algorithm to reduce computational time. This should however in no case
cause worse difference detection correctness.

The problem of model difference calculation is similar to subgraph-isomorphism problem
which is NP-complete but can be solved in polynomial time for certain graph types [19,
p-202]. Assuming a simple model comparison where every element in the first version
of a model is compared to every element in the second version, the resulting runtime
complexity would be O(n?) where n is the number of model elements for both models.
Concluding from these facts the main requirements for runtime complexity will be (1)
finding a solution which is in the polynomial class and (2) that outperforms a runtime
complexity of O(n?).

The complete list of requirements therefore is:

1. No user-set configuration is required.

2. Models can generically be processed only by using internal representations of their
metamodel and the models itself.

3. The resulting output is a backward delta represented in the operation-based delta
description language proposed by D. Kuryazov [16] as well as a creation delta in
the same representation which generates the newer version of the model.

4. Variable assignments are consistently reassigned if elements had an assignment in
a previous delta and new ones are assgined uniquely.

5. The generated deltas must be complete.
6. The generated deltas must be minimal.

7. The generated deltas must be correct.

21

8. The runtime complexity of the algorithm is in the polymial class.

9. The runtime complexity of the algorithm outperforms a runtime complexity of
O(n?) where n is the number of elements for both processed models.

The following section will focus on an investigation of existing model difference calcula-
tion algorithms to find a general algorithmic solution that can be used to satisfy these
requirements.

22

3. Related work

In this section several algorithms from recent scientific publications will be investigated
to determine principles that could be used for an algorithm that could generally solve the
model difference calculation problem. Each algorithm investigated will be described by
listing its preliminaries, the algorithm itself with pseudocode implementations of useful
methods, and an evaluation whether the algorithm could solve the targeted problem in
general. Such a complete survey is necessary because the algorithms might significantly
differ in performance (runtime complexity), difference detection correctness and differ-
ence minimisation.

In general, the difference calculation between two models is similar to the graph iso-
morphism problem which means finding the correspondences between two graphs. This
problem is NP-complete [19] which is why a more specialised and outperforming algorith-
mic solution is needed. The algorithm requirements from section 2.6 should be satisfied
apart from the ones focusing on output format which are specific to the targeted system
boundaries from section 2.

Version 1 Version 2

O O

O O

Version 3 Version 4

FirstAction
SimpleMainAction
FinalAction

MainSimpleAction

O
O
o]

Figure 9: Four consecutive versions of an UML Activity Diagram

23

Whenever needed the example given in figure 9 is used to explain methods of the in-
vestigated algorithms. This example is a slightly modified and extended version of the
example used in section 2 and represents four consecutive versions of the same UML
Activity Diagram.

The abstraction level of the investigated algorithms will advance with the section, which
means that algorithms that have been proposed to work only for specific model types
(e.g. UML activity diagrams), will be investigated first and more general ones to the
end of this section. The section however begins with an investigation of three specific
approaches, giving details on persistent identifier based approaches, textual difference
calculation, and the principle of semantic difference calculation and how usable they are
given the context of this work. The rest of the section will focus on syntactic difference
calculation methods which are most suitable for the targeted embedding.

3.1. Persistent-identifier-based approaches

Most internal model storage formats, for example the ones used in the UML modelling
tools Visual Paradigm [9] and Rational Software Architect [1], are based on some pro-
prietary XML representation of the models with each model element having a unique
identifier assigned by the modelling tool. This also applies for models which are exported
to XMI.

An obvious approach to model difference detection is given by these unique identifiers:
By checking whether an element identifier occurs in both versions of the processed model
it can be concluded whether that element has been changed, removed or added. Such
an persistent identifier based approach was introduced by M. Alanen and I. Porres in
2003 [20].

The performance of such algorithms is only limited by the data structure representing
the models because the only computation necessary is to check whether an element iden-
tifier is mapped to a model element. This can for example be done by using hash maps.
These approaches however have a major disadvantage: Due to the fact that model ele-
ment identifiers must be persistent over various versions of the same model, it must be
guaranteed that they never change whenever the model is changed. This might be true
if only one modelling tool is used but as soon as the model is edited in more than one
modelling tool, or even on more than one machine, this cannot be guaranteed. For ex-
ample, repeated model exports to XMI from the Rational Software Architect [1], result
in the same or different unique identifiers, depending on whether or not the user marks
a specific checkbox.

Such tool-specific configurations cannot be taken care of by an MVS as well as a model
difference calculation tool so it can be assumed that algorithms, based on persistent
identifiers, are not a suitable solution for the embedding in a productive MVS.

3.2. Diff

One of the standard tools for comparing text files and calculating differences between
them is Diff for Unix [21]. Text diff tools are part of every current source code manage-

24

&5 Activity1

L Action1

Figure 10: UML Activity Diagram created with Rational Software Architect [1]

ment system, especially used to handle conflicts between a working copy and the remotely
stored files. Diff is capable of detecting character removals, additions and line changes
between two compared files. This capability could also be used to detect differences
between models if models would somehow be transformed into a textual representation.
This is, for example, possible by exporting models into the XML Metadata Interchange
(XMI) format [8]. XMI is a standardised format proposed by the OMG and commonly
supported by modern UML modelling tools such as the Rational Software Architect [1]
or Visual Paradigm [9]. The structure of the represented model is stored in XML form
and can, due to the standardisation of the format, be exchanged between different tools.
To explain the shortcomings of text based model comparison the activity diagram given
in figure 10 has been created twice using the Rational Software Architect. Each of the
creations resulted in the same model but elements were added in a different order mean-
ing that in one version the Initial Node was placed first while in the other version it
was placed last. An extract of the resulting XMI files to which the models have been
exported is given in listing 1.

Although the given example is of the most simple structure, the differences between the
XMI files are significant. The identifiers, which modelling tools assign to each element
uniquely, are not identical. But as these are tool specific and should be ignored by a
difference calculation tool, they can also be ignored in this case.

More important is the fact that the XMI files differ in the order of elements. If the mod-
els would be compared using a textual difference calculation approach, such a change of
order would have been detected as either an removal and an addition or as a move of the

25

// XMI of the first version

<node xmi:type="uml:InitialNode”
xmi:id="_6QjJC2kLEeK8—t9yg3WQbA”
outgoing="_6QjJDmkLEeK8—t9yg3WQbA” />

<node xmi:type="uml:ActivityFinalNode”
xmi:id="_6QjJDGkKLEeK8—t9yg3WQbA”
incoming="_6QjJEWKLEeK8—t9yg3WQbA” />

<node xmi:type="uml:OpaqueAction”
xmi:id="_6QjJDWKLEeK8—t9yg3WQbA”
name="Actionl”
outgoing="_6QjJEWKLEeK8—-t9yg3WQbA”
incoming="_6QjJDmkLEeK8—t9yg3WQbA” />

// XMI of the second version
<node xmi:type="uml:OpaqueAction”
xmi:id="_td_ nIWkMEeK8—t9yg3WQbA”
name="Actionl”
outgoing="_td_nJ2kMEeK8—-t9yg3WQbA”
incoming="_td_nJGkMEeK8—t9yg3WQbA” />
<node xmi:type="uml:InitialNode”
xmi:id=" _td_nImkMEeK8—t9yg3WQbA”
outgoing="_td_nJGkMEeK8—t9yg3WQbA” />
<node xmi:type="uml:ActivityFinalNode”
xmi:id=" _td_nI2kMEeK8—t9yg3WQbA”
incoming="_td_nJ2kMEeK8—t9yg3WQbA” />

Listing 1: Extracts of XMI files created from the model given in figure 10

affected lines. The model elements that correspond to these lines of text however have
not undergone any changes. The calculated difference is therefore incorrect because the
information retrieved is redundant.

This type of incorrect change detection could be compensated by normalising the XMI
files, respectively the XML structure of the files, so that such changes of order are some-
how mapped to each other on a higher level. This would require another level of XMI
preprocessing between the pure XMI file and the model comparison tool. This is cer-
tainly possible without too much effort but nonetheless it does not change the fact that
Diff, as a standalone comparison tool, is not capable of correctly determining changes
to models on XMI level.

3.3. Semantic difference calculation approaches

Most of the approaches investigated here are based on heuristics, such as model element
names and structures, to determine differences between models on a syntactical level.
But there are some approaches that try to solve difference calculation on a semantic
level. Models that significantly differ in structure may indeed implicate the same ab-
stracted view on a system.

For example there might be many ways to visualise the process of a shopping checkout
with UML activity diagrams. If all of the traces, that lead from the initial node of the

26

model to the final node of the model via different activities or fork and merge nodes,
exist in two models, those models are semantically the same. However they don’t need
to be of the same structure and differences between those models that are calculated on
a syntax basis might not be empty.

Semantic difference detection finds differences that are not directly detectable on a syn-
tactical level. Such differences can for example reveal bugs that have been fixed or
features that have been added between two versions of the same model. These detection
capabilities allow further tracing of model, and thereby system, evolution [22].

3.3.1. Approaches

One of the semantic approaches is the semantic difference calculation operator ADDiff
proposed by S. Maoz, J.O. Ringert and B. Rumpe in 2007 [22]. ADDiff is capable to
handle UML activity diagrams [14, pp. 319-434] and detect semantic differences between
two given models of this type. Semantic differences of activity diagrams are described as
diff witnesses which are execution traces that are possible in the initial activity diagram
and that are not possible in the later one. Such an execution trace is a direct path
starting from the initial node to the final node of the activity diagram via control flows,
activity, fork and merge nodes. The checked activity diagrams are therefore translated
into finite automata with input variables over finite domains. These automata are then
checked using the Symbolic Model Verifier (SMV) [23] against specifications that allow
the retrieval of such semantic differences. The operator aims on providing minimal
difference sets by only checking traces, that are not prefixed by a trace that has already
been classified as a difference trace. Additionally, it only returns one diff trace per
possible assignment of the input variable values. These are adjusted over the finite
range of possible values to detect all differences [22].

Another semantic diff operator has also been proposed by the same authors under the
name of CDDIff [24]. CDDiff detects semantic differences between UML class diagrams
[14]. Semantics of class diagrams are given in terms of object models with objects
and the relationships between them. The operator checks for such object models that
are possible in the first and not possible in the second class diagram. The operator
outputs these differences again as a set of diff witnesses. These object models provide
concrete proof about the difference in meaning of the compared class diagrams. But
because such a set could be infinite when class diagrams are computed, the operator
limits the semantic difference detection to a user-specified limit & € IN. Thereby only
object models where less or equal then k object instances exist are detected and added
to the diff witness set [24]. CDDiff uses Alloy [25] to compute the detection. Alloy is
a textual modelling language based on relational first-order logic. The compared class
diagrams are transformed into an Alloy module with a transformation written by the
authors. The module is then checked using Alloy to see if class diagram specific relations
hold [24].

The concrete process of detecting the semantic differences will not be deeply investigated
in this work as semantic differencing does not solve the problem of this work as explained
next. As both of the briefly described algorithms were proposed by the same authors

27

they share most of their methods of comparing models. But some of these methods can
be considered common for semantic approaches in general.

The foundation of semantic differentiation forms the definition of semantics for processed
model types. In the algorithms described, these are given by the semantics of UML
class and activity diagrams. To detect semantic changes, both algorithms use a use
case specific helper tool that performs logical checks on the models according to the
processed semantics and returns semantic differences in a way that is specific to the
processed model type. These helper tools are specifically chosen and configured by the
authors, to be usable for such a processing.

3.3.2. Evaluation

Semantic approaches are not of use for the model versioning systems, targeted in this
work. While it is a valuable feature to detect semantic changes between successive
model versions and thereby conclude more tracing information, it is significantly harder
if not impossible to deterministically use information from a semantic difference and
apply it to a model to generate another version of the same model. While such a
set only contains informations about features or bugs that are not present within one
version of a model, it does not contain the information that is needed to remove or
add this feature to a model to obtain the other version. This would have to be done
in a special step where model difference information is somehow transformed into a
set of syntactical difference operations. If these syntactical differences are detected
directly and then globally used in the model versioning system embedding, no such
transformation is necessary. Furthermore, because models that differ in their structure
can have the same meaning, models that have the same meaning might have a totally
different structure. It is therefore not clear if such a set of syntactic difference operations
can be deterministically concluded from the semantic information. Additionally the
described algorithms are not generalisable to additional model types as both are based on
underlying systems, SMV and Alloy, that include special semantic and logical calculation
methods specific to the handled model type.

Semantic difference detection is still a feature that could improve the functionality of a
model versioning system by informations that are not even included in current source
code versioning systems but in the context of this work it is apparently of no further
use.

3.4. UMLD:iff

UMLDIff has been proposed by Z. Xing and E. Strouli in 2005 [12] and aims on pro-
viding a difference calculation algorithm to obtain information about structural changes
between two versions of a software system. The information obtained enhances change
informations that are detected by using certain source-code metrics or clone detection
methods and is capable of detecting refactoring changes such as moving features along
classes, restructuring of data structures and classes, and changes to the interactions be-
tween components.

28

Despite the fact that the algorithm’s main use case does not match the goal of this
thesis, it can still be viewed as a model difference calculation algorithm and contains
several ideas that can be used to calculate model differences in general. The algorithm
will therefore be described in detail here although some of the descriptions will only
be of use for understanding the principles behind but not for a later evaluation of the
algorithm.

3.4.1. Preliminaries

UMLDIff takes two Class Diagrams that are reverse-engineered from two versions of an
existing, object-oriented software system (source code) as input and outputs the struc-
tural differences as a so-called change tree. The software-system is reverse-engineered
into class diagrams by reading the source code files of the system, which are itself re-
siding in a source-code versioning system, and transforming it into class diagrams [12]
that conform to a metamodel that is specifically designed for this algorithm. Although
UMLD:IfT is specifically designed to handle UML Class Diagrams, the used principles are
adapted to UML Activity Diagrams for the course of this section.

The generated model spans a containment tree above the language specific programming
constructs of the software system. The programming language used by the authors is
Java which is why the following containment elements are named the same way as con-
structs from the Java programming language are called. The root of the containment tree
is referred to as the Virtual Root which represents the system as a whole and that can
contain Packages. Packages contain top-level Classes and Interfaces which declare fields,
methods, inner classes and interfaces. Classes additionally declare fields, methods, con-
structors and initialisers. These declarations are also interpreted as containment. Fields
may contain an initialiser and blocks contain local and anonymous classes which means
that blocks can be contained by methods and field initialisers. Relations between these
elements conform to the principle of UML dependencies [14] and can be of type con-
tainment, declaration, inheritance, interface implementation, field read or write, method
call, class creation, field data type, method return type, parameter type and exceptions
that are declared or thrown.

The same containment order can be applied to UML Activity Diagrams for example
when viewing a subset of Activity Diagram elements containing only activites, control
flows, initial, final, action, decision and merge nodes. Activities are in this case the root
of the diagram containing any other type possible, including other activites.

The containment tree consists of nodes and edges where all the containment elements
(package, class, interface, field, block) build nodes and the relations between those el-
ements build the edges. The system can then be traversed top-down by the algorithm
advancing from the virtual root of the system, which also is the root of the containment
tree, to the leaves which are blocks or fields. In case of Activity Diagrams it would
therefore traverse from activities down to contained activites, nodes and control flows.
Such a tree is built for both compared versions of the software system and then com-
pared by the algorithm to detect structural differences. Within the original approach
the created trees are stored in a relational database in PostGreSQL and the structure of

29

the graph is represented by the structure of the database tables. The graph traversal is
being performed by database queries and pre-defined views on the database [12].

3.4.2. Algorithm

The algorithm computes structural differences from two input models that are generated
from the source codes according to the metamodel described before. The system is, by
transforming it to the described tree, represented as a directed graph. The containment
order of the elements in the model define a logical partial order which in the case of
UML Activity Diagrams would be

Activity >(Initial Node, Final Node, Action Node,
Decision Node, Merge Node, Control Flow)

which allows a top-down traversal on the graph beginning at the root [12]. UMLDIff
traverses the trees of both created models simultaneously and tries to identify elements
that correspond in the way that an element exists in both version of the model. Impor-
tant to note is the fact that UMLDIiff compares elements logical level by logical level.
That means that activities from both versions are compared first and when the set of
activities has been completed, the algorithm advances to the comparison of nodes and
flows, starting with comparing one type of nodes. This reduces the amount of elements
to be compared and makes processing the tree multiple times unnecessary. The com-
parison is done in two steps by checking (1) for the same or a similar name and (2) for
similar relations to other elements that already have been marked as existing in both
versions of the system [12]. Both of these steps use special heuristics which are described
in detail.

Name Similarity Unlike other difference calculation algorithm such as DSMDiff, this
algorithms does not solely try to match equally named elements but instead also checks
if similarly named elements could be a candidate for the currently checked host element.
This heuristic is referred to as Name Similarity and allows the detection of renamed
elements. The name similarity metric used in UMLDIff is based on the longest common
substring (LCS) algorithm that is commonly used to compare strings and which returns
a value between 0 and 1 depending on the lexical similarity between two strings. But
LCS does not return acceptable results when the compared strings are similar in the way
that only their order of words is different. Therefore a new metric is used in UMLDiff
that is based on the amount of common adjacent characters in two compared strings
81, 82:

2 - |adjacentCharacters(s;) N adjacentCharacters(ss)|

(1)

The function adjacentCharacters(s) returns a set of character pairs that occur as ad-
jacent characters in the string s. A pseudocode implementation of the name similarity
algorithm is given in listing 2.

| adjacentCharacters(s;)| + | adjacentCharacters(sa)|

30

double nameSimilarity (sl,s2)

Get every adjacent pair of characters from both compared strings
HashSet pairsl = pairs(sl.toUpperCase());

HashSet pairs2 = pairs(s2.toUpperCase ());

int union = pairsl.size() + pairs2.size ();

Keep only the pairs that occur in both strings in pairsl
pairsl.retainAll(pairs2);

int intersection = pairsl.size ();

return intersection x 2.0 / union;

.~

A UL W N =T

Listing 2: Pseudocode implementation of the name similarity algorithm [12]

The string comparison can be used on version 3 and 4 of the example given in figure 9
where multiple action nodes in version 4 are candidates for the single action node in ver-
sion 3. Obviously to the human eye is the fact that the action node MainSimpleAction
has been renamed to SimpleMainAction and that these elements are therefore corre-
sponding. Using LCS on all three action node names in version 4 would result in all of
them having the same longest common subsequence to MainSimpleAction. However,
the correct choice SimpleMainAction is least similar because the shared subsequence is
shorter in relation to the length of the complete string. The adjacent character pairs al-
gorithm of UMLDIff would correctly detect SimpleMainAction as corresponding because
it contains the highest amount of shared adjacent character pairs.

Structural Similarity Every element is additionally checked using the structural simi-
larity metric. In the original approach the relations between entities are based on the
containment order described before. A pseudocode implementation of structural simi-
larity computation is given in listing 3.

When an element is being structurally compared to a candidate element, two sets are
being created, one for the host and one for the candidate element, containing all of the
elements that the element is connected to, via a specific relation type. These sets are
then intersected using a special equals function that checks whether names of the con-
tained elements are similar, by using the name similarity metric, or whether some of the
elements have already been matched.

The method getCount (element,element,relation_type) returns how many times the
given elements are connected via the given relation type. This is used to count the
amount of relations that are connected to matched elements as well as the amount of
relations that are connected to unmatched elements.

Using these values, the formula given on line 19 returns a higher similarity the more
matched elements are connected and a smaller similarity the more unmatched elements
are connected to the checked element. If the checked element is not connected to any
other element via the given relation type, the name similarity is used with an exponent
that increases with the amount of checked relation types. The effect of the name similar-
ity is therefore dampened for elements with very few to none connections. As structural
similarity is computed per relation type, the structural similarity results are normalised
by the amount of possible relation types for the processed model type [12].

31

double structureSimilarity (el,e2,relation_type)

1. Set e_of_-rl = getEntitiesOfRelation (el,relation_type);
2. Set e_of_-r2 = getEntitiesOfRelation(e2,relation_type);
3. if (e_of_rl.size = 0 and e_of_r2.size = 0)

4. pow++; return power(nameSimilarity ,pow);

5. int beforecount = 0, aftercount = O0;

6. for all erl in e_of_rl and all er2 in e_of_r2

7. if (erl.equals(er2)) {

8. beforecount += getCount (el ,erl ,relation_type);
9. aftercount += getCount(e2,er2,relation_type);
10. e_of_rl .remove(erl);

11. e_of_r2 .remove(er2); }

12. int beforecount = 0, afterleftcount = 0;

13. for all erl left in e.of_rl

14. beforeleftcount += getCount(el,erl ,relation_type);
15. for all er2 left in e_of_r2

16. afterleftcount += getCount(e2,er2,relation_type);
17. int min = min(beforecount ,aftercount);

18. int max = max(beforecount, aftercount);

19. return minx*1.0/(maxt+beforeleftcount+afterleftcount);

Listing 3: Pseudocode implementation of the structural similarity algorithm [12]

double computeSimilarityMetric(el,e2)

nameSimilarity = nameSimilarity (el.name,e2.name);

int pow = 0;

double metric = 0.0;

for all relation_type in possible relation types
metric += structureSimilarity (el,e2,relation_type);

int N = amount of possible relation types;

return (nameSimilarity + metric)/(nameSimilarity+N);

N OO W N

Listing 4: Pseudocode implementation of similarity computation [12]

Similarity Composition Both of the similarity metrics described before are used in
conjunction for every element as seen in listing 4. Unlike other approaches, UMLDiff
does not solely match elements on the fact that one metric, for example the name
similarity, returns equality but also takes structural similarity into account for every
element. This conjunction of similarities is specifically used to allow the detection of
element moves and renamings. Those detections require separate user set thresholds
that must be reached to deem moved or renamed elements as equal and their value
directly affects detection correctness. Whenever more than one element exceeds one of
the thresholds, the one with the highest similarity is chosen.

The found difference facts collected by UMLDIff are unchanged, renamed and moved
elements. Additionally, from elements that have not been matched in the first version
and the elements that have not been matched in the second version of the diagram,

32

additions and removals can be concluded [12].

3.4.3. Evaluation

UMLD:Iff has been specifically designed to obtain software evolution information from
an existing software system that has been transformed into a model. UMLDIff therefore
does not directly cover the target of this work but the mechanisms described in detail
are certainly of use for a more general, model-focused use case.

UMLD:Iff is missing a runtime complexity estimation of the algorithm but instead there
are some absolutely measured test cases given by the authors [12]. Estimating the
runtime complexity of UMLDIfF it can be assumed that it is O(n?) in a worst case scenario
where every element is of the same type. In all other cases the top-down hierarchical
type-by-type traversal of the models should significantly reduce the required element
comparisons.

The similarity mechanisms of UMLDIff to detect renamings and compare elements by
structural similarity can certainly be of use when handling any model type. Especially
the name similarity metric, which returns better results than LCS on mostly unchanged
identifiers (word order), seems useful.

3.5. SiDiff

SiDiff is a framework for model comparison that has been actively developed at the
University of Siegen since 2004 and that claims to be totally metamodel independent as
long as the processed instance of a model can somehow be represented in a graph-like
structure [2]. SiDiff exists in a variety of development branches focused on very differ-
ent modelling domains. One branch provides model comparison on MATLAB /Simulink
diagrams which are commonly used by engineers in the areas of signal and image pro-
cessing, another one adapts SiDiff for a toolbox that is used in automotive development,
and finally there has been some recent effort on using SiDiff to detect similarities between
sentences of a constraint language or to compare molecular graphs [2].

3.5.1. Preliminaries

SiDiff processes two input models that are given in a textual or binary format which
is either complying to XMI [8] or a proprietary format. SiDiff provides a parser that
transforms these models into an internal representation of the models. The internal
representation of the models is a typed, attributed and directed graph whose metamodel
is given in figure 11. Every node corresponds to an element in the original model and
edges represent existing connections between those elements. Every node in the graph
is additionally connected to a type that represents its elements type and may have a set
of attributes consisting of pairs of keys and values. Edges likewise are connected to a
type representing the connection in the model and have a boolean attribute whether the
connection is a reference or a nesting edge in case of part-of semantics of the model [2].
To reduce the computational cost when trying to find corresponding elements from two
versions of a model, a special high-dimensional search tree, the S3V (Similarity search

33

E] Attribute
[Egname : String
[Egvalue : String

- attributes, *

-node() 1
E Graph | graph - nodes Q Node | |\ de - nodeType Q NodeType
1 . Egid:String |, 1
-sre1 1] - tgt = Type

[Eg name : String

-edge | « » - edge
CEdge | 1 E EdgeType

- edge - edgeType (5§ nesting : Boolean

Figure 11: SiDiff internal graph metamodel[2]

Criterion Weight
Similar value for attribute name 0.5
Equal value for attribute state 0.1
Similar elements following outgoing Fdge type A 0.1
Similar elements following incoming Edge type B 0.1
Matched parent element 0.2

Table 1: Examplary SiDiff similarity configuration [2]

sparse vector) tree, is used to store the model elements in memory. To find possible
matching candidates from another model usually all of the model elements must be
checked for similarity. Instead of having to compare all elements the elements are stored
in the S3V tree according to their similarity to each other. Every element is therefore
interpreted as a numerical vector where every index represents a certain characteristic
of the element. The similarity of two elements is then defined as the euclidean distance
with smaller distances resulting in higher similarity. The tree can then be used to find a
set of most similar elements of a given element by doing a range query on the tree which
returns all similar elements within a subspace of the tree defined by the specified range
or distance of the query.

One S3V tree is created for each of the compared models and for each occuring element
type before beginning the comparison. All of the trees are completely kept in memory
for the time of the comparison [11].

34

3.5.2. Algorithm

Like most of the difference calculation algorithms the SiDiff algorithm searches for ele-
ments that occur in both compared models first. This is done by calculating similarities
between the elements and marking the most similar elements from both models as cor-
responding. The similarity between two elements is given as a float value between 0 (no
similarity) and 1 (equality). Similarity is usually determined by local attributes or ele-
ments in the near proximity of the investigated element. SiDiff provides a set of standard
functions for such similarity measurements but also allows the addition of new similar-
ity functions when needed. A basic similarity functions would for example be given by
assigning a similarity of 1 if the names of two elements are equal and add this similarity
with a weight of 0.5 to the totally calculated similarity. Some more examples are listed
in table 1 [2]. For string similarity comparison the longest common subsequence (LCS)
algorithm is used [26].

The exact similarity calculation on two given models is specified by providing a con-
figuration file to SiDiff. The comparison can consist of a set of similarity functions as
similarity might not in all cases depend only on one similarity factor. The similarity
functions specified can additionally be weighted to mark certain functions more impor-
tant than others and giving them a greater effect on the similarity between two elements
which is overall computed as the weighted mean over the result of all considered similar-
ity functions. The minimum similarity needed to mark two elements as corresponding
can also be defined within the configuration file and is referred to as the similarity thresh-
old [2].

The matching approach is based on the concept of similarity flooding where the similar-
ity of two nodes increases when nodes in their neighbourhood are similar. That means
that whenever a node has been matched, the matching has to be propagated to all nodes
in the near proximity. The algorithm therefore processes the graphs in a bottom-up/top-
down manner [2].

The algorithm begins a bottom-up traversal of the graph by checking all nodes of an
element type for possible matches in the candidate model. In the original approach,
where UML class and object diagrams are processed, models are assumed to specify a
hierarchical order of element types. It is thereby possible to start at a leave type of this
order and process the type order bottom-up. As not every model’s metamodel allows
the conclusion of such an order it is assumed that the algorithm processes the element
types in a model independent order, for example alphabetically [26]. For UML Activity
Diagrams it can be assumed that such an order would be given by handling containers,
activites or partitions, first and contained element afterwards.

Nodes are identified as similar, if the similarity threshold is reached. However, nodes
are only matched, if they are uniquely similar which means that only one candidate
node exceeds the threshold. If more than one node exceeds the threshold no matching is
performed immediately, instead the node will be reinvestigated after nodes in the near
proximity have been matched [2].

As soon as a node has been matched the bottom-up processing of all the nodes of a given
type is interrupted. The second phase, a top-down propagation of the newly detected

35

match, starts. The algorithm checks all nodes that are directly connected to the previ-
ously matched node for possible similarities using the same similarity functions as used
in the bottom-up phase before. If a new match is found during this step, the similarity
propagation is again invoked for the elements neighbouring the new match. When all
neighboured nodes have been investigated, the neighbourhood investigation stops and
the algorithm returns to the bottom-up phase and continues processing the nodes of a
specific type [26].

Given the example in figure 9, the concept of switching to the top-down processing
would for example occur after the decision nodes in version 3 and 4 have been identified
as a match. Instead of further investigation of decision nodes or the next type that is
to be processed, all elements that are connected to the matched decision node would
be investigated. In that specific case all incoming and outgoing control flows would be
investigated for possible matches. If one of them is matched, they will not have to be
investigated when there type is processed and they immediately lead to another neigh-
bourhood investigation.

The algorithm stops when all nodes and types have been investigated during the bottom-
up phase [26]. However it is possible to let the algorithm start a new iteration over all the
node types and nodes to detect new similarities that might have been caused by matches
found when checking a node type that is processed at the end of the bottom-up phase.
Because it cannot be assumed that the processed graphs are of pure tree structure and
therefore might contain cycles which could cause the algorithm to process the models
infinitely, the algorithm stops after an iteration that did not notice any new matches [2].
This is specifically needed when the processed models consist of less composite structures
but rather of graph-like references [26].

Some optimisations could be applied to SiDiff to achieve a better runtime when search-
ing for correspondences. To identify possible matching candidates before the start of
the similarity computation and iteration over the graph, elements from both models
could be hashed by using a hash function that returns a hash value based on the local
attributes of the element. When two elements from the models share the same hash
value they can be matched without having to process them in the manner of similarity
flooding. Another method to enhance the matching by pre-process functions is given
by using fingerprints. Fingerprints are bit strings representing the characteristics of an
element. The technique has been used in the context of search queries in molecular
databases. The calculation of fingerprints allows a quick guess if similarity calculation
is worth the computation but the approach is also limited as element types need to have
enough characteristics to produce a usable fingerprint [2].

Whilst only corresponding matched elements have been identified yet, changes to the
elements, additions and removals still have to be detected and stored for later use. This
is done within the so-called unified document which contains the relevant information
of the difference calculation. The unified document contains all elements of both com-
pared models and the difference information. Already matched elements are however
only listed once in the document. SiDiff classifies differences into four categories:

e Structural differences: Elements that have been added or deleted

36

e Attribute differences: Elements that are corresponding but that have changed
attributes

e Reference differences: Elements that are corresponding but that have changed
references

e Move differences: Elements that are corresponding but that have a changed parent
element

The unified document thereby is a representation of a symmetric difference [2].

3.5.3. Evaluation

SiDiff is the most generally usable framework to calculate model differences surveyed in
this work. The many already developed use case specific branches underline the flexi-
bility of SiDiff. The active development, enhancing the original framework from 2004
with hash functions, fingerprints and the usage of S3V trees make SiDiff seem like an
elaborated product that has gone through several development cycles.

The runtime complexity of SiDiff is pessimistically estimated to be O(n?) on models
with only one element type where n is the number of elements. This places the SiDiff
algorithm in the polynomial complexity class and thereby outperforms the graph isomor-
phism problem [2]. The listed enhancements which are partly implemented, specifically
hash functions, fingerprints and S3V trees, further increase the performance in terms of
runtime complexity as less similarity comparisons of elements are needed. This seems
necessary as the authors state that medium to large documents consisting of a few hun-
dred elements, lead to runtimes of 5 to 60 minutes [11]. Imagining a productive model
versioning system where differences have to be computed for every changed model when-
ever updates are to be committed, this is certainly unsatisfying. The introduction of
S3V trees alone however improved the runtime by a factor of up to 50 when processing
large models [11]. This leads to a more usable time effort although several minutes are
still quite an amount of time when working in a productive system. The introduction
of hashing functions further reduces the runtime complexity to O(nlogn) and thereby
also significantly speeds up the matching process [11].

The SiDiff algorithm detects, additionally to the three basic difference categories re-
quired for the embedding described in the previous section, moves of elements within
models which is an enhancement of the difference information. Due to the fact that SiD-
iff only matches elements of the same type, the detection of type changes is impossible.
SiDiff also provides similarity computation flexibility in the way of providing a way to
define a set of similarity functions which allows customisation of the calculation process
on a more detailed level. However, it is necessary to define such a set for every pro-
cessed model type separately according to the available elements. The transformation
of the processed models into a directed graph conforming to a model type independent
metamodel allows the single algorithmic approach on which SiDiff is based. Thereby
any model type can be processed without having to modify the algorithm whilst the
transformation of the processed models into the internal graph structure must still be

37

somehow defined. The similarity configuration and the required configuration file in
general in conjunction with the model transformation make SiDiff quite user dependent.
If the framework should be used in a productive model versioning system these settings
have to be provided by the system for all processable model types without requiring
user interaction. As any model type should be processable this is certainly difficult to
achieve.

3.6. DSMDiff

DSMDiff (Domain Specific Model Differentiation) has been proposed by Y. Lin, J. Gray
and F. Jouault in 2007 [13] and introduces a differentiation tool for domain-specific
models. Compared to the previously investigated algorithms, that focused on difference
calculation for any model type, this work tries to provide a solution for models that have
been designed in a non-UML but domain-specific modelling language. Therefore, the
algorithm used in DSMDiff should be capable of handling multiple metamodels for dif-
ferent domain-specific languages (DSL). Furthermore, it is claimed that the implemented
algorithm is metamodel independent.

3.6.1. Preliminaries

To achieve metamodel independency the DSMDIiff algorithm assumes DSLs to be defined
along the Generic Model Environment (GME), a meta-configurable tool that allows DSLs
to be defined from a metamodel. By using the GME approach, model elements are ei-
ther atoms, models or connections. An atom is the most basic entity with no further
internal structure whilst a model may contain other models or atoms. A connection
represents a relationship between two entities. The model is thereby internally treated
as a hierarchical tree which can be traversed from root to leaves.

Any of these elements consists of type, kind, name and a set of attributes. The type
describes whether it is a atom, model or connection. The kind represents the name of
the defining element in the metamodel which would be for example final node when
speaking of UML Activity Diagrams. The name is the identifying descriptor of a types
instance in a model. Connections are extended by source and target attributes known
as source and destination [13].

With this structure any domain-specific model becomes a hierarchical graph where mod-
els are nodes, atoms are leafs, and connections are the edges between nodes and leafs.
With this tree-like structure the differentiation algorithm can traverse top-down, start-
ing from the top-most model root and traversing down the tree to all the atom-leafs at
the end.

3.6.2. Algorithm

A pseudocode representation of the algorithm is given in listing 5. The DSMDiff differ-
ence calculation algorithm basically consists of two steps:

1. Element mapping

38

Name: DSMDiff
Input: diffModel
Output: diffModel

1. Initialize a set hostSet and a map candMap;
2. Get the host model from diffModel as Ml and the
candidate model as M2;
3. Detect attribute differences between Ml and M2 and
add then to the Change set of diffModel;
4. // Find node mappings by signature matching
findSignatureMappingsAndDeleteDiffs (diffModel
hostSet ,candMap) ;
5. If (hostSet is not empty && candMap is not empty)
// Find node mappings by structural matching
For each element el in hostSet
1) Get its candidates from candMap into a set
called candSet;
) e2 = findMaximalEdgeSimilarity (el,candSet);
) Add Pair(el,e2) to the mappings set of diffModel;
) Erase el from hostSet;
5) Erase e2 from candMap;
6. If (candMap is not empty)
Add all the remained members of candMap to the new set of
diffModel;
7. For each mapped elements that are not submodels
Detect attribute differences and add them to the Change
set of diffModel;
8. Compute edge mappings and differences
9. // Walk into the child submodels
For each childDiffModel that stores a pair mapped submodels
DSMDiff(childDiffModel);

=W N

Listing 5: Pseudocode implementation of DSMDIff [13]

2. Difference detection

Before checking for differences between two processed models m1 and m2, the algorithm
tries to find elements that exist in both models. These elements are then stored in a set
named the Mapping Set. The mapping set contains these mapped elements as maps as
in Map(eleml,elem2), which means that the element eleml, which exists in the model
m1, also exists in the model m2 as the element elem2. The algorithm checks model nodes,
atom nodes and connections separately and in this order for potential mappings as seen
in listing 5 [13]. Regarding the exemplary Activity Diagram given in figure 9, the initial,
action, final, decision and merge nodes would be represented as atom nodes whilst the
control flows would be represented as connections. The activities surrounding the nodes,
which are omitted from the figure, would be a model node and the same would apply
for all other elements available in Activity Diagrams that somehow form a composite
structure, for example partitions or action nodes with in- and outgoing pins.

39

Name: findSignatureMappingsAndDeleteDiffs
Input: diffModel
Output: hostSet, candMap, diffModel

1. Initialize a set hostSet and a map candMap;
2. Get Ml from diffModel and store all nodes of Ml in hostSet;
3. Get M2 from diffModel and store all nodes of M2 in candMap
associated with their signature;
4. For each node el in hostSet
1) Get the count of the nodes from candMap that are
signature matched to el;
2) If count =1
Get the candidate map from candMap as e2;
Add Map(el,e2) to the mapping set of diffModel;
Erase el from hostSet;
Erase e2 from candMap;
3) If count = 0
Add el to the Delete set of diffModel;
Erase el from hostSet;
4) if count > 1
Do nothing;

Listing 6: Pseudocode implementation of signature mapping [13]

Signature Matching To find elements that can be mapped the algorithm checks every
node or edge in the models by performing a signature check which is given in listing 6.
The signature of an element is defined as the concatenation of its type, kind and name,
or when speaking of connections as the concatenation of the name of its source, its
type, kind, name and the name of its destination. An element occurs in both models if
Signature(eleml) = Signature(elem2) which reduces the matching to a simple string
comparison. However it might be possible that more than one node or edge is found in
the target model m2 that has a matching signature. The source node in m1 and all the
candidate nodes in m2 are then postponed for another matching method [13].

Structural Matching When trying to structurally match possible target nodes from
m2 to the source node in m1, the algorithm checks incoming and outgoing edges of the
nodes for so called edge similarity as in listing 7. The edge similarity metric between
two nodes is formally defined as the number of edges with equal signatures connected to
a host node in m1 and a candidate node in m2. The algorithm then selects the candidate
node with the maximum edge similarity as the unique mapping for the host node. If such
a node cannot be found because some candidate nodes have equal edge similarities, the
algorithm chooses one of the candidate nodes as the mapping because it can be assumed
that model elements may occur multiple times in a model [13].

After the mapping is completed, all unchanged nodes are contained within the mapping
set and the algorithm can now proceed to the determination of model differences. DSM-
Diff considers model differences to be categorised into additions, removals and changes

40

Name: findMaximalEdgeSimilarity
Input: hostNode, candidateNodes
Output: maximalCandidate

1. Initialize maps: hostConns, candConns and set
maxSimilarity = 0, maximalCandidate = null;

2. Store each edge signature and the number of associated
edges of the hostNode in the map hostConns;

3. For each candidate ¢ in candidateNodes

1) Store each of its edge signatures and the number of

associated edges in the map candConns;

2) Call computeEdgeSimilarity (hostConns, candConns) to

compute the edge similarity of ¢ to hostNode;

3) if (the computed similarity > maxSimilarity)
maxSimilarity = the computed similarity ;
maximalCandidate = c;

4. Return maximalCandidate;

Name: computeEdgeSimilarity
Input: hostConns, candConns
Output: similarity

1. Initialize the similarity as zero;
2. For each edge signature in the map hostConns
1) Get the number of the edges associated with the
edge singature as hostCount;
2) Get the number of edges from the map candConns
associated with the edge signature as candCount;
3) If candCount <= hostCount
similarity += candCount;
4) Else
similarity 4= hostCount
3. Return similarity

Listing 7: Pseudocode implementation of edge similarity computation [13]

of model elements. To detect removals, the algorithm performs a signature check to find
elements that exist in m1 but not in m2. This is done within the mapping step of the
algorithm by including a special step that marks elements as deleted if neither signature
nor structural matching could find a unique candidate element for a given host element.
These elements are added to the delete difference set. After that all the elements from m1
should be contained either in the mapping set or the delete difference set. The elements
from m2 that are not contained in the mapping set have not been mapped to a host node
in m1 and have therefore been added and are now added to the new difference set. All
the nodes in source and target model should now be contained within one of the three
created sets but the signature and structural mappings ignored the attribute sets of the
nodes completely. Thus, the attributes of mapped nodes are now checked for differences
by comparing the values of each attribute of a pair of mapped nodes. The changed
values are then added to a fourth set, the change difference set [13].

41

Because until now only nodes of the models have been investigated, edges are still to be
done. The edge difference calculation consists of four steps that partly conform to the
previous matching techniques and should need no further explanation:

1. Every edge that is connected to a node that is contained within the delete difference
set is being added to the delete difference set.

2. Every edge that is connected to a node that is contained within the new difference
set is being added to the new difference set.

3. Edges are being mapped from source to target model by performing signature
matching.

4. Unmapped edges in m1 are added to the delete difference set; unmapped edges in
m2 are added to the new difference set. [13]

3.6.3. Evaluation

To have a foundation for evaluating this algorithm a investigation of the runtime com-
plexity seems necessary. To estimate the runtime complexity of this algorithm several
assumptions are made.

1. Compared models are similar in structure in size so that node and edge count are
approximately the same

2. The number of edges is significantly smaller then the number of nodes and edge
mapping can thereby be omitted from the runtime complexity estimation.

3. Signature matching and edge similarity computation require the most computa-
tional work and other steps are thereby omitted from the runtime complexity
estimation.

The worst case scenario for this algorithm is a complete graph where all nodes are di-
rectly connected to each other via edges and where no node mapping pair can be found
within the signature matching step. For signature matching every host node has to be
checked for a unique mappable candidate node which makes the upper bound for this
computation step O(N -log(N)) where N is the number of nodes in (both) models. Be-
cause no direct map can be found by using signature matching, edge similarity has to
be computed for every host node and the computational cost for this step is bound by
O(T-N-R-(N—1)-log(N —1)) where T is the total number of nodes summarized over
all levels of the multi-level model and R is the number of candidate nodes with R < N.
The runtime complexity of the algorithm is thereby concluded to be in the polynomial
class [13] and therefore outperforms the general graph isomorphism problem if all the
previously given optimistic assumptions apply.

The algorithm however has a major disadvantage when submodels have been moved from
one place to another between two checked models. The algorithm is unable to detect
such changes and instead computes a removal from the old position and an additition

42

to the new position of the complete submodel into the model tree. An improvement
is proposed to add another difference operation move to the set of available operations
[13]. But as the difference operations of this work’s embedding is limited to additions,
removals and changes this fact is ignored for a possible implementation of this algorithm.
The algorithm assumes models to be given in a multi-level structure that is being pro-
cessed top-down recursing into the submodels. This is not an assumption that has to be
made for any model type but it certainly makes the algorithm more usable in general.
The process given together with its runtime complexity and the detection correctness
could provide us with a solution that could be used to calculate differences on any model

type.

3.7. Summarisation

The investigation of algorithms has been focused on finding an algorithm that is gen-
erally capable of handling model difference calculation for any modelling language and
model type. Apparently, all of the investigated tools and frameworks fail to provide this
generality but they provide a general algorithmic approach.

Apart from algorithms that do detect semantic instead of syntactic differences and the
ones that require model elements to have persistent identifiers, the remaining serious
model difference calculation algorithms are unsuitable due to the following facts:

Due to the original purpose of UMLDIff [12], which is the detection of differences be-
tween the source codes of software systems, it is incapable of handling any model type
other than its internal model representation. Its methods of model traversal, name and
structural similarity however are useful for a generic handling of models.

The SiDiff [2, 11] framework is the first investigated framework that provides a differ-
ence calculation algorithm that is as generic as desired. SiDiff however needs model
type specific user-set configuration files without which no model can be processed. The
concept of similarity flooding as well as the internal representation of graphs are however
suitable solutions to certain problems when handling models generically.

DSMDiff [13] at last, uses methods similar to SiDiff and UMLDIff but its signature and
structural matching methods seem limited in comparison to the metrics used by UMLD-
iff because of its incapability to, for example, detect moved elements. Additionally,
DSMDiff expects models to conform to the Generic Model Environment. This requires
that the metamodel for each model to be processed, has to be somehow transformed into
the Generic Model Environment format. On the other hand, DSMDiff just like UMLDiff
uses a top-down hierarchical order of model elements on which the models are traversed
showing that this is somehow a convenient approach. Additionally, DSMDiff provides
detail on how to track differences on implementation level using its so-called difference
sets.

Although this investigation did not provide a solution that is as generic as desired, the
general algorithmic approach to model difference detection is the same for all investi-
gated tools and frameworks. Thereby, the investigation provides a solution to the first
problem of this thesis, a general algorithm for model difference calculation which will be
generalised in the following section.

43

4. GDiff - A General Algorithm for Model Difference
Calculation

The algorithms and frameworks for model difference calculation investigated in the pre-
vious section, provided a general algorithmic solution to model difference calculation
which is one of the main goals of this thesis. The algorithm is given in figure 12.

[Represent Model j Add Match To Deltaje

\L [Similarity Threshold Exceeded]

[Traverse Model L

J\ [Similarity Threshold Not Exceeded]

[Unprocessed
Elements]

Select Host Elementj

|

Select Candidate Calculate Similarity
Elements

[AllElements Processed]

Optimise Delta

|

Generate Delta
Output

Figure 12: General algorithm for model difference calculation

The figure shows the basic steps in a model difference calculation with omitted object
flows. The process of model difference calculation however has to be provided with two
consecutive versions of the same model, referred to as host and target model. In the
case of the MVS that builds the system environment, as explained in section 2.5, the
host model would be the newer, the target model the older version of the same model
due to the fact that backward deltas are generated.

The actions in figure 12 occur in every previously investigated algorithm. First, an in-

44

ternal model representation is needed to make the models generically processable. The
models are then traversed, for example in a top-down hierarchical order, to investigate
every element and search for possible matches between the two compared models. If
there are still elements to be compared while traversing the model, one of them is se-
lected as host element and candidate elements, possible matches, are gathered from the
target model. The similarity between the host and all candidate elements is then calcu-
lated using similarity metrics. If at least one of the candidate elements similarity exceeds
the internal similarity threshold, the candidate element with highest similarity is selected
as a unique match for the host element. After all elements have been processed the delta
output is generated in a specific delta representation.

One additional step has been added to this figure, the delta optimisation right before the
delta output generation which takes care of output specific delta preparation caused by
the used delta representation which is generated in the delta output generation activity.
This component could however be used for further, not output specific optimisations
which are not considered during this thesis.

After the first problem of this thesis, the search for a general algorithm, has been solved,
the algorithm now has to be implemented in a way that satisfies the required generality as
well as all the requirements from section 2.6. The implementation, using methods from
the previously investigated tools and frameworks, is described in this section, structured
according to the activities of the model difference calculation algorithm given in figure
12. The goal is to have a standalone prototype called GDiff (Generic Model Difference
Calculation) that is capable of handling any model type and language at the end.

4.1. Architecture

The prototype implementation of GDiff has been conducted in the Java programming
language making use of its object-oriented nature. Actions from figure 12 are represented
by several components. GDiff itself is then simply the composition of these components
as seen in figure 13, implementing the control flow. For example it retrieves the next
host element to be investigated from the model traversal component and passes it to
the similarity computation. After similarity computation, GDiff handles the result by
either adding the found match to the delta or continuing to the next host element. After
all elements have been processed, GDiff initialises the delta optimisation and output
generation. In the specific context of GMoVerS it takes care of the backward as well as
the creation delta generation.

The implementation is kept expandable by generalising every component by an interface.
This way each component can later be exchanged for a possibly more enhanced version.
Table 2 shows the mapping of components to actions from figure 12 showing that some
components provide multiple actions. The action ”Model Representation” is missing a
component in figure 13 as well as a mapping in table 2 due to the fact that it is taken
care of by a third-party library.

Some of the components might depend on each other. The similarity computation com-
ponent, for example, is relying on the model traversal component because the traversal
component provides methods to obtain elements of of a specific type from a model.

45

E GDiff «interface» E GModelTraversal
1 ModelTraversal
&3 calculateModelDifference () 1
1 1 1 i3 getNeighbouredElements ()
3 getHostElements ()
3 getTargetElements ()
&3 getSourceElement ()
&3 setTargetModel ()
ﬁ"é setHostModel ()
&3 getCandidateElements ()

«interface» E GSimilarityComputation
1 SimilarityComputation

1 1 &2 searchMatch ()

«interface» «interface»

DeltaOutputGenerator DeltaOptimiser 1 «nterface» = GDelta

Delta

2 generateDeltaOutput () #, optimiseDelta () % addMapping ()

&3 reduceElementList ()

&3 getMappings ()

% getUnmatchedHostElements ()
£ GDeltaOutputGenerator £ GDeltaOptimiser 2 getUmatchedTargetElements ()

Figure 13: Composite structure of the GDiff implementation

Component Provided Actions
ModelTraversal Traverse Model
Select Host Element
SimilarityComputation Select Candidate Elements
Calculate Similarity
Delta Add Match To Delta
DeltaOptimiser Optimise Delta
DeltaOutputGenerator Generate Delta Output

Table 2: Mapping of GDiff components to algorithm actions

Due to the desired expandability of the prototype, such dependency shall not be re-
stricted and therefore a simplified form of dependency injection is used. One com-
ponent, in the case of GDiff it is the component which aggregates all other compo-
nents, implements the interface ComponentProvider and allows access to all compo-
nents used by the implementation. This ComponentProvider must be provided to
every DifferenceCalculationComponent, the base class for every component, when-
ever one is instantiated so that it can retrieve its component dependencies from the
ComponentProvider.

4.2. Model Representation

As stated before when determining the requirements for a general approach for model
difference calculation, a general format, on which the algorithm can process models inde-

46

pendently from their original language and type, is needed. Every investigated algorithm
also uses an implementation-specific format for this purpose.

The graph-like approach, although needing user interaction in the case of SiDiff [2, 11],
seems most suitable for the required generality. The best choice seems to be defining
a metamodel, similar to the one used by SiDiff, which allows the representation of any
model as a graph, which contains information about the structure of the metamodel of
the processed model.

GDiff uses TGraphs [27] to represent models. A TGraph is a general graph class which
conforms to the fundamental mathematical construct of graphs consisting of vertices and
edges. Addtionally, TGraphs are typed, attributed, ordered and directed. Hence, every
vertex or edge conforms to a type and can have attributes. Edges outgoing a vertex
additionally are directed and ordered which means that they have a defined source and
target vertex and can be iterated in a defined order.

«graphclass» Q GDiff_Metalnformation
E ActivityDiagram [Eg highestElementldentifierUsed : String

[Eg original TGraphFile : String

Q ObjectFlow Q ControlFlow
Q Flow
H Activity
[Eg name : String
-target|1 1| - source
Q Node Q Leaf Q Composite
- container {) 1
H mnitialNode H JoinNode
* |- child
Q Component
Q FinalNode Q ForkNode
Q ActionNode Q ObjectNode
[Eg name : String Q Element
55 gDiff_UUID : String
Q FlowFinalNode Q MergeNode

Q DecisionNode

Figure 14: TGraph schema for a subset of UML Activity Diagrams

It is easily possible to represent any model as a TGraph by defining a schema for it
and transforming it to the TGraph representation. Such a schema is given in figure 14

47

for the previously introduced subset of UML Activity Diagrams. As a matter of fact,
this schema equals the simplified UML Activity Diagram metamodel given in section 2,
figure 2. Every class in the UML Class Diagram representation of the schema results
in a vertex in the TGraph representation. Thereby, all nodes and Activities as well as
flows will result in vertices after transforming such an Activity Diagram to a TGraph.
Abstract types in the given schema can not be instantiated in a TGraph and are only
added to allow inheritance.

O g1 :InitialNode

A LinksToSource

g2 : ControlFlow

v LinksToTarget

Cj g3 : FinalNode

Figure 15: UML Activity Diagram (left) and the corresponding T'Graph representation
(right)

Figure 15 shows an Activity Diagrams representation as a T'Graph using UML Object
Diagrams where each class instance represents a TGraph vertex. The object identifiers
gl, g2 and g3 have only been added for model consistency and are not part of the
TGraph. Each element in the Activity Diagram on the left is directly represented by
a vertex on the right. Each of these vertices is of a certain type which is given by the
class of the object which directly maps to the type of model elements in the Activity
Diagram. Hence, the types of represented model elements can directly be retrieved just
by retrieving the type of a TGraph vertex.

Additionally, the TGraph metamodel in figure 14 makes relationships and associations
between model elements also representable by vertices. The Control Flow in the Activ-
ity Diagram in figure 15 is represented by a vertex of type ControlFlow. This vertex
is connected to the source and target vertices of the Control Flow by edges which also
conform to a specific edge type resulting from the metamodel of the TGraph.

By using this approach only vertices have to be considered for model difference calcula-
tion on TGraph level. Every versionable element of the model is indeed represented by
a vertex whilst all the edges solely representing the structure of model elements. They
are not to appear in the generated delta.

The schema however contains three non abstract types that contain metainformation
either for TGraph processing or model difference calculation. The ActivityDiagram
element of stereotype <<graphclass>> is required for T'Graphs and is only used for in-

48

ternal schema identification. The other two elements, GDiff_MetaInformation and the
abstract supertype Element, have been added to satisfy the requirements from section
2.6. They are used to add information about previously created modelling deltas of
previous versions of the processed model. The attribute gDiff_UUID can contain delta
variable values that have been assigned to an element in a previous delta. The metain-
formation element contains the value of the last used delta variable identifier so that
new delta variables can be uniquely assigned.

Due to the generic graph structure of TGraphs any model is generally transformable
into a TGraph representation. This requires an additional preprocessing step before the
model difference calculation implementation GDiff which transforms models from their
original representation into the TGraph format.

A tool for the transformation of UML Activity Diagrams has been provided by the
GMoVerS project [15]. The tool transforms models that were created with the mod-
elling tool Rational Software Architect [1] and exported to their XMI representation
into TGraphs.

Due to the necessity of this preprocessing, the input and output parameters are changed
in contrast to the parameters given in section 2.6. Additionally, the delta metainforma-
tion previously introduced result in a toolchain for model difference calculation as given
in figure 16.

Instead of GDiff receiving two models directly as input, they are preprocessed by an
external activity used to transform the models into their TGraph representation. This
activity also requires the metamodel of the processed models so that an according schema
can be generated. The schema is implicitly contained within the generated T'Graph files.
The metainformation required for GDiff is added to the target model TGraph by another
utility, the GUUID Applier which has been implemented specifically for this thesis. It
has to be provided with the TGraph of the host model and the creation delta for that
model which has previously been generated. It adds delta variable values to all TGraph
vertices by setting the corresponding attribute in the TGraph. Additionally it correctly
sets the attributes of the metainformation element.

The resulting TGraph outputs of transformer and applier are then used as the model
input for GDiff which can thereby also directly access the schema of the TGraphs and
has access to previously assigned delta variables and element identifiers. The two pre-
processing steps additionally clean up the signature of GDiff as it now only receives
two TGraphs as input rather than receiving two TGraphs, an element identifier and a
creation delta. To generate creation deltas for the first version of a new model, GDiff is
also capable of running in single model mode which results only in a creation delta for
the given model.

To handle TGraphs on implementation level the third party library Javae Graph Labora-
tory (JGraLab) [28] is used. This library provides functionalities to handle TGraphs in
general to, for example, load TGraphs from the file system or to inspect their schema,
contained vertices and edges. It basically provides any graph traversal and investigation
functionalities required for the purpose of this work.

The library is used by every component described in this section meaning that they di-
rectly access the internal TGraph representation on implementation level using JGraLab.

49

JGraLab is the only third-party library used within GDiff and also the only restriction
to model handling implied by the architecture.

4.3. Delta

While performing the model difference calculation on TGraphs, some delta represen-
tation on implementation level is necessary to be able to keep track of elements that
have already been matched between host and target model. The Delta component is
providing capabilities for this purpose.

The generic functionality of the component is to provide access to all matched and un-
matched elements from both models as well as methods to check whether a specific
element has already been matched or to add a new match.

The actual implementation of the interface GDelta serves its purpose by making use of
Java collections. The implementation works according to the new, delete and change
difference sets used by DSMDiff [13].

The component is initialised with all elements from host and target model which are
then kept in internal lists. For matched elements, an instance of the Java collection Map
is used to map host model elements to matched target model elements. The map is
directed in the manner of host model elements being the key, returning the matched tar-
get model element if the key is requested. As soon as two elements have been matched
to each other, they are removed from the initial host and target model elements list.
Thereby, all elements are only contained in one collection of the delta, either in the
host or target element list, representing unmatched elements, or the map, representing
already matched elements.

All of these collections can be retrieved by using standard getter and setter methods.
Additionally, the component provides a boolean check whether an element has already
been matched without needing to access the map directly. This works for host as well
as target model elements. Therefore, it can easily be checked if an element has already
been matched, for example, before it is selected as a candidate element.

This internal delta representation can also be used to generate the delta output in a
later step as given in section 4.7 as the lists and map directly represent added, deleted
and changed elements.

4.4. Model Traversal

Every element from the compared host and target model must be investigated for a
possible match in the opposite model. To guarantee this, the models have to be orderly
traversed meaning that each element is at least investigated once.

For this purpose, the component defined by the interface ModelTraversal is responsible.
The interface declares a method which shall return the next element to be investigated
while comparing the model. That element can then be investigated by other components
to find possible matches. An implementation therefore must keep track of previously
investigated elements and define an order by which elements are returned. Preferably,
this is done in a runtime optimised way so that the amount of necessary element compar-

50

isons is reduced. The element retrieval can however be restricted by providing a boolean
parameter to the method, telling whether or not the last returned element resulted in
a new match. This can be used to adjust the model traversal method whenever new
matches occur.

Model traversal in GDiff is restricted to a single model: The declared method always
returns elements from the host model, making the search for matches unidirectional.
This does however not falsify the resulting difference.

Additionally, the component serves as a generic model provider, providing methods to
retrieve host and target model completely or certain elements by type. Therefore, the
traversal component can be used by other components to gather, for example, candidate
elements for similarity computation.

The model traversal in GDiff returns host elements to be investigated in the manner of
all surveyed algorithms by generating a top-down hierarchical order of element types.
This hierarchy is based on composition of elements, adding containers on top and con-
tained types below their containers.

Elements are thereby investigated by type level starting with the top most type. In the
case of the given subset of UML Activity Diagrams, the top most type is given by Ac-
tivities, being the type that can contain any other type, even itself. When starting the
comparison of two Activity Diagrams, the component GModelTraversal would return
an Activity as the first element to be investigated, advancing to one of its contained
types after all Activities have been investigated.

This top-down traversal by type is however interrupted whenever the previously inves-
tigated element resulted in a new match between host and target model. According to
the investigation of SiDiff [2, 11], the concept of similarity flooding significantly reduces
the amount of required element comparisons. Hence, similarity flooding has been imple-
mented in the component GModelTraversal.

The flag telling whether or not the last returned element resulted in a match is used for
this purpose. If that flag is true, the type traversal is interrupted and all elements that
are directly connected to the previously returned element are gathered. The next host
elements will then be returned from this neighbourhood until all neighboured elements
have been processed. A neighbourhood investigation can again be interrupted if a new
match occured, resulting in a recursive neighbourhood investigation starting from that
new match.

4.5. Similarity Computation and Element Matching

Elements selected for investigation, have to be checked against candidate elements from
the target model to find corresponding elements. The interface SimilarityComputation
has been defined for this purpose, providing a method that tries to find a matching el-
ement for a given element from the host model. Because candidate elements are not
provided to the method, the similarity computation component can and must select a
set of candidate elements from the target model itself for example by gathering elements
of a specific type from the ModelTraversal component.

The calculation of similarity as well as the selection of the most similar element is taken

o1

care of by the actual implementation. In the case of GDiff this implementation has been
conducted in the component GSimilarityComputation. The implementation relies on
several similarity algorithms that are implemented using the strategy pattern [29], al-
lowing simplified exchange and extension of similarity algorithms.

These similarity algorithms accept two model elements and return a floating value rep-
resenting the similarity of the two elements. The value is in [0, 1] with 0 meaning no
similarity and 1 meaning equality.

The prototype implementation of GDiff uses two specific similarity algorithms provided
by surveyed model difference calculation tools.

4.5.1. Name Similarity

For model elements that contain a name attribute, such as Activities or Action Nodes
when speaking of UML Activity Diagrams, name similarity is computed using the algo-
rithm described and used in UMLDIfF [12]. That algorithm is based on adjacent character
pairs and seems adequate for the model element similarity purpose.

However, because it cannot be generally assumed that a named element in any model
always has a unique attribute going by the identifier "name”, the attribute which con-
tains a possibly unique name is generically detected by GDiff respectively the similar-
ity algorithm. This is done by simply checking for attributes for which the attributes
name contains the substring "name”. Whenever no such attribute can be found for the
compared elements, the resulting name similarity is 1 because similarity should not be
reduced only due to the fact that unnamed elements are being compared.

4.5.2. Structural Similarity

For all model elements, structural similarity is computed using the method described and
used in UMLDIff [12]. This similarity algorithms considers any incoming and outgoing
edge of the compared elements, checking whether already matched elements are con-
nected to them. This results in the similarity algorithm requiring access to the current
state of the delta between the models. Thus, similarity algorithms are implementations
of the interface DifferenceCalculationComponent themselves and have access to any
component used within GDiff.

In the original description of structural similarity, neighbourhoods of the compared ele-
ments were being checked for elements with similar names and already existing matches.
This resulted in name similarity of neighboured elements being used for relation types
that do not appear for the investigated elements. As name similarity is already be-
ing used as a standalone similarity algorithm in GDiff, being computed for every ele-
ment comparison, only already matched elements are considered for structural similarity.
Hence, the partial structural similarity for relation types that do not appear for the in-
vestigated elements is 1. This also results in a structural similarity of 1 for compared
elements that are not connected to any other elements.

92

4.5.3. Similarity Composition

Similarity algorithms used in the component are used in sequence. Unlike the similar-
ity composition used in UMLDIff [12], where name similarity influences the computed
structural similarity by invoking one algorithm from the other, GDiff invokes similarity
algorithms in sequence and normalises the accumulated result to a similarity between 0
and 1. This is similar to the similarity configuration used within SiDiff [2], only differing
in the fact that similarity algorithms are equally weighted in GDiff.

4.5.4. Match Selection

After the similarities have been calculated for each candidate element, one element might
be deemed as a new match for the host element. Just like the surveyed algorithms, GDiff
uses an internal similarity threshold which must be exceeded to deem two elements as
corresponding. If it is not exceeded, then no match is added to the delta.

The exact, most optimal value for similarity threshold cannot be selected in general. For
tests using the subset of UML Activity Diagrams as given before, a minimum required
similarity of 0.5 seems adequate. This value is selected due to the fact that two TGraph
vertices that represent the same unnamed element, for example an Initial Node, have
a structural similarity of O if neither their container or incoming and outgoing Control
Flows have been matched. Because an Initial Node is an unnamed element, the similarity
threshold is still exceeded because the name similarity algorithm returns a similarity of
1. Hence, unnamed elements can be matched although there neighbourhoods might not
contain any matches yet.

However, independent from a possibly changed optimal threshold value, as soon as the
threshold has been exceeded, the host element and the candidate element with highest
similarity are added to the Delta. If their is more than one element with highest,
threshold exceeding similarity, then, in the case of the GDiff implementation, the first
most-similar element that has been compared is added as a match.

4.6. Delta Optimisation

The component DeltaOptimiser, transposed by the implementation GDeltaOptimiser
in GDiff, preprocesses the internal delta representation for an ensuing delta output
generation in the specific delta representation given in section 2. The requirements 5,6
and 7 in section 2.6 listed delta minimalism, completeness and correctness which might
also be taken care of in a delta optimisation component. It can however be assumed
that the algorithm result, specifically the detection of changed, unchanged, added and
removed elements is taken care of by the model traversal and similarity metrics described
before. The internal delta thereby already represents a correct and complete delta. The
minimalism of the delta can only be affected by modifying the process of difference
detection.

The purpose of this GDiff specific delta optimisation is simply to reorder the elements
contained in the delta list so that the generated delta will be consistent no matter how
far it is processed.

93

To explain the necessity of such an optimisation, the following listing contains an extract
of a delta which changes the target of a Control Flow to a new Action Node. Delta
variable g1 is assumed to be defined outside of the extract:

gl.changeControlFlowTarget (g2);
g2 = addActionNode (” Action”);

This example highlights some of the problems of unordered delta outputs. The goal
is to have a consistent delta in each line of the delta representation, meaning that the
delta does not refer to not yet existing elements in a specific line. This problem already
occurs in line 1 of the given delta because it changes the target of an Control Flow to
an element variable that has not yet been assigned in the delta. This actually happens
not before the second line of the delta.

To have a consistent delta, the order these two exemplary delta operations would have to
be switched. This is the purpose of the component GDeltaOptimiser which rearranges
the elements in the lists for unmatched host and target model elements contained in the
Delta component. The rearrangement guarantees a specific order of unmatched target
elements which represent added elements:

1. Elements that are added to a containing element are placed after the container in
the list.

2. Items that are connected to another element are placed after the connected element
in the list.

The inverse order is generated for elements in the unmatched host element list which
represent deletions:

1. Elements that are added to a containing element are placed before the container
in the list.

2. Items that are connected to another element are placed before the connected ele-
ment in the list.

Requiring that change operations are added after add and delete operations in the delta
and that add and delete operations are generated in the same order as added or removed
elements are contained in the delta lists, this order guarantees a consistent delta.

4.7. Deriving the Modelling Delta from Calculated Differences

At last, the modelling delta has to be generated in the specific delta description language
introduced in section 2.4. This job is taken care of by the delta output generation com-
ponent, defined by the interface DeltaOutputGenerator. The actual implementation
which is capable of generating the required delta description language is conducted in
the component GDeltaOutputGenerator.

All elements have previously been investigated, trying to match elements from host and
target model. The internal delta representation however does not directly reflect change
information. It only contains lists of unmatched elements from host and target model.

54

The first directly represent removed elements, the latter added elements. Add and delete
operations can therefore be generated by adding add or remove operations for each ele-
ment in the lists.

Changed elements are however only contained in the map of the delta which holds all
elements that have been marked as corresponding between host and target version of the
model. Whether they actually changed or not has not been determined yet. Due to the
internal model representation as given in section 4.2, each element from the processed
model is represented by a vertex. This has a major impact on the process of delta output
generation. The delta description language requires contained elements to be added on
their container as well as requiring association elements to set their source and target
elements as parameters within a add operation. Hence, contained elements as well as
association elements have to be somehow detected generically.

Containments are directly represented by TGraph edges that are of a specific aggregation
kind, either shared or composite. Whether the currently processed element is contained
by another element can thereby be decided by checking all incoming and outgoing edges
of the vertex for such an aggregation kind. If a corresponding edge occurs, the required
delta operation can be generated without further investigation if it affects an add op-
eration. To detect whether the containment changed in case of a matched element, the
container of the matched host as well as the matched target element have to be retrieved.
If these elements are also marked as matching in the internal delta representation, no
change operation is necessary. Otherwise, a change operation is generated and added to
the delta output.

Association elements can be uniquely detected by checking whether an element has ex-
actly two outgoing edges which are not of aggregation kind shared or composite. A
Control Flow from the metamodel given in section 4.2 is for example always connected
to its source element via an edge of type LinksToSource and to its target element via
an edge of type LinksToTarget. The type names of these edges are automatically gen-
erated when transforming the metamodel into a TGraph schema and it can therefore
not be guaranteed that such naming conventions occur for every processed model type.
If source and target element associations in the metamodel are however restricted to be
identified by the names source and target, it can be assumed that the resulting edge
types also contain these identifiers.

Thus, by checking whether an element has exactly two outgoing edges excluding shared
or composite aggregation kinds, it is definitely an association. Furthermore, by checking
which of the edges type names contains the keyword source or target, edges connecting
the association to its source or target element can be identified. Generated add operation
for newly added associations can thereby be created. For matched elements, it has to be
checked whether the source or target of the host element are also matched to the source
or target of the matched target element. If not, a change operation can be generated
which changes the source or the target attribute of the association.

The variable identifiers used in the delta description language can be retrieved from the
GDiff-specific metainformation attribute contained in the TGraph schema. For matched
elements, these are propagated from target to host model before generating the delta.
Removed elements which do not have an identifier yet, receive a new one by using the

95

highest element identifier used before, retrievable from the metainformation vertex, and
increasing it with every unassigned element.

The last used identifier is then added to metainformation lines in the delta so that it
can be reapplied to TGraphs in the GUUID Applier.

This generic implementation of a model difference calculation algorithm has been suc-
cessively conducted. Whether or not this implementation actually works generically has
still to be evaluated in the following section.

o6

Metamodel

Model (Version n)
Model To TGraph
Transformation
Model (Version n+1)

Tgraph (Version n)

[

1l

Tgraph (Version n+1)

[

Tgraph (Version n)

GUUID
Applier

Tgraph (Version n)
with metainformation

@,n

[

Tgraph (Version n+1)

Tgraph (Version n)
with metainformation

111

Figure 16: Model to TGraph transformation (top), Metainformation application to
TGraph (middle), input and output parameters for GDiff (bottom)

o7

5. Evaluation

This section aims on an investigation whether or not the implementation described in
the previous section fulfils the requirements from section 2.6. This section is split into
two parts according to the following evaluation criteria:

1. Evaluation of GDiff against UML Activity Diagrams

2. Evaluation of GDiff against TGraphs in general

5.1. UML Activity Diagrams

For the course of this work, UML Activity Diagrams have mainly been used as an exam-
ple to model difference calculation and the principles behind. Additionally, a metamodel
as well as a TGraph schema have been designed for a specific subset of UML Activity
Diagrams. This can be used to test the implementation.

In section 2, three not empty, consecutive versions of an exemplary UML Activity Dia-
gram have been introduced. Furthermore, an additional fourth consecutive version has
been added in section 3. FEach of those versions has been extended with an Activity
going by the name ” Activity” that contains all other elements. The diagrams have been
created using Rational Sofware Architect, exported to XMI and transformed to TGraphs
using the provided parser for Activity Diagrams. Thereby, this evaluation also serves
as an evaluation for the GMoVerS-specific model difference calculation toolchain intro-
duced in section 4.

The models are thereby comparable using GDiff. This is additionally possible without
requiring any model specific configuration of GDiff, fulfilling requirement (1) and (2).
The expected result for versions 1 to 3 have previously been given in section 2 when
investigating forward and backward delta calculation. When processing these 3 version
in consecutive order, GDiff generates exactly those expected deltas, differing only in
variable assignments and the order of operations. Delta variable assignments are also
consistent over all consecutive versions, for instance the activity is assigned to the vari-
able g0 in all generated creation and backward deltas. Add, delete and change operations
are generated for exactly those elements that they are expected for. Additionally, when
processing version 3 and 4 of the model, the resulting backward delta again totally con-
forms to the expectations.

Thus, GDiff actually provides a correct delta, referring to the correct element types and
generating correct delta operations even for contained elements and associations, fulfill-
ing requirements (3) and (4). It can also be assumed that the chosen similarity threshold
as well as the similarity algorithm composition work as desired on the exemplary dia-
grams. Hence, the resulting deltas fulfil the requirements of a (5) complete, (6) minimal
and (7) correct delta.

Regarding runtime complexity of the algorithm and its implementation, the tests showed
that runtime complexity O(n?) has indeed been outperformed due to the by type com-
parison and similarity flooding. Requirements (8) and (9) thereby are also fulfilled.

o8

This small test case already proves that all requirements are fulfilled for this model-
specific test case. Whether or not this applies for models in general may only be decidable
when investigating another model type in the following section.

5.2. Java TGraphs for Software Evolution Investigation

The original purpose of GDiff is to calculate model differences that can be used in a
model versioning system. To investigate how generically usable the implemented ap-
proach actually is, GDiff has been tested on TGraphs that represent a software system.
The SOAMIG project [30] extends software migration to service oriented architectures.
The repository of the projects approach is based on TGraphs to represent migratable
software systems and artefacts [31]. The project offers a webservice based on a Java
fact extractor [32] which transforms a software system given as Java source code into a
TGraph representation.

E Type
[Eg name : String
[Eg fullyQualifiedName : String
[Eg; external : Boolean

1

IsTypeDefinitionOf

E ClassDefinition Q InterfaceDefinition E AnnotationDefinition Q EnumDefinition

0.1 0.1 0.1 0.1

IsSuperClassOf IsSuperClassOfinterface

IsinterfaceOfClass
0.1 * *

IsinterfaceOfEnum

= TypeSpecification

£ QualifiedName £ QualifiedType

Figure 17: Extract of the TGraph schema to represent a Java software system [3]

An extract of the TGraph schema for the Java source code representation is given in
figure 17. The complete Java TGraph schema contains around 90 nodes and 160 edges,
covering the syntax of Java version 6 [3].

The Java to TGraph transformation functionality has been used to evaluate whether the
implemented model difference calculation approach is capable of handling a completely
different use case than difference calculation for a model versioning system. When sur-

99

veying existing model difference calculation tools and frameworks, UMLDIff [12] was
investigated although it serves a very domain-specific purpose. UMLDIff is used to
detect structural differences between versions of a software systems, represented by a
domain-specific model type. The metamodel used by UMLDIff is very similar to the
Java TGraph schema used by the Java fact extractor. As GDiff has been designed to
handle models on T'Graph level, it can now be tested whether the implemented approach
is also capable of detecting structural differences of software system versions.
Therefore, GDiff has been tested on Java TGraphs that have been created using the
webservice provided by the SOAMIG project. As the implementation of GDiff has been
versioned in a Subversion [5] repository, two revisions of the implementation could be
retrieved. These two version represent two major milestones in the development, the
first being capable of detecting differences and generating a basic delta, the latter being
capable of actually generating the correct delta in the required delta description lan-
guage.

The source codes for both revisions as well as all dependencies to third-party libraries
have been provided to the webservice, resulting in two Java TGraphs, each representing
one of the revisions. The TGraphs are of considerable size, the first version containing
7122 vertices and 10870 edges, the latter containing 15238 vertices and 23786 edges.
Vertex and edge count approximately have increased by factor 2. Due to the fact that
the resulting models are given as TGraphs, they could directly be passed to GDiff to
calculate the difference.

To achieve TGraphs that are actually processable by GDiff, their schemas have to con-
tain certain elements required to generate the desired delta output conforming to the
delta description language given in section 2.4. Specifically, the metainformation element
containing the highest delta variable previously used must be contained in the model.
Also, every model element must have an attribute containing a delta variable so that
variables can be kept throughout deltas. As direct access to the schema of the Java
TGraphs is not given and a modification of the schema and the TGraphs on the file as
well as the JGraLab internal representation was not possible, GDiff had to be modified
to be capable of handling Java T'Graphs.

This resulted in a different development branch of GDiff, solely added to process these
graphs. The requirement of metainformation vertices and attributes has been removed
from the reduced implementation. As a consequence, the delta output has been altered
because the desired delta description language could no longer be generated. Therefore,
the generated delta output simply lists the amount of added, removed and matched ele-
ments to have an indicator on how well the difference detection performs. This reduced
functionality means that all requirements regarding delta output, including delta mini-
malism, correctness and completeness, cannot be fulfilled.

Due to the fact that several restrictions have been added to the schema for TGraphs
processable by GDiff, as given when introducing the schema for reduced UML Activity
Diagrams in section 4.2, even the reduced implementation is incapable of processing the
Java TGraphs.

First of all, a containment order is assumed to be represented by the schema so that
element types can be processed in a top-down manner, starting with containers and

60

traversing down to contained elements. The Java schema however contains non-abstract
elements, that generalise all other element types. Therefore, as soon as one of these
non abstract types is processed, all elements from the host model are gathered for in-
vestigation. This leads to the following situation: If the latter version of the software
system is set as host model, the first list of elements to be investigated contains all 15238
vertices of the host model. Hence, the goal to reduce element comparisons by assuming
a hierarchical type order fails on the Java T'Graph.

Furthermore, association elements, as for example Control Flows in the introduced sub-
set of UML Activity Diagrams, are required to be defined as a vertex, connected to
its source and target by exactly two edges. In the Java schema, such associations are
directly represented by edges and therefore not processable by GDiff.

Add last, the structural similarity algorithm implemented in the assumption that asso-
ciations between elements are represented like described above, results in way to high
similarities whenever two elements are compared. The assumption results in the fact that
a vertex can only be connected to other elements via three types of edges at maximum:

1. Connection to the target element or being the target element of an association
2. Connection to the source element or being the source element of an association

3. Aggregation connection to a container or a contained element

The similarity algorithm has been implemented, so that whenever a host element with-
out any connections of one of these three types is compared to a candidate element that
also is not connected to any element via that type returns a partial structural similarity
of 1. This assumption works as expected if only these three types of connections are
possible. Additionally it returns structural equality for elements that are not connected
in any way.

The Java schema instead allows many types of edges between vertices. Whenever one
element is not connected via most of the possible edge types, the structural similarity
increases because the partial structural similarity for each unused edge type is 1. Hence,
the resulting structural similarity is greater than 0.9 for most of the compared elements.
Additionally, elements without a name element are only matched on the foundation of
their structural similarity.

Thus, all elements from the target model are being matched to elements in the host
model because in this specific test case the target model (7122 vertices) contains less
vertices than the host model (15238 vertices).

As a result, GDiff is capable of processing the generated Java TGraphs but does not re-
turn the desired results. No conclusions can be made about structural changes between
the two inspected versions which was the purpose of this investigation.

This would however be possible if the generated Java TGraphs would be transformed
into TGraph with a schema that conforms to the schema restrictions made before. Re-
sulting, for instance, in edge types of the Java TGraph converted to vertex types with
edge connections to source and target.

The problem of type generalisation which results in all host model elements being re-
turned as the first elements to be investigated, shows that the derivation of a hierarchical

61

type order cannot be assumed to work on any model type. The requirement (9) to out-
perform runtime complexity O(n?) is not satisfied for the given models but instead is
exactly O(n?) and thereby still in the polynomial class which satisfies requirement (8).
Although many of the requirements are not being satisfied in this specific test case, some
of them could be satisfied. Necessary optimisations to achieve that will be described in
the following section.

5.3. Required Implementation Improvements based on TGraph Evaluation

The evaluation of GDiff on Java T'Graphs showed that some modifications to the imple-
mentation would improve its generality.

The underlying model representation, given by TGraphs, is being used to have a generic
representation that can be used for any model type. As a matter of fact, the usage
of TGraphs in the way it has been done in this work, builds a major restriction to
processable models. Based on the evaluation of Java TGraphs, the metamodel of the
processed T'Graphs must conform to certain restrictions which where fulfilled for the
subset of UML Activity Diagrams but not for Java TGraphs. For instance, association
elements have to be represented by vertices, connected to their source and target by one
edge each. These restrictions actually require a meta-metamodel for GDiff-processable
TGraphs. Based on the assumption that every model could be transformed to conform
to this meta-metamodel, the required generality of GDiff is still fulfilled.

Furthermore it appeared that a TGraph schema might have non abstract type gener-
alisations. Although GDiff aims to only compare elements by type level to reduce the
required amount of element comparisons, such generalisations make this reduction obso-
lete. This problem cannot be solved immediately and would require further investigation.
Instead, it provides an enhancement to element comparison: Type similarity might also
be considered for elements that share the same supertype.

Regarding similarity computation, name similarity alone, sequentially combined with
structural similarity does not result in acceptable similarity values if trying to match el-
ements. Because compared elements might be unnamed, name similarity cannot be used
and therefore only structural similarity is considered. Whenever no elements have been
matched before, structural similarity is however incapable of detecting new matches on
its own depending of the used similarity threshold value.

Instead of only considering name attributes a generalisation of element comparison to
attribute similarity might improve the matching mechanism. Such an algorithm would
compare all attributes of the compared elements that occur in both of the elements. The
similarity must however be specific to the type of the processed attribute, whether it is
for example from the string or numerical domain.

62

6. Conclusion

This work provided a general solution to model difference calculation as intended. The
embedding of such an algorithm as well as its requirements were introduced in section
2. A survey of existing algorithms, tools and frameworks in section 3 provided the gen-
eral algorithmic solution which was described and implemented in section 4. Finally,
the implemented prototype has been tested against UML Activity Diagrams and Java
TGraphs in section 5.

Evaluation of the algorithm and its implementation turned out to be working as ex-
pected, fulfilling all the requirements that have been made.

Some optimisations, applicable to the conducted implementation have been given before,
based on certain limitations resulting from the implementation. Some more general im-
provements, enhancing performance and generality of the approach still require further
investigation in future works.

The general algorithmic solution to model difference calculation heavily relies on the
chosen value of the similarity threshold. For GDiff, the value has been chosen on the
foundation of certain aspects of the introduced metamodel for UML Activity Diagrams.
The similarity threshold however actually needs further investigation to determine what
an optimal value would be or whether it depends on the processed model. Such an
investigation is out of scope for this work but it would certainly enhance the general
process of model difference calculation.

While conducting the investigation of existing frameworks, SiDiff [2] appeared as most
elaborated. Due to the fact that it has constantly been developed and enhanced since
2004, advanced methods for runtime optimisation have already been implemented. Sim-
ilar enhancements could also be applied to the GDiff implementation to further improve
its runtime complexity.

Finally, the investigation of delta generation in section 2.5 showed, that model difference
calculation could be mapped to delta difference calculation instead. Hence, delta dif-
ference calculation tools could be used to identify differences between modelling deltas
which would in turn represent the modelling difference. This approach would presum-
ably be applicable to other delta domains as well and therefore is of great interest for
further investigations.

63

A. Manual for GDiff

GDiff can either be run in single model mode, resulting in only a creation delta for the
provided model, or full mode, resulting in a creation delta for the host model and a
backward delta leading from host to target model. See the following manpage on how
to set the startup parameters:

usage: java —jar gdiff.jar —n <filename> —c <filename>
[—o <filename>] [-b <filename>]

—n <filename> (Required) The tg file that contains the TGraph that
represents the newer version of the compared model.

—c¢ <filename> (Required) Write the delta that if applied to the empty
model results in the newer version of the model to
<filename>. (” Creation.Delta”)

—o <filename> (Optional) The tg file that contains the TGraph that
represents the older version of the compared model.
If this parameter is set, the parameter —b is required
too.

—b <filename> (Optional) Write the delta that if applied to the newer
version (—n) of the model results in the older version
(—o) of the model. If this parameter is set, the parameter
—o0 is required too.

Listing 8: Manpage for GDiff

B. Manual for GUUID Applier

The utility GUUID Applier can be used to propagate delta variables from a creation
delta to the corresponding TGraph. See the following manpage on how to set the startup
parameters:

usage: java —jar gUUID—Applier.jar —t <filename>
—d <filename> —o <filename>

—t <filename> The .tg file that contains the TGraph which is
to be enhanced with UUIDs.

—d <filename> A delta file (.gd) containing a operation—based
delta that generates the TGraph given as —t parameter
if applied to the empty model. Delta is only allowed to
contain add—operations.

—o <filename> Write the resulting TGraph to the given file.

Listing 9: Manpage for GUUID Applier

64

References

1]

[12]

[13]

IBM. Rational Software Architect Website. Last Access: 20.11.2012. [Online].
Available: http://www-142.ibm.com/software/products/de/de/ratisoftarch

P. Pietsch, “The SiDiff Framework Technical Report,” 2009.

T. Horn, A. Fuhr, and A. Winter, “Towards Applying Model-Transformations and
-Queries for SOA-Migration,” in MSI 2009, 20009.

J. Vaspermann, Fssential CVS. O’Reilly, 2003.

B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version Control with
Subversion. Next Generation Open Source Version Control. O’Reilly Media, 2004.

J. Loelinger, Version Control with Git. O’Reilly Media, 2009.

J. Mukerji and J. Miller, “MDA Guide Version 1.0.1,” 2003, Last Access:
18.10.2012. [Online]. Available: http://www.omg.org/cgi-bin/doc?omg/03-06-01

OMG, “XMI Mapping Specification Version 2.4.1,” 2011, Last Access: 23.10.2012.
[Online|. Available: http://www.omg.org/spec/XMI/

Visual Paradigm. Visual Paradigm for UML 10 Website. Last Access: 20.11.2012.
[Online|. Available: http://www.visual-paradigm.com/product/vpuml/

Visual Paradigm. VP Teamwork Server 10 Website. Last Access: 20.11.2012.
[Online]. Available: http://www.visual-paradigm.com/product/vpts/

C. Treude, S. Berlik, S. Wenzel, and U. Kelter, “Difference Computation
of Large Models.” ACM Press, 2007, pp. 295-304. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1287624.1287665

Z. Xing and E. Stroulia, UMLDiff: An Algorithm for Object-Oriented
Design Differencing. ~ACM, 2005, no. 6, pp. 54-65. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1101919

Y. Lin, J. Gray, and F. Jouault, “DSMDiff: A Differentiation Tool for Domain-
Specific Models,” Furopean Journal of Information Systems, vol. 16, pp. 349-361,
2007.

Object Management Group. (2011) OMG Unified Modeling Language (OMG
UML), Superstructure Version 2.4.1. Last Access: 11.11.2012. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1/

A. Winter and D. Kuryazov. (2013) GMoVerS Project. Software Engineering Group,
Carl-von-Ossietzky-Univerity Oldenburg, Germany. Last Access: 08.06.2013.
[Online]. Available: http://www.se.uni-oldenburg.de/preprocess.php?seite=45623.
html&include0=generated-content /ModelingDeltas.html

65

[16]

D. Kuryazov, J. Jelschen, and A. Winter, “Describing Modeling Deltas By Model
Transformation,” in Softwaretechnik Trends (Issue on International Workshop on
Comparison and Versioning of Software Models (CVSM 2012)). Gesellschaft fiir
Informatik, to appear 2012.

D. Kuryazov, A. Solsbach, and A. Winter, “Towards Versioning Sustainability Re-
ports,” in 5. BUIS-Tage: IT-gestitztes Ressourcen- und Energiemanagement, no.
to appear. Springer Verlag, 2013.

A. Cicchetti, D. Di Ruscio, and A. Pierantonio, “A Metamodel Independent
Approach to Difference Representation,” Journal of Object Technology, vol. 6,
no. 9, pp. 165-185, October 2007. [Online]. Available: http://www.jot.fm/issues/
issue_2007_10/paper9/

M. R. Garey and D. S. Johnson, A Guide to the Theory of NP-Completeness, ser.
Computers and Intractability. W.H. Freeman and Company, 1979.

M. Alanen and I. Porres, “Difference and Union of Models,” in Proc 6th Int. Conf.
on the UML, P. Stevens, J. Whittle, and G. Booch, Eds., vol. 2863. Springer, 2003,
pp- 2-17.

J. W. Hunt and M. D. Mcilroy, “An Algorithm for Differential File Comparison,”
Computing Science Technical Report, no. 41, pp. 1-9, 1976. [Online]. Available:
http://wwwl.cs.dartmouth.edu/~doug/diff.ps

S. Maoz, J. O. Ringert, and B. Rumpe, “ADDiff: Semantic Differencing for Activity
Diagrams,” 2011.

K. McMillan, “The SMV System,” Tech. Rep., 2000, Last Access: 13.12.2012.
[Online]. Available: http://www.cs.cmu.edu/~modelcheck /smv.html

S. Maoz, J. Ringert, and B. Rumpe, “CDDiff: Semantic Differencing for Class
Diagrams,” in Proc. 25th Furopean Conference on Object Oriented Programming
(ECOOP’11), 2011.

D. Jackson, Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

U. Kelter, J. Wehren, and J. Niere, “A Generic Difference Algorithm for UML
Models,” in Software Engineering, 2005, pp. 105-116.

J. Ebert and A. Franzke, “A Declarative Approach to Graph Based Modeling,” in
Graphtheoretic Concepts in Computer Science, number 903 in LNCS. Springer,
1995, pp. 38-50.

S. Kahle, “JGraLab: Konzeption, Entwurf und Implementierung einer Java-
Klassenbibliothek fiir TGraphen,” Master’s thesis, Universitdt Koblenz-Landau,
Institut fiir Softwaretechnik, 2006.

66

[29] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software. Addison-Wesley, 1995.

[30] Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR). (2013) SOAMIG -
Migration von Legacy-Softwaresystemen in serviceorientierte Architekturen. Last
Access: 05.06.2013. [Online]. Available: http://www.soamig.de/

[31] A.Fuhr, V. Riediger, and T. Horn, “An Integrated Tool Suite for Model-Driven Soft-
ware Migration towards Service-Oriented Architectures,” Softwaretechnik-Trends,
vol. 31, no. 2, 2011.

[32] A. Baldauf and N. Vika, “Java-Faktenextraktor fiir Gupro,” 2008.

67

Erklarung

Hiermit versichere ich, dass ich diese Arbeit selbststindig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt habe. Aulerdem versichere ich, dass ich
die allgemeinen Prinzipien wissenschaftlicher Arbeit und Verdffentlichung, wie sie in den
Leitlinien guter wissenschaftlicher Praxis der Carl von Ossietzky Universitit Oldenburg
festgelegt sind, befolgt habe.

68

