
Collaborative Modeling Empowered By Modeling Deltas

Dilshodbek Kuryazov, Andreas Winter
Software Engineering Group

University of Oldenburg
{kuryazov,winter}@se.uni-oldenburg.de

ABSTRACT
Evolution and maintenance of the large-scaled software mod-
els require collaboration of several designers on the shared
modeling artefacts. Since collaborators manipulate shared
models in real-time, synchronization of the model changes is
the main challenging aspect for collaborative modeling ap-
plication.

In order to achieve efficient real-time synchronization of
changes, these changes have to be properly identified, repre-
sented by appropriate notations and exchanged by modeling
deltas. This paper presents a real-time collaborative mod-
eling application based on exchanging model differences be-
tween collaborators. Modeling deltas are represented by an
operational delta notation. The approach is validated by
presenting a collaborative class diagram editor.

Keywords
Model Changes, Modeling Deltas, Real-Time Collaborative
Modeling

1. MOTIVATION
Maintenance and development of the large-scaled evolv-

ing software models require real-time collaboration of sev-
eral designers on the shared modeling artefacts. During the
collaborative modeling process, collaborators apply various
changes to the shared model in parallel. Since several users
collaboratively work on shared artefacts, the collaborative
modeling application needs to provide sharing of modeling
artefacts and synchronize the user changes among collabo-
rators when new artefacts are created or existing ones are
deleted or changed.

Collaborative modeling has to be capable of handling a
huge amount of the shared modeling artefacts. Changes of
shared models have to be exchanged between collaborative
modelers in real-time. These changes can be viewed as mod-
eling deltas. A modeling delta might consist of one or many
changes performed by a collaborator.

Real-time synchronization of modeling deltas is also re-
ferred to as micro-versioning. In the case of micro-versioning,
small changes are identified and exchanged among various
real-time copies of a model. Basically, the histories of such
changes are not stored in a repository, but the change his-
tory of each collaborator is available on their copy which can
be reverted by Redo/Undo actions.

On the other hand, constantly changing models results
in several different revisions of the same modeling artefact.
Obviously, model designers wish to store different versions of

their model and manage model versions so that the previous
model versions can be reverted or the change histories can
be traced when needed. This kind of versioning is referred
to as macro-versioning. Macro-versioning is the standard
version control of models i.e. storing subsequent versions in
a repository, reverting versions and other management ac-
tivities [3].

An efficient change representation notation is needed for
both micro-versioning and macro-versioning. Both version-
ing techniques might rely on the same base-technology to
deal with modeling deltas. In the case of micro-versioning,
a modeling delta approach provides efficient detection, syn-
chronization and application of changes made by designers.
In macro-versioning, each model change needs to be repre-
sented by a sufficient notation so that it allows collaborators
to efficiently store differences between subsequent model ver-
sions and provides a solid management of models and their
versions. The general Delta Operations Language (DOL),
meta-model generic and operation-based approach which is
introduced in [14] is applied to model difference representa-
tions in micro- and macro-versioning. This paper presents
the application of DOL to micro-versioning whereas usage
of DOL in macro-versioning is explained in [14].

DOL is a set of domain-specific languages to model dif-
ference representation by operations. A specific DOL for a
specific modeling language is generated from the meta-model
of a modeling language. A specific DOL is then fully capable
of representing model changes in terms of operations. Only
the changed model elements are identified and represented
in a differences document which is called Modeling Delta.
Each modeling delta consists of the sequence of change op-
erations (create, delete and change) for changes on a model.

In DOL, exchanging model changes made by designers
is eased by exchanging only modeling deltas which contain
only change operations. Exchanging small deltas provides
rapid synchronization of changes by reducing the capacity
of exchange data and exchange time. Additionally, the ap-
proach provides several DOL services e.g. a difference calcu-
lator for detecting model changes and change applier which
are used in realizing a collaborative modeling tool.

The paper is structured as follows: Section 2 gives an
overview of collaborative modeling. Section 3 explains mod-
eling delta based approach and gives an example of the DOL-
based change representation. Section 4 illustrates modeling
deltas in a collaborative class diagram modeling application
including the main architecture of real-time collaborative
modeling tools and their components. Evaluation of the
modeling tool is explained in Section 5. The paper ends up

1

{kuryazov, winter}@se.uni-oldenburg.de


by drawing conclusions and future work in Section 6.

2. COLLABORATIVE MODELING
The real-time collaboration principles are already inves-

tigated in collaborative document creation. Google Docs
[6] and Etherpad [1] are widely used in document creation
and editing in real-time. But, these web-based tools are lim-
ited to text-based synchronization relying on lines of strings.
There are also web-based, commercial real-time collabora-
tive modeling tools such as GenMyModel [7] and creately
[5]. Since they are web-based tools, exchanging changes oc-
cur over WebSocket using web browsers and users of these
tools depend heavily on the web server with Internet con-
nection. Since they are not open-source tools, the modeling
notations are not accessible to extend or replace with the
user defined meta-models.

In the following, the current features of the real-time col-
laborative modeling tool of the DOL approach are described
in detail. Figure 1 depicts a screen-shot of the DOL-based
collaborative modeling application. The figure consists of
two independent tool instances working on the same model
in parallel. The tool user interface (UI) called Kotelett [16]
portrays Model Tree, Model Editor Area, User List (on the
left) and Log (on the right) windows. At startup the tool
displays the list of models which are currently available on
the repository and asks the user which model to join as a
collaborator. But, the users can also open multiple models
during real-time collaboration.

Model Tree shows the list of diagrams, a user is currently
working on. It also shows the list of model elements that are
created in the current diagram. Users can work on several
diagrams simultaneously and each model might consist of
several diagrams. On the top of the model tree window, the
pop-up menu allows for the selection of any version of the
model previously saved. The menu lists all automatically
and manually saved versions of the current diagram (also
referred to as macro-versioning).

Model Editor Area is the main part which allows users to
design the UML class diagrams in the graphical editor. This
graphical modeling editor lists the most important notations
of UML class diagram where the users can select and draw
that element on the editor. These notations of the UML
class diagram are created based on the meta-model depicted
in Figure 2. The syntactic and semantic correctness of the
model on this editor are analysed automatically according
to that meta-model. Several modeling editor tabs can be
opened at the same time.

User List (left instance) lists all users that are currently
working on the initial diagram. These users are highlighted
with different colors in order to show clear distinction of
them and to recognize which change is made by which user
on the editor. As the graphical editor displays, the model
elements are highlighted with the same color of the creator
of that element. If an element is created by one user and
changed by another user, color of the last changed user is
applied to that element. Additionally, each user can change
their names and select necessary color that should appear
on the Kotelett UI.

Log (right instance) constantly displays the modeling deltas
that get exchanged among collaborators after each user ac-
tion. Creating one model element on the graphical editor
may result in one or several change operations that are con-
tained in one modeling delta and synchronized with other

copies. All of these changes are represented by DOL nota-
tion introduced in Section 3. As shown in the log window,
each modeling delta is isolated with the begin send delta
and end send delta messages which means sending a delta
is started and finished. Other tool instances receive these
deltas as change requests to apply on their models.

3. MODELING DELTAS
A number of approaches are already introduced to repre-

sent model differences in modeling deltas. Model-based dif-
ference representation are introduced in [4] and [11]. Operation-
based difference representation for software product lines is
introduced in [9]. These approaches also use basic edit op-
erations such as create, delete and change to describe model
modifications, but model changes are again represented by
software models. These model-based representation tech-
niques are successfully applied in standard model version-
ing, but they are not applied to the real-time collaborative
modeling so far.

One of the very few synchronization approaches is intro-
duced in [13] which aims at model-based real-time synchro-
nization of the model changes. The approach is presented as
an extension of the EMF-Store platform [12]. In the EMF-
Store platform, the model changes made by collaborators are
directly attached to modeling objects and combined in the
change packages. These change packages are synchronized
among collaborators using the peer-to-peer connections.

The DOL approach provides synchronization of small
DOL operations through a centralized and shared repos-
itory. EMF-Store uses the graph-like structures of EMF
(Eclipse Modeling Framework) [19] modeling objects as in-
ternal model representation and the changes are directly
made on the EMF models. The DOL approach provides
separation of the graphical editor from the internal graph-
like representation of models (Figure 5). The EMF-Store
platform supports only the tree based model editing feature,
whereas the Kotelett tool provides the graphical designing
editor.

Conceptually, DOL is a family of operation-based lan-
guages to model change representations. A specific DOL for
a particular modeling language is generated from the meta-
model of a modeling language, but the approach is com-
pletely independent from any specific meta-model i.e. the
approach is applicable to all modeling languages defined by
their according meta-models.

Since the ideas behind the DOL-based model change rep-
resentation approach is already described in [14] in detail,
only some relevant parts of the approach and a simple ex-
ample of DOL-based change representation is explained in
the following subsections.

3.1 DOL Approach
In the parallel modeling tools, the huge and complex mod-

els are shared among several collaborators. Identification
and synchronization of user changes on such models require
the quite efficient and fast change detection and synchro-
nization techniques. Every single change needs to be rep-
resented by a very simple notation so that the collabora-
tion process does not perform any delays or inconsistencies
in real-time. Considering these prerequisites, the DOL ap-
proach offers simple operation-based notation to exchange
model changes.

Since constructions of modeling languages are defined

2



Figure 1: Kotelett Collaborative Modeling Tool

by their meta-models, the meta-model of that language is
employed in order to derive a specific DOL notation for a
particular modeling language. The DOL generator gener-
ates a particular DOL as the initial step in the DOL ap-
proach. After having a DOL notation to represent changes
for the present modeling language, the user changes on in-
stance models can be represented by DOL statements.

DOL Generation. The DOL generator receives the
meta-model of a modeling language and generates a specific
DOL for representing changes on the instance models con-
forming to that meta-model. A specific DOL is generated
in the form of Java interface which receives change informa-
tion as parameters and produces the DOL statements for
that change.

Each object of any modeling language can be created,
deleted or attributes of each object can be changed during
the evolution process. Therefore, the DOL generator ap-
plies three basic edit operations such as create, delete to
each concept of the given meta-model and change to each
attribute of each concept. The DOL approach argues that
these three atomic changes are sufficient to represent all kind
of model changes [14]. The resulting DOL operations are
also directly executable descriptions of model changes so
that the changes represented by the DOL terms can eas-
ily be applied to models to transform the model from one
state to another. Section 3.2 gives a concrete and simplified
example of the DOL notation.

DOL Services. In collaborative modeling, changes of
these local models have to be calculated and have to be sent
to other collaborators and changes of other models have
to be applied to the local model. In order to fulfil these
tasks, two of the DOL services are utilized in the collabo-
rative modeling application: Change calculator and Change
applier. The change calculator detects the model changes
made by designers and produces modeling deltas represent-
ing those in DOL notation. The change applier is capable

of applying modeling deltas to a given model. These DOL
services are explained in Section 4 in detail.

3.2 Applying DOL to Collaborative Class Di-
agram Modeling

This section demonstrates a simplified example of the
DOL-based model change representation. The meta-model
(Figure 2) of UML class diagrams [17] is used as a run-
ning example in this section together with a simple instance
model in two parallel versions depicted in Figure 3.

The meta-model has two main parts separated by the
dashed line. In graphical modeling, every modeling object
has design information such as color, size and position, also
called layout information. The notation for layout informa-
tion is provided by the meta-model on the upper part of
the dashed line which is used in realizing the Kotelett tool.
Every modeling object can be of type the KNode linked to
the BoundingBox or KRelationship linked to the Graphi-

calEdge. Both, edges and boxes belong to the Diagram,
whereas the Diagram itself is of type ModelElement. Each
edge has the BendPoint and LabelPosition.

Usually, layout information is not depicted in classical
meta-models. In Kotelett, the meta-modeling approach is
also used for handling the data structures of layout nota-
tion. This allows for using the same technique for represent-
ing and synchronizing modeling data and layout data.

The bottom part of the meta-model depicts the UML
class diagram notation. The complete meta-model is used
for creating overall collaborative modeling application ex-
plained in Section 4.

Figure 3 displays two different parallel copies of the same
simple UML class diagram conforming to the meta-model in
Figure 2. In order to express the DOL-based change repre-
sentation approach, the copy of the Client A is considered as
the changed copy of the model and the copy of the Client B
is unchanged copy of the model. The example in this section

3



1

1

Figure 2: Simplified UML class diagram meta-model

shows how the changes on the copy of Client A are repre-
sented in modeling deltas by the DOL notation in order to
apply these changes to the copy of Client B.

According to the ModelElement class of the meta-model
in Figure 2, each model element has an attribute named
gDiff_UUID which means all model elements are assigned to
persistent identifiers. Therefore, each model element in this
example also has a persistent identifier e.g. the class Person
is assigned to g1 and the class Teacher is assigned to g4, etc.
Since the attributes of these classes are conceptualized as an
independent meta-class KAttribute in the meta-model and
treated as independent objects on the instance models, they
are also assigned to the separate identifiers in the graph-like
internal structures of the instance models.

Figure 4 illustrates the changes made on the copy of
Client A that has to be applied to the copy of Client B.

Client A Client B

g1

g2
g3

g4
g5

g6

g1

g2
g3

Figure 3: Two copies of the same class diagram

These changes are as follows: the attribute name of the
class Person is changed from surname to lastName (line 2),
the class Teacher is created with the attribute title (lines
4,5), the generalization g6 is created connecting the class
Teacher to Person (line 7). This is one way of representing
changes on Client A. Other possible changes resulting in the
same updated version are represented accordingly.

1 //-----------------------
2 g3.changeName (" lastName ");
3 //-----------------------
4 g4=createKClass(PUBLIC ," Teacher ");
5 g5=createKAttribute(g4 ,"title",PROTECTED ,

false);
6 //-----------------------
7 g6=createKGeneralization(g4,g1);

Figure 4: Example modeling deltas
As mentioned before, each object of the model can be

created or deleted, or the attributes of each object can be
changed. The same concept applies to this example and
the syntax of the DOL notation is directly derived from the
meta-model depicted in Figure 2. For instance, construction
of the operation on the line 5 is derived from the meta-class
KAttribute by providing the create operation. Thereby, an
attribute is created with name title and the visibility is PRO-
TECTED, it is non-static and linked to the class Person by the
parameter g5.

These changes are detected after each subsequent ac-

4



tions of a designer and synchronized with other copies of the
model. Thus, the change list in Figure 4 is separated into
three parts and exchanged in three independent modeling
deltas. After the model changes are synchronized between
these two instances of the same model by applying the delta
from Figure 4 to the model given in Figure 3 on the right,
the complete resulting models can be seen in Figure 1.

4. MODELING DELTAS IN COLLABORA-
TIVE MODELING

This section depicts an overall architecture of the collab-
orative modeling application. The main components are ex-
plained in detail including the DOL services that are in-
volved in building the collaborative modeling application.

Generally, the collaborative modeling application requests
activities such as detecting changes made by users, synchro-
nizing these changes among all other copies and applying
them to the other copies of a model. Usually, collabora-
tive applications and tools are built based on client-server
architectures. Similarly, Figure 5 depicts the overall archi-
tecture of the collaborative modeling application including
both client and server sides.

Applier

Calculator
TGraph 
Model

Model 
Editor

{sync}
Designer

Synchronizer
(micro-versioning)

{Models}

Repository {Deltas}

Server Client

GMoVerS
(macro-versioning)

Model
Manager

Figure 5: Architecture of Collaborative Modeling Tool

As shown in the figure, both client and server sides are
developed as separated applications. Client and server store
models according to their appropriate meta-models. It al-
lows to check semantic and syntactical correctness of models
while designing models and applying changes to models.

During real-time collaboration, modeling deltas are de-
tected by the change calculator and sent to server. Server
then sends modeling deltas to other clients and they are
applied other parallel copies of a model by the change ap-
plier. The change applier performs based on the first come
first serve technique. Therefore, possible conflicts are quite
rare while applying changes to models because of high speed
synchronization. Current experiments do not show any syn-
chronization conflicts of changes.

Each component of the architecture is explained in the
follow up subsections in detail.

4.1 Model Representation
On the client side, models are represented by graph-like

structures using TGraphs [8]. The graphical modeling edi-
tor is realized using Eclipse GEF (Graphical Editing Frame-
work) [15]. There is always bidirectional synchronization be-
tween the graphical modeling editor and graph-based model.
Once any user makes changes to a model on the editor, these
changes are propagated to the graph-based model and vice
versa.

On the server side, the repository stores only model-
ing deltas representing the differences between subsequent
model versions. Modeling deltas in the repository are also
represented by the DOL notation. Loading models from the

repository is done by applying active delta (and difference
delta if necessary) to an empty model [14].

4.2 Delta Calculator
The state-based change calculator is used to detect changes

once they are made on a model by collaborators. The inputs
for the change calculator are two, changed and unchanged,
copies of the same model and the outcome is a modeling
delta representing the differences between these copies in
the terms of DOL.

The change calculator is implemented using the exist-
ing generic difference calculator framework SiDiff [18]. The
change calculator employs the ID-based model matching al-
gorithm instead of a change recorder [13]. The ID-based
matching algorithm has shown high speed and performance
during real-time collaboration so far. Especially, in the case
of the graph-like structured models, the ID-based matching
algorithm performs very fast and efficient. Even if the mod-
els are represented using other structures like EMF [19] or
XMI [2] models, model changes can easily be detected by this
component. Since the change calculator approach is realized
in generic way, the change calculator is directly applicable to
various modeling languages with respect to the meta-model
and any special implementation is not required.

4.3 Delta Applier
The change applier transforms a model from one state to

another according to the change description in a modeling
delta. After detecting the user changes, the synchroniza-
tion component on the server side delivers them to all other
clients of the shared model in the form of modeling delta.
These changes are applied to other models by the change
applier. The change applier receives a modeling delta and
a model, and applies a given delta to a given model by exe-
cuting DOL statements in that delta.

Applying changes to graph-based models are realized by
in-place graph manipulations of JGraLab API [10].

4.4 Synchronizer
The synchronizer service on the server side supports ex-

changing modeling deltas among collaborators. It receives
modeling deltas produced by the change calculator and sends
them to other collaborators to apply on their copies. Model-
ing deltas represented by the DOL statements are efficiently
exchanged as the string list of serialized Java objects. Since
the synchronizer exchanges only real-time deltas, this service
is referred to as micro-versioning.

4.5 Macro-versioning
Macro-versioning in the Kotelett tool is handled by GMoVerS

(Generic Model Versioning System) which provides model
versioning services based on DOL (cf. [14] for more details).
On the server side, GMoVerS is utilized in order to manage
models and their histories. The model versioning system
also takes advantage of the DOL notation for representing
model differences in modeling deltas.

Any version of a specific model can be stored by a user
request at any moment during real-time collaboration and
any model or/and any version of a specific model can be
loaded from the repository.

5. EVALUATION

5



The DOL approach is applied to collaborative UML class
diagram modeling. The collaborative modeling application,
Kotelett itself was developed by a project group of students
in Software Engineering Group at Carl von Ossietzky Uni-
versity of Oldenburg.

The collaborative modeling tool is used in Software Engi-
neering lectures for teaching purposes by a group of students
including more than ten collaborators in parallel. The tool
is successfully presented by the project group on a study ex-
hibition day for school children. Moreover, the tool is also
experimented by the users located in long distance (Ger-
many and Canada). During these experiments, the tool has
not shown any inconveniences with agility, amount of users,
etc. Hence, the users of the tool have not faced any change
conflicts because of rapid synchronization of model changes
by small modeling deltas as shown in Figure 1. The DOL-
based change synchronization approach is fast enough to
exchange all changes before conflicts occur so far.

The meta-model in Section 3.2 supports storage of lay-
out information and modeling language notation. The col-
laborative modeling application or other applications of the
approach can be extended for other modeling languages by
extending or replacing the modeling language notation part
of the meta-model. The layout information part always
remains unchanged. In the case of real-time collaborative
modeling application, if the graphical modeling editor part
can be redeveloped for further modeling languages, all other
background technologies and services such as the change
calculator, applier, GMoVerS and DOL notation of the ap-
proach remain the same and do not require further imple-
mentation.

6. CONCLUSION
This paper expressed the collaborative modeling applica-

tion of the DOL approach using the DOL statements for ex-
changing model differences among collaborators on a shared
model. Exchanging model changes made by designers is
eased by exchanging only modeling deltas which contain
only the change operations. Exchanging small deltas allows
for rapid synchronization of model changes by reducing the
capacity of exchange data and exchange time. Moreover,
the real-time collaborative work allows for maintenance of
models and carrying out their evolution with lesser occur-
rence of conflicts between various development lines. Even
though the approach do not completely ignore the presence
of conflicts and it is planned to develop a conflict resolution
service for the collaborative modeling application in future.
The collaborative modeling application is planned to be ex-
tended for further UML diagrams as future work.

The DOL approach was also applied to the generic model
versioning system (GMoVerS) in [14] which is also used in
this collaborative modeling application for macro-versioning.

The client side of the tool is available in [16] to download
and it can also be demonstrated in the workshop.

7. REFERENCES
[1] AppJet Inc. Etherpad. http://www.etherpad.com,

visited on 01.06.2015.

[2] J. Bézivin. From object composition to model
transformation with the mda. In Technology of
Object-Oriented Languages, International Conference
on, pages 0350–0350. IEEE Computer Society, 2001.

[3] P. Brosch, G. Kappel, P. Langer, M. Seidl,
K. Wieland, and M. Wimmer. An introduction to
model versioning. In Formal Methods for Model-Driven
Engineering, pages 336–398. Springer, 2012.

[4] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A
Metamodel independent approach to difference
representation. Journal of Object Technology,
6:9:165–185, October 2007.

[5] Cinergix Pty. CreateLy. http://www.creately.com,
visited on 01.06.2015.

[6] S. Dekeyser and R. Watson. Extending google docs to
collaborate on research papers. University of Southern
Queensland, Australia, 23:2008, 2006.

[7] M. Dirix, A. Muller, and V. Aranega. GenMyModel:
An Online UML Case Tool. Joint Proceedings of
Tools, Demos and Posters, page 14.

[8] J. Ebert, V. Riediger, and A. Winter. Graph
Technology in Reverse Engineering, The TGraph
Approach. In 10th Workshop Software Reengineering
(WSR), volume 126, pages 67–81. GI (LNI), 2008.

[9] A. Haber, K. Hölldobler, C. Kolassa, M. Look,
B. Rumpe, K. Müller, and I. Schaefer. Engineering
Delta Modeling Languages. In Proceedings of the 17th
International Software Product Line Conference, pages
22–31. ACM, 2013.

[10] S. Kahle. JGraLab: Konzeption. Entwurf und
Implementierung einer Java-Klassenbibliothek für
TGraphen, 2006.

[11] T. Kehrer, M. Rindt, P. Pietsch, and U. Kelter.
Generating Edit Operations for Profiled UML Models.
In Model Driven Engineering Languages and Systems
(MoDELS 2013), pages 30–39, 2013.

[12] M. Koegel and J. Helming. EMFStore: a model
repository for EMF models. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering-Volume 2, pages 307–308. ACM, 2010.

[13] S. Krusche and B. Bruegge. Model-based real-time
synchronization. In International Workshop on
Comparison and Versioning of Software Models
(CVSM’14), 2014.

[14] D. Kuryazov and A. Winter. Representing model
differences by delta operations. In 18th International
Enterprise Distributed Object Oriented Computing
Conference, Worshops and Demonstrations
(EDOCW), IEEE Computer Society Press, 2014,
pages 211–220, Ulm, 3-5 September 2014.

[15] B. Moore. Eclipse development using the graphical
editing framework and the eclipse modeling framework.
IBM, International Technical Support, 2004.

[16] Project Group. Kotelett: Collaborative Modeling
Tool. https://pg-kotelett.informatik.uni-
oldenburg.de:8443/build/stable/.

[17] J. Rumbauch, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison
Wesley, July 2004.

[18] M. Schmidt and T. Gloetzner. Constructing Difference
Tools for Models Using the SiDiff Framework. ICSE
2008, pages 947–948, May 10-18 2008.

[19] D. Steinberg, F. Budinsky, E. Merks, and
M. Paternostro. EMF: eclipse modeling framework.
Pearson Education, 2008.

6


	Motivation
	Collaborative Modeling
	Modeling Deltas
	DOL Approach
	Applying DOL to Collaborative Class Diagram Modeling

	Modeling Deltas in Collaborative Modeling
	Model Representation
	Delta Calculator
	Delta Applier
	Synchronizer
	Macro-versioning

	Evaluation
	Conclusion
	References

