
Towards Metamodel Integration
Using Reference Metamodels

Johannes Meier
Software Engineering Group

University of Oldenburg, Germany
meier@se.uni-oldenburg.de

Andreas Winter
Software Engineering Group

University of Oldenburg, Germany
winter@se.uni-oldenburg.de

ABSTRACT
The complexity of modern software engineering projects in-
creases with growing numbers of artefacts, domain specific
languages, and stakeholders with their concerns. To over-
come these demands, different viewpoints are used to de-
scribe different languages specifying different artefacts, spe-
cific concerns of stakeholders, and domain specific languages.
Therefore, the use of different viewpoints together in one
software engineering project increases and requires techni-
cal support for automatic synchronization of the used view-
points. This paper gives an overview about use cases for
viewpoint synchronization and compares their fulfillment by
existing approaches. As result, this vision paper proposes
a new approach for synchronization of viewpoints to over-
come the presented use cases with focus on reduction in syn-
chronization and integration effort, on reuse of integration
knowledge, and on viewpoint evolution.

1. MOTIVATION
Viewpoint-oriented software engineering is becoming more

and more an essential paradigm in modern software engi-
neering. It allows different viewpoints on the current system
under development, and is motivated by an increasing num-
ber of different artefacts and languages, which are involved
in modern software systems. Working with one artefact writ-
ten in one language out of several means using one viewpoint
out of several viewpoints pointing on the same information
of the system.

As an example to describe and develop software, view-
points for representing requirements in textual form, de-
signing required static data in form of UML class diagrams,
object-oriented implementation using Java, and for testing
with JUnit testcases could be used. They all are work-
ing on information, which form together the domain. The
term domain describes all relevant information of the cur-
rent project. This example stems from the domain of object-
oriented software development (OOSD) and is an ongoing
one through the complete paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

VAO ’16 March 2, 2016, Karlsruhe, Germany
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

Different viewpoints support different concerns of different
stakeholder with tailored viewpoints. Following the defini-
tions of ISO 42010:2011 [8], a viewpoint determines selected
concepts of the domain addressing specific concerns. A view
contains a subset of the concrete information of the domain
on instance level and is conform to one viewpoint.

An important property of viewpoints on technical level is
the possibility for overlapping viewpoints [7]. This allows
using same concepts in different viewpoints. As an exam-
ple, the tester needs at least reading access to the source
code, and to the requirements which are giving specifica-
tions what to test. This concept allows several stakeholders
to work together at the same software project using differ-
ent viewpoints. Overlapping viewpoints raise the problem of
duplicated data which are changed through different view-
points which is a source for inconsistencies, which leads to
the need for synchronization of data for being consistent [6].

Working with several viewpoints requires also, that fur-
ther information on content level “between” the viewpoints
can be expressed. As an example, relations between the
viewpoints for requirements and Java source code specify,
which part of the source code fulfills which requirement. To
support this kind of traceability between viewpoints on con-
tent level, new viewpoints could be defined for this purpose.

These aspects have to be realized on technical level, be-
fore user are able to work in viewpoint-oriented way. While
working, the user needs support to synchronize viewpoints
with other ones. Because of this different use cases and
their actors, this position paper prepares several use cases
in viewpoint-oriented projects as first step (Section 2). After
comparison with existing approaches, which shows different
fields for improvements, this position paper introduces a new
approach for the synchronization of viewpoints for user, and
for reduced integration effort for methodologists (Section 3).
The approach will also support existing viewpoints and cor-
responding existing data, the evolution of that integration
by the methodologists, and the reuse of integration effort in
future projects by methodologists. This position paper ends
with a conclusion and an outlook in Section 4.

2. USE CASES
The two most important stakeholder in viewpoint-oriented

projects are the user who uses one or more viewpoints for
working with different artefacts, and the methodologist [1,
15] who creates and manages the viewpoints and their re-
lationships with each other. In the following, several use
cases for user and methodologists are described and their
fulfillment by existing approaches discussed.

2.1 Integrate existing Viewpoints
Initially, the methodologist integrates existing viewpoints

somehow. Suitable existing approaches from literature are
divided into synthetic and projectional approaches, following
the ISO for Architecture Description 42010:2011 [8]. These
two approaches are visualized in Fig. 1 using the ongoing ex-
ample. Synthetic approaches keep the views of the different

Textual-RQs
ViewPoint

Java
ViewPoint

ClassDiagram
ViewPoint

JUnit
ViewPoint

Textual-RQs
ViewPoint

Java
ViewPoint

SUMM

ClassDiagram
ViewPoint

JUnit
ViewPoint

Figure 1: Synthetic vs. Projectional Approaches

viewpoints unchanged and independent from each other, and
require some kind of synchronization between all viewpoints
for consistency (Fig. 1). Main characteristic is the pair-
wise synchronization between the viewpoints to propagate
changes from one viewpoint into all other viewpoints. To
synchronize overlapping concepts like classes of viewpoints
for Java and class diagrams, synchronizations directly be-
tween these two viewpoints are introduced.

The several synthetic approaches differ from each other
by using different techniques for synchronizations: Triple
Graph Grammars (TGGs) are used for specifying bidirec-
tional relations between different graph languages [13]. In
opposite to that, [12] uses QVT-R for synchronization.

Projectional approaches integrate the existing viewpoints
into one singe integrated metamodel (later called SUMM)
which contains the concepts off all viewpoints in an inte-
grated manner, whereby synchronization is done only be-
tween viewpoint and SUMM. Each viewpoint works with a
subset of the concepts of the SUMM, and propagates changes
in the view to the central model. In Fig. 1, the central meta-
model called SUMM contains all concepts of the viewpoints
for textual requirements, UML class diagrams, Java source
code, and JUnit test cases. Duplicated concepts like classes
in the viewpoints for Java source code and UML class di-
agrams are only once in the SUMM which saves pair-wise
synchronization effort. Instead, the viewpoints containing
a subset of the concepts of the SUMM propagate changes
in their views into the SUM, which forwards the changes to
the other views which contain also these changed concepts.
There are also several projectional approaches which differ
from each other mostly in the underlying techniques.

Orthographic Software Modeling (OSM) [1] uses a so called
Single Underlying Model (SUM) which contain all informa-
tion about the current domain. Therefore, a metamodel
for the SUM is needed, the Single Underlying MetaModel
(SUMM). The SUM will be changed only through changes
in views on it, respectively viewpoints on the SUMM. The
views will be synchronized with the SUM by transforma-
tions. An environment for OSM is realized prototypically [2].
The issue, how to get a SUMM, is marked as future work [2].

The Vitruvius approach [10] follows the projective OSM
ideas of a SUM with views on it, but implements this idea
internally by a so-called modular SUM (MSUM). For that,
the existing models are kept independent from each other
like in synthetic approaches (without an explicit SUMM),
and are combined with relations between each pair of view-
points expressed through a new DSL called MIR, from which
synchronization transformations are derived. In the end, on
technical level, Vitruvius can be seen as synthetic approach.

2.2 Import and integrate existing Data
If in viewpoint-oriented projects data already exist which

are conform to the integrated viewpoints, then these data
have to be imported and reused. In particular, if data are
coming from different overlapping viewpoints, not only the
viewpoints have to be integrated, but also the instance data.
Additionally, existing tools use models which conform to
fixed metamodels of viewpoints. As result, the approach
has to keep the existing viewpoints as first viewpoints to
allow import and export for existing data and tools. This
use case is motivated also in Vitruvius [10].

An advantage of synthetic approaches is, that existing
viewpoints are directly usable, because only additional mecha-
nisms for synchronization between the existing viewpoints
will be created. Therefore, no additional effort is required
to keep existing viewpoints and views usable for existing
tools. Keeping existing viewpoints is significant easier in
synthetic approaches, because projectional approaches take
the existing viewpoints and integrate them into a SUMM.
The presented projectional approaches in the modeling area
do not give hints, how to deal with existing viewpoints.

2.3 Create new Viewpoints
In approaches for viewpoint-oriented engineering, method-

ologists have to create new viewpoints to support new exter-
nal tools with a fixed viewpoint and new concerns of stake-
holders. Important is, that new viewpoints have to use all
aspects of the current domain [6]. In particular, concepts of
several existing overlapping viewpoints together with their
interrelations have to be reusable for new viewpoints. This
allows easy creation of new viewpoints while reusing the
elaborate work for integration.

Reusing concepts of different viewpoints is hard in syn-
thetic approaches, wherefore Vitruvius introduces a declar-
ative DSL called ModelJoin [3]. With ModelJoin, new view-
points can be defined declaratively using concepts of several
viewpoints, while the required metamodel of the new view-
point and the synchronization transformations will be gener-
ated from the declarations. For the projectional approaches,
[4] has similar ideas like the OSM approach and focuses on
how to create new viewpoints on basis of a SUMM. For that,
[4] developed an editor which helps to create new viewpoints
as subsets of the SUMM. The needed synchronizations be-
tween new viewpoints and the SUMM will be generated,
which use model differences for propagating changes between
SUM and all views.

2.4 Synchronize Views
After integrating viewpoints and importing existing data,

user read and write all data through initial and new view-
points. Changed concepts in one viewpoint have to be syn-
chronized into all viewpoints containing these concepts to
keep overlapping viewpoints consistent.

General problem of synthetic approaches is the square
number of relations between the viewpoints, which synchro-
nize overlapping views of overlapping viewpoints to avoid
inconsistencies. This results in heavily increasing initially
creation effort. By contrast, in projectional approaches the
number of required synchronizations is linear in the num-
ber of viewpoints. This is achieved by deleting duplicated
concepts in the SUMM. At runtime, changes in a view are
synchronized into the SUM, and from there forwarded into
other views which also contain the changed elements.

2.5 Create a similar Integration again
Another problem is the initial effort for methodologists

to integrate all viewpoints. While this initial effort is in
general not avoidable, the reuse of previous done integra-
tion in future projects simplifies viewpoint integration. As
an example, in a future project, requirements, Java code,
and testcases should be used like before, but now Extended
Entity Relationship (EER) diagrams should be used for de-
scribing static data. It would be nice to reuse the integration
of requirements, source code, and testcases, and exchange
class diagrams through EER diagrams easily. This results
in the problem, how to reuse integration knowledge in fu-
ture projects in the same domain. Ideas for reusing inte-
gration knowledge inside domains are not mentioned in the
presented related work, which shows field for optimization.

2.6 Evolve Viewpoints
After finishing the integration of viewpoints, the initial

viewpoints and their integration evolve because of, as exam-
ples, new versions of the tool specifying the viewpoint, or
new version of Java like in the ongoing example. It is im-
portant, that evolution is possible, all unrelated metamodels
remain the same, and that the co-evolution of existing mod-
els will be handled [6]. Neither the presented synthetic nor
projectional approaches support currently this use case.

3. NEW APPROACH
This section proposes a new approach for viewpoint in-

tegration. Summarizing the related work for the different
use cases in viewpoint-oriented projects, the integration and
synchronization of projectional approaches has linear effort
compared with square effort for synthetic approaches, while
projectional approaches lack in handling existing data. Be-
cause this limitation is removable with manageable effort
(compare Section 3.2), and the creation of new viewpoints
is possible in both approaches but easier in projectional ones,
the new approach of this position paper extends the projec-
tional OSM approach. The following text show, how this
new approach look like and will fulfill all the use cases.

3.1 Integrate existing Viewpoints
To create the SUMM which have to contain the concepts

of all viewpoints exactly once, the metamodels of the view-
points will be taken and integrated into one big metamodel,
the SUMM. This integration will be done by the method-
ologist who has to define on semantic level, which concepts
are duplicated in several viewpoints, and which additional
relations between concepts have to be added. On techni-
cal level, several operators will by applied on the metamod-
els in a step-wise way. Besides typical operators like add,
change, and delete [11], some more specialized refactorings
like merging two classes representing the same concept into
one single class are required. The selection of appropriate
operators is part of future work. These operators allow the
integration of the metamodels of the different viewpoints
into one single underlying metamodel which is required by
the OSM approach as input.

3.2 Import and integrate existing Data
An open issue in the existing OSM approach is, how to

handle existing data which are conform to the integrated
metamodels. This is important, because existing tools, for
example, for modeling UML class diagrams, should be used
together with the new approach. As an example, existing
Java source code should be used further on. This means in

both cases, that existing viewpoints and their data (here for
UML class diagrams and for Java source code) have to be
usable together within the new approach. On technical level,
the concrete metamodels have to be kept as viewpoints on
the final SUMM through the complete integration process.

This should be ensured by the in Section 3.1 proposed
step-wise execution of operators on the metamodels with
parallel creation of transformations for the model-co-evolu-
tion [5]. After integrating the viewpoints into the SUMM,
the corresponding co-evolution-transformations allow the in-
tegration and import of the existing data into the SUM. If
each step is combined with a complementary operator and
a complementary co-evolution-step for the other direction,
the data export from the SUMM into the viewpoints will be
executable.

3.3 Create new Viewpoints
To create new viewpoints onto an existing SUMM, the

existing projectional approach of [4] will be reused: After
selecting a subset of the SUMM which forms the viewpoint,
the required synchronizations between new viewpoints and
the SUMM will be generated.

3.4 Synchronize Viewpoints
Extending the OSM approach allows linear effort for syn-

chronization transformations. For future implementations,
approaches for the propagation of model differences between
views and the SUM like [15] which is used in the OSM ap-
proach or like [4] can be used also in this approach.

3.5 Create a similar Integration again
Looking at the ongoing example, concrete metamodels for

Java code and class diagrams are integrated into a SUMM
following the OSM approach. If a new project uses C++ in-
stead of Java, the complete integration has to be performed
again, while for integration purposes only general concepts
like classes and methods are required. To allow such reuse
of integration knowledge in the new approach, these general
concepts will be moved into reference metamodels (RMMs).

Following [16], reference models are modeling the main
and general characteristics of sets of systems of the same
kind, and hiding specialized aspects of individual systems [9].
Reference models serve as reference point for specialized
models [16] and support the construction of specialized mod-
els reusing the concepts of the reference model [14].

Because the specialized models are metamodels for Java
and C++, a reference metamodel will be created. Java and
C++ have both generalizable characteristics like classes and
methods, and specialized aspects like different handling of
pointers. The generalizable characteristics are part of the
reference metamodel for object-oriented programming lan-
guages, while the specialized aspects remain in the concrete
metamodels for Java and C++ (Fig. 2). The RMM for

XSD
ViewPointEER

ViewPoint

C++
ViewPoint

Requirements
RMM

OO-GPL
RMM

RSUMM

StaticData
RMM

TestCase
RMM

Textual-RQs
ViewPoint

Java
ViewPoint

ClassDiagram
ViewPoint

JUnit
ViewPoint

Figure 2: Concepts of the new approach
the subdomain of object-oriented programming languages
would contain at least classes containing methods. Con-
crete metamodels for Java and C++ will be mapped onto
their corresponding RMM, whereby as example the details of

the Java and C++ metamodels are ignored on RMM level.
The RMMs of all subdomains will be integrated into the
RSUMM. The RSUMM contains the integration on concep-
tual level, like here the integration of classes and methods
from object-oriented programming languages, with classes
and attributes of data description languages.

In concrete projects, for each subdomain one concrete
metamodel will be selected, like Java as programming lan-
guage and Extended Entity Relationship (EER) diagrams
as data description language. Based on the RSUMM, the
RMM parts will be replaced by concrete metamodels to get
the SUMM, whereby the integration knowledge will be de-
rived from the integration done in the RSUMM. The derived
SUMM is the same like in the OSM approach.

This approach allows to integrate the subdomains as rep-
resentatives for the main concepts only once in form of the
RSUMM for each domain, instead of each time in form of
SUMMs for each new project. The integration in form of
the RSUMM can be reused for each project by “instantiat-
ing”each subdomain by the currently needed concrete meta-
model to get a SUMM. This allows arbitrary combinations
of concrete metamodels and their viewpoints.

Another advantage of the new approach is, that for new
concrete viewpoints like XML Schema Definition (XSD), its
mapping to the StaticDataRMM is enough, and no complex
integration with other subdomains has to be performed, be-
cause the integration is done before using the RMM. After
creating the mapping, XSD can be used directly.

The technique for mappings between concrete metamodels
and their reference metamodels is part of future work, which
could apply step-wise metamodel changes (Sec. 3.1).

3.6 Evolve Viewpoints
After finishing the metamodel integration by the method-

ologist and while user are working with the integrated view-
points, evolution can occur to the integrated viewpoints:
The evolution of new viewpoints (CMMs) basing on the
SUMM can be expressed again as metamodel changes to-
gether with the creation of model-co-evolution transforma-
tions to handle the instance level. The evolution of the
CMMs can be simplified in this approach by distinguishing
changes into changes which affect only unimportant concepts
which are not part of the RMM, and into important changes
which affect both the CMM and the RMM. While the former
case can be realized as refactoring of the CMM, the latter
case requires also changes in the RMM and therefore also
in the RSUMM, which will be complex and requires further
investigations. But after handling the evolution task in the
RSUMM, all derived SUMMs benefit and apply them.

4. CONCLUSION
For technical support of viewpoint-oriented software engi-

neering, the viewpoints have to be integrated by the method-
ologist to offer the user consistent information across sev-
eral viewpoints. Therefore, this position paper presented
different use cases in viewpoint-oriented projects, and com-
pared their fulfillment by several synthetic and projectional
approaches. As result, synthetic approaches have the prob-
lem of square synchronization effort, projectional approaches
lack in supporting existing viewpoints, and all approaches
do not support the evolution of viewpoints and the reuse of
integration results in future projects.

To overcome these limitations, this paper proposes a new
approach following the OSM approach to have only lin-

ear synchronization effort. The new approach extends the
OSM approach by support for existing viewpoints, which
allows using existing data and reusing existing tools. This
is reached by rigorously creating model-co-evolution mecha-
nisms for all metamodel changing steps, which are needed
to map concrete metamodels to their reference metamodels
and to integrate reference metamodels into the RSUMM.

Main contribution and benefit of the new approach com-
pared to existing approaches is the reuse of integration effort
for future projects within the same domain, which is not in
the focus of other approaches. This is reached by shifting
the integration of concrete metamodels to the integration
of concepts expressed in reference metamodels (RMM) con-
taining the main concepts of subdomains. This allows the
methodologist to select one of several possible metamodels
like for Java or C++ for the current project. As result, the
complex integration will be done once on reference level, and
will be reused while deriving SUMMs for current projects.

The proposed ideas of this position paper will be con-
cretised and implemented in a framework for viewpoint-
oriented software engineering. As domain for validation, the
ongoing example of this paper of object-oriented software de-
velopment will be used, which could be extended by further
subdomains like project management, or documentation.

5. REFERENCES
[1] C. Atkinson, D. Stoll, and P. Bostan. Supporting

View-Based Development through Orthographic Software
Modeling. Enase, pages 71–86, 2009.

[2] C. Atkinson, D. Stoll, C. Tunjic, and J. Robin. A Prototype
Implementation of an Orthographic Software Modeling
Environment. VAO 2013.

[3] E. Burger, J. Henss, M. Küster, S. Kruse, and L. Happe.
View-based model-driven software development with
ModelJoin. Software & Systems Modeling, 2014.

[4] A. Cicchetti, F. Ciccozzi, and T. Leveque. A hybrid
approach for multi-view modeling. Recent Advances in
Multi-paradigm Modeling, 50, 2011.

[5] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio.
Automating co-evolution in model-driven engineering. 12th
EDOC’08, 2008.

[6] R. France and B. Rumpe. Model-driven Development of
Complex Software: A Research Roadmap. FOSE 2007.

[7] T. Goldschmidt, S. Becker, and E. Burger. Towards a
Tool-Oriented Taxonomy of View-Based Modelling. 2012.

[8] IEEE. ISO/IEC/IEEE 42010:2011 - Systems and software
engineering - Architecture description. 1–46, 2011.

[9] H. Krallmann and B. Scholz-Reiter. Cim-KSA - Eine
Rechnergestützte Methode für die Planung von
Cim-Informations- und Kommunikationssystemen.
Informatik-Fachberichte, 258:57–66, 1990.

[10] M. Kramer, E. Burger, M. Langhammer. View-centric engi-
neering with synchronized heterogeneous models. VAO’13.

[11] D. Kuryazov and A. Winter. Representing Model
Differences by Delta Operations. EDOCW 2014.

[12] J. R. Romero, J. I. Jaén, and A. Vallecillo. Realizing corres-
pondences in multi-viewpoint specifications. EDOC 2009.

[13] A. Schürr and F. Klar. 15 Years of triple graph grammars:
Research challenges, new contributions, open problems.
Lecture Notes in Computer Science, 5214:411–425, 2008.

[14] O. Thomas. Understanding the Term Reference Model in
Information Systems Research: History, Literature Analysis
and Explanation. LNCS, 3812 (Chapter 45):484–496, 2006.

[15] C. Tunjic and C. Atkinson. Synchronization of Projective
Views on a Single-Underlying-Model. VAO 2015.

[16] A. Winter. Referenz-Metaschema für visuelle Modellie-
rungssprachen. Deutscher Universitäts-Verlag, 2000.

