
Oldenburg Lecture Notes in Software Engineering

2nd Workshop EASED@BUIS 2013
— Energy Aware Software-Engineering and Development —

Proceedings

edited by

Christian Bunse

University of Applied Sciences, Stralsund

Marion Gottschalk

Carl von Ossietzky University, Oldenburg

Stefan Naumann

University of Applied Sciences, Trier

Andreas Winter

Carl von Ossietzky University, Oldenburg

OLNSE Number 4/2013
April 2013

Oldenburg Lecture Notes
on Software Engineering (OLNSE)
Carl von Ossietzky University Oldenburg
Department for Computer Science
Software Engineering
26111 Oldenburg, Germany

– copyright by authors –

Content

Christian Bunse, Marion Gottschalk, Stefan Naumann,
Andreas Winter
Energy Aware Software-Engineering and Development 5

Energy Aware Programming and Optimization

Christian Bunse, Sebastian Stiemer
On the Energy Consumption of Design Patterns 7

Timo Hönig, Christopher Eibel, Wolfgang Schröder-Preikschat,
Björn Cassens, Rüdiger Kapitza
Proactive Energy-Aware System Software Design with SEEP 9

Sebastian Götz, René Schöne, Claas Wilke, Julian Mendez,
Uwe Assmann
Towards Predictive Self-optimization by Situation Recognition 11

Stefan Naumann, Eva Kern, Markus Dick
Classifying Green Software Engineering - The GREENSOFT Model 13

Measuring and Estimating Energy Consumption

Kay Grosskop
PUE for end users - Are you interested in more than bread toasting? 15

Mirco Josefiok, Marcel Schröder, Andreas Winter
An Energy Abstraction Layer for Mobile Computing Devices 17

Patrick Heinrich
Towards Network-Wide Energy Estimation for Adaptive Embedded Sy-
stems

19

Dmitriy Shorin, Armin Zimmermann
Evaluation of Embedded System Energy Usage with Extended UML Mo-
dels

21

4

2nd Workshop

Energy Aware Software-Engineering and Development

(EASED@BUIS)

Christian Bunse

University of the
Applied Sciences

Stralsund
Software-Systems
christian.bunse@

fh-stralsund.de

Marion Gottschalk

Carl von Ossietzky
University Oldenburg
Software-Engineering

gottschalk@se.

uni-oldenburg.de

Stefan Naumann

University of the
Applied Sciences Trier

Environmental
Campus Birkenfeld

s.naumann@

umwelt-campus.de

Andreas Winter

Carl von Ossietzky
University Oldenburg
Software-Engineering

winter@se.

uni-oldenburg.de

Utilization of mobile and embedded devices, and
thus their induced energy consumption, is constantly
increasing. Reducing the energy consumption of such
devices will not only improve the carbon footprint of
contemporary mobile information technology usage,
but will also extend the device lifetime, improve user
acceptance and reduce operational costs. Next to seri-
ous and ongoing efforts in hardware design and on op-
erating system level, software engineering techniques
will also contribute to optimize energy consumption
by improving software design and software quality.

The EASED@BUIS workshop, which follows up the
Workshop on Developing Energy Aware Software Sys-
tems (EEbS 2012) provides a broad forum for re-
searchers and practitioners to discuss ongoing works,
latest results, and common topics of interest regard-
ing the improvement of software induced energy con-
sumption. We are very delighted, that BUIS-Tage
2013 in Oldenburg offered the opportunity to have
EASED@BUIS as part of this established conference
on environmental information systems. Next to pro-
viding all needed conference facilities, BUIS also al-
lowed for an introductional paper on the development
and classification of energy aware software1 to pro-
mote our subject within their proceedings.

All together eight papers were accepted for presen-
tation at EASED@BUIS. The papers were selected ac-
cording their ability to invoke encouraging and fruit-
ful discussions during the workshop. All papers were
commented by 2–3 members of the program commit-
tee. The proceedings of EASED@BUIS will be pub-
lished at Softwaretechnik-Trends.

We like to express our deepest gratitude to
all authors, who submitted their thoughts to
EASED@BUIS. We also like to thank our reviewers
and sub reviewers:

1Christian Bunse, Stefan Naumann and Andreas Winter:
Entwicklung und Klassifikation energiebewusster und energieef-
fizienter Software in: Jorge Marx Gómez, Corinna V. Lang
and Volker Wohlgemuth: IT-gestütztes Ressourcen- und En-
ergiemanagement, Konferenzband zu den 5. BUIS-Tagen,
Springer:Heidelberg, 2013.

• Colin Atkinson (University Mannheim)

• Paris Avgeriou (University of Groningen)

• Holger Eichelberger (University Hildesheim)

• Miguel Alexandre Ferreira (Software Improve-
ment Group, Amsterdam)

• Sebastian Götz (TU Dresden)

• Theo Härder (TU Kaiserslautern)

• Mirco Josefiok (OFFIS, Oldenburg)

• Àkos Kiss (University of Szeged)

• Sonja Klingert (University Mannheim)

• Patricia Lago (VU University Amsterdam)

• Thierry Leboucq (KaliTerre, Nantes)

• Birgit Penzenstadler (TU München)

• Olivier Philippot (KaliTerre, Nantes)

• Giuseppe Scanniello (University of Basilicata)

• Maximilian Schirmer (Bauhaus-University Wei-
mar)

• Gunnar Schomaker (OFFIS, Oldenburg)

• Alexandru Telea (University of Groningen)

• Joost Visser (Software Improvement Group, Am-
sterdam)

• Claas Wilke (TU Dresden).

Their timely comments gave reasonable help to im-
prove the submissions. Special thanks go to the or-
ganizers of BUIS-Tage Jorge Marx Gómez, Barbara
Rapp, and Andreas Solsbach for hosting our small
workshop. Without their support and flexibility we
would not have been able to organize EASED@BUIS.

Enjoy EASED@BUIS Christian Bunse
Marion Gottschalk
Stefan Naumann
Andreas Winter

The third issue of Energy Aware Software-Engi-
neering and Development (EASED) is taking place on
Sept. 16, 2013 at GI-Jahrestagung 2013 in Koblenz.
For more information, please refer to http://www.se.

uni-oldenburg.de/EASED3

5

6

On the Energy Consumption of Design Patterns

Christian Bunse
University of Applied Sciences Stralsund

Zur Schwedenschanze 15
18435 Stralsund

Sebastian Stiemer
University of Applied Sciences Stralsund

Zur Schwedenschanze 15
18435 Stralsund

March 29, 2013

Introduction. Energy is one of the most limiting
factors for information & communication technologies
in general and, more specifically for mobile devices such
as Smartphones. In most application scenarios, mobile
devices do not have a permanent power supply but use
rechargeable batteries. Due to the increasing hard-
ware performance and other device properties energy
requirements increase further. However, software uti-
lizes hardware and therefore directly affects the energy
requirements of the entire system.

Energy-aware software development, energy-aware
algorithms and energy-aware sensor substitution are
only three examples for recent research that try to
reduce energy requirements by optimizing the software
rather than the hardware. Energy consumption is an
important system property, that has already to be
addressed in the early stages of development. In turn,
this requiresknowledgeonbest-practicesandstructures
for developing energy-efficient software systems.

Following [1], patterns play many roles in software
development: they provide a common vocabulary, re-
duce system complexity, constitute a base for building
reusablesoftware, andactasbuildingblocks. It isacom-
mon believe that software quality increases by pattern
application. But, theimpactofapatternontoproperties
such as performance, security or energy consumption is
widely unknown.

Inthispaper,wecomparetheimpactofdesignpatterns
ontotheenergyconsumptionofmobile(i.e., smartphone
based)applications. SmallappsfortheAndroidplatform
were developed that either use or not use a specific
pattern. The energy consumption of these apps was
measured by using the PowerTutor-App, developed
at the University of Michigan. The results regarding
the selected pattern subset (facade, abstract factory,
observer, decorator, prototype, and template method)
are interesting. Especially the decorator pattern show
a significant negative impact onto energy consumption.

Background. The research presented in this paper
is rooted in the research fields of energy-aware comput-
ing and energy requirement ascertainment techniques.
Many energy-aware approaches either try to reduce en-
ergy needs by substituting hardware resources [2], or by
balancing energy requirements and information quality
[3]. In [4] it is illustrated that a simple substitution of

the resources central processing unit, and memory helps
to reduce the amount of energy required. The authors
of [5] showed that processing less precise data requires
less energy, and also present a setup for measuring the
energy requirements of core and memory of a micro
controller based system, running sorting algorithms.

Energymeasurement for softwarecaneitherbebased
on hardware or software-based approaches [6]. [7]
provides an approach for generating energy models for
mobile systems by using the smart battery interface
accompanied by means to achieve accuracy. Tools
such as the Nokia Energy Profiler or PowerTutor [8]
enabledeveloperstomonitorpowerconsumption. These
tools are based on an underlying cost model that,
itself, is derived by analyzing a specific device (i.e.
Nokia S60). [9] presents a power modeling scheme
and an implementation that allows fine-grained energy
accounting.

In software engineering, a pattern is a general re-
peatable solution to a commonly occurring problem
[1]. A pattern is an abstract template that needs to be
refined and adapted before it can be integrated into the
code. Patterns focus on descriptions that communicate
the reasons for design decisions. But, little is known
about their impact onto system properties [10]. [11]
examines the impact of using design patterns onto per-
formance and provide a process for pattern selection.
[12] presents an approach for mapping software design
to power consumption and analyze how design decisions
affect an application’s energy usage. [13] analyzes six
design patterns and explore the effect of them on energy
consumption and performance.

Experiments Existing approaches have shown that
pattern usage impacts energy consumption at least
when it comes to embedded systems [13] or C++ based
code [12]. The goal of our research was evaluating the
impact of patterns onto the energy consumption of mo-
bile systems that use Java. The underlying hypothesis
being that using or not using a specific pattern will
significantly change energy needs. Results can then be
used as a starting point for further exploration in order
to identify why and how the design patterns impact en-
ergy consumption. We selected a subset of the Gamma
patterns (facade, abstract factory, observer, decorator,
prototype, and template method). To evaluate the im-

1

7

pact of a single pattern we developed two, comparable
applications for each pattern that either use or not use
the pattern. Implementation loosely followed standard
implementations available in textbooks. Energy con-
sumption was then measured by using the PowerTutor
Apprunningonvariousphones (NexusOne, GalaxySII,
Transformer) whereby experiments and measurements
were coordinated by a framework.

Pattern System Overall Time Energy (J) Time Energy

"Clean" 15,40 395,60

Pattern 15,70 405,60

"Clean" 13,50 342,10

Pattern 15,40 396,60

"Clean" 15,10 373,70

Pattern 15,20 373,90

"Clean" 15,20 374,00

Pattern 35,40 873,80

"Clean" 11,20 271,80

Pattern 14,90 362,00

"Clean" 15,00 366,40

Pattern 15,10 366,70

Facade

Abstract Factory

Observer

Decorator

Prototype

Template Method

0,100,90

15,9014,20

2,501,80

132,40 133,60

33,00 33,20

0,30 0,10

Difference (%)

Figure 1: Experimental Results

Table 1 shows the results of the first experiment
series. WhilemeasurementsforpatternssuchasFacade,
Observer or Template Method show no difference, the
results for the Prototype and Decorator show a large
difference in time and energy needs (15,2 vs. 35.4 and
374 vs. 873,8). The reason for the gross difference
might be the large amount of objects instantiations
and method calls of the pattern-based system. This
supports the findings of [4] that memory consumption
usingtheheapaswellasthegarbagecollectorareenergy-
intensive operations that also have a negative impact
onto performance. Although interesting, our results
can only be used as an indicator due to several threats
to validity. Implementation and measurement might
not be generalizable. This warrants further research.

Summary andConclusions. In this paper, we pre-
sented a case study that examined the impact of design
patternapplicationontoasystemsenergyconsumption.
Two groups of apps, either using or not using a pattern,
were developed and measured. The results for a distinct
subset of the Gamma patterns showed, that especially
the decorator pattern has a negative impact on the en-
ergyneedsofanapp. Dueto the lowtemporal resolution
of the software measurement method, evaluations with
a short runtime are error-prone and the used systems
mightnotberepresentable. However, theinterpretation
of the evaluation results supports our hypothesis and
justifies further research. Using patterns is not always
a good idea. Their selection should not solely be based
onto function and structure but also according other
properties. Although the results of our study are not

generalizable, the results indicate, that further research
is warranted that examines the impact of patterns re-
garding different platforms and applications. Results
can then be used for meta-analysis.

During our study, we were able to support our hy-
potheses but, in turn, also identified issues that warrant
further research. First, the robustness of our approach
regarding the hardware platform has to be evaluated.
Furthermore, it is interesting to take a deeper look into
the characteristics of the energy requirements of other
patterns or idioms. Results might then be used to define
anti-patterns regarding software energy consumption.

References

[1] E. Gamma, R. Helm, R. E. Johnson, and J. M.
Vlissides, “Design patterns: Abstraction and reuse of
object-oriented design,” in ECOOP, 1993.

[2] C. Bunse and H. Höpfner, “Resource substitution with
components — optimizing energy consumption,” in
ICSOFT ’08 Proc., pp. 28–35, INSTICC, 2008.

[3] J.P.Sousa, R.K.Balan, andD.G.etal, “UserGuidance
of Resource-Adaptive Systems,” in ICSOFT ’08 Proc.,
INSTICC, 2008.

[4] C. Bunse, H. Höpfner, S. Roychoudhury, and E. Man-
sour, “Energy efficient data sorting using standard
sorting algorithms,” in Software and Data Technolo-
gies, pp. 247–260, Springer, 2011.

[5] H. Höpfner and C. Bunse, “Energy Aware Data Man-
agement on AVR Micro Controller Based Systems,”
ACM SIGSOFT SEN, vol. 35, May 2010.

[6] C. Bunse and H. Höpfner, “Ocemes: Measuring overall
and component-based energy demands of mobile and
embedded systems,” in GI-Jahrestagung, 2012.

[7] M. Dong and L. Zhong, “Self-constructive high-rate
system energy modeling for battery-powered mobile
systems,” in Proc. of the 9th Intl. conference on Mobile
systems, applications & services, ACM, 2011.

[8] L. Zhang, B. Tiwana, and Z. Q. et al., “Accurate Online
Power Estimation and Automatic Battery Behavior
Based Power Model Generation for Smartphones,” in
CODES/ISSS ’10 Proc., ACM, 2010.

[9] A. Pathak, Y. C. Hu, and M. e. a. Zhang, “Fine-
grained power modeling for smartphones using system
call tracing,” inProc.of the6thconferenceonComputer
systems, ACM, 2011.

[10] D. Gross and E. S. K. Yu, “From non-functional
requirements to design through patterns.,” Requir.
Eng., vol. 6, no. 1, pp. 18–36, 2001.

[11] N. Mani, D. C. Petriu, and M. Woodside, “Towards
studying the performance effects of design patterns
for service oriented architecture,” in Proc. of the 2nd
WOSP/SIPEW intntl conference on Performance en-
gineering, ICPE ’11, ACM, 2011.

[12] C. Sahin, F. Cayci, and I. L. M. e. a. Gutierrez,
“Initial explorations on design pattern energy usage,”
in1stInternationalWorkshoponGreenandSustainable
Software (GREENS), ACM, 2012.

[13] A.Litke, K.Zotos, andE.C.etal, “Energyconsumption
analysis of design patterns,” in Proc. World Academy
of Science, Engineering & Technology, 2005.

8

Proactive Energy-Aware System Software Design with SEEP

Timo Hönig, Christopher Eibel, and
Wolfgang Schröder-Preikschat

Friedrich–Alexander University Erlangen–Nuremberg
{thoenig,ceibel,wosch}@cs.fau.de

Björn Cassens and Rüdiger Kapitza

TU Braunschweig
{b.cassens,rkapitza}@tu-bs.de

1 Introduction and Motivation

Designing system software currently optimizes pro-
gram code for correctness and speed. While this is es-
sential for the reliable operation of computer systems,
these two characteristics alone are often not sufficient.
Moreover, it is important to ensure that a third char-
acteristic is being considered during the process of de-
signing system software: energy efficiency.

As optimizing program code for energy efficiency
is a tedious and time-consuming task we are working
on SEEP [1], a project which provides a programming
framework to assist developers at the task of energy-
aware programming. The framework is named after
two of its key components: symbolic execution and
energy profiles. In this position paper, we introduce
the SEEP approach, detail our current work, and dis-
cuss future challenges. We believe that it is essential
to supply software developers and software designers
with the right set of tools in order to ease the process
of energy-aware programming.

We have identified the current modus operandi
to be hindering for energy-efficient software develop-
ment. Today, developers need to analyze program
code for energy hotspots manually. This task is be-
ing performed in a reactive manner. Program code is
first being developed and afterwards being analyzed
for defects with regard to unusually high energy con-
sumption. This manual task is cumbersome for two
reasons. First, the efforts required to analyze program
code for energy efficiency grow exponentially with the
number of program paths of the application. Second,
the amount of energy consumed differs among hetero-
geneous hardware platforms. Developers are required
to evaluate the software on various platforms which
makes the task of identifying and solving energy bugs
even more unappealing.

This work was partly supported by the German Research Foun-
dation (DFG) under grants no. FOR 1508 (subproject TP2) and
SFB/TR 39 (subproject C1).

With SEEP, we provide the tooling infrastructure
required to overcome current limitations. We exploit
symbolic execution techniques [2] for automatic anal-
ysis of program code. Combined with energy models
and platform-specific energy profiles we provide en-
ergy estimates for program code to developers as early
as during the time of software development.

2 Proactive Energy-Aware Program-
ming Using SEEP

The SEEP framework (see Figure 1) is motivated by
instantly providing energy estimates, which have di-
rect influence on the development process. Hence,
commonly required feedback-based code modifica-
tions after deployment can be reduced by turning the
modus operandi into a proactive approach.

One major effort is to offer a high degree of automa-
tion, that is, requiring as little user interaction as pos-
sible. At best, no code annotations or other changes
to the program under test are necessary. With regards
to programming languages, developers are free in their
choice and are not forced to use special energy-aware
programming languages as proposed in [3].

In order to provide precise and exhaustive energy
consumption estimates, program code that is poten-
tially being executed should be incorporated into the
energy estimation process. SEEP uses symbolic exe-
cution, a technique that is effective in exploring pro-
gram paths automatically. This multi-path analysis
ensures that energy estimates cover a program in all
its facets, and as a consequence, increase the chance to
unveil hidden energy hotspots. Beforehand, executa-
bles that correspond to specific code paths (so-called
path entities) need to be concretely executed to ex-
tract runtime characteristics required in subsequent
steps during the analysis phase.

SEEP needs to keep the complexity of the estima-
tion process at an absolute minimum. For this pur-
pose, the framework relies on several different energy
profiles. Besides instruction profiles, which depend on

9

Code AnalysisTooling Persistent Data

Code Path Exploration

Source Code

Energy Estimates

Symbolic Execution

Concrete Execution

Energy Profiles

Trace Database

Figure 1: Overview of the SEEP architecture.

a CPU’s instruction set architecture, this includes en-
ergy profiles for device-specific peripherals (e.g., net-
work or file transfer costs). By means of virtualiza-
tion environments, energy estimates can be calculated
without the need to execute code on target platforms.

This profile-driven approach is extended by further
persistent data, which is populated iteratively with
entries for functions that have been analyzed by the
framework. Such function entries consist, amongst
others, of symbolic expressions, which can be ex-
ploited to interpolate a function’s energy consump-
tion. Thus, whenever the control flow of a consecutive
execution run reaches functions that have been ana-
lyzed previously, symbolic execution can be omitted.
This shortcut saves great amounts of analysis time.

Furthermore, concretely executing path entities to
deduct a target’s runtime behavior can be parallelized
for heterogeneous platforms using virtualization tech-
niques. At this, our approach does not make any re-
strictions as long as target platforms and their pe-
ripheral devices can be measured accurately accord-
ing to a precise energy model. From a CPU’s point of
view, such models must contain both basic and inter-
instruction energy costs which vary in dependence of
a CPU’s capabilities (e.g., instruction pipelining).

3 Development Process Integration
Currently, we explore different possibilities to con-
solidate SEEP with integrated development environ-
ments (IDEs) such as Eclipse. As basis of decision-
making, energy estimates are provided at function
level. These estimates are displayed in the IDE so that
developers can correlate program code (i.e., source
code of a function and input parameters) with energy
consumption estimates.

During the development phase, code changes are
being reported to the backend of the SEEP frame-
work. Functional changes trigger a reevaluation of
affected program paths. To ensure consistency the
trace database is being updated incrementally. When-
ever code changes cause a significant negative impact

on the program code currently in development, the
developer is being notified concerning this matter.
If alternatives for functionally equal implementations
are available (e.g., different libraries implementing the
same algorithm), SEEP proposes to use the more ef-
ficient alternative. This may depend on the target
platform and conditionally needs to be incorporated
into the build infrastructure of the program code.

To adequately represent a multitude of energy con-
sumption estimates (e.g., several distinct input pa-
rameters for a single function) we currently evalu-
ate how to graphically illustrate the energy estimates
within IDEs. This helps developers to easily discover
energy hotspots in the program code.

4 Position Statement and Outlook
Down to the present day, program code is commonly
not optimized for energy-efficiency. As developers im-
prove their program code merely with regards to speed
and correctness, it leads to the situation that sys-
tem software components needlessly waste energy re-
sources. To address this, we are convinced that new
concepts for energy-aware programming need to be es-
tablished. Most of all it is required to provide strong
tooling support for developers to ease the task of in-
creasing the energy-efficiency of software. Such tool-
ing support relieves developers from manually exam-
ining software for energy hotspots by providing a high
degree of automation. This is a challenging endeavor
as the diversification of hardware platforms steadily
increases and analyzing program code asks for high
analysis efforts. In order to propagate energy-aware
programming we propose SEEP, a proactive approach
to address these challenges. By applying the SEEP
approach, we currently increase the energy-efficiency
of the Sloth operating system [4] used in the research
project BATS which is founded by the German Re-
search Foundation (DFG-Forschergruppe 1508).

References
[1] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-

Preikschat. SEEP: Exploiting symbolic execution for en-
ergy-aware programming. In Proc. of the 4th Workshop on
Power-Aware Computing and Systems, pages 17–22, 2011.

[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In Proc. of the 8th Symp. on Operating
Systems Design and Implementation, pages 209–224, 2008.

[3] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. Cor-
ner, and E. Berger. Eon: A language and runtime system
for perpetual systems. In Proc. of the 5th Intl. Conf. on
Embedded Networked Sensor Systems, pages 161–174, 2007.

[4] W. Hofer, D. Lohmann, F. Scheler, and W. Schröder-
Preikschat. Sloth: Threads as interrupts. In Proc. of the
30th Real-Time Systems Symp., pages 204–213, 2009.

10

Towards Predictive Self-optimization by
Situation Recognition

Sebastian Götz, René Schöne, Claas Wilke, Julian Mendez and Uwe Aßmann

Fakultät Informatik, Technische Universität Dresden
sebastian.goetz@acm.org, s3970849@mail.zih.tu-dresden.de,
{claas.wilke, julian.mendez, uwe.assmann}@tu-dresden.de

Abstract: Energy efficiency of software is an increas-
ingly important topic. To achieve energy efficiency, a
system should automatically optimize itself to provide
the best possible utility to the user for the least possi-
ble cost in terms of energy consumption. To reach this
goal, the system has to continuously decide whether
and how to adapt itself, which takes time and con-
sumes energy by itself. During this time, the system
could be in an inefficient state and waste energy. We
envision the application of predictive situation recog-
nition to initiate decision making before it is actually
needed. Thus, the time of the system being in an in-
efficient state is reduced, leading to a more energy-
efficient reconfiguration.

1 Introduction
Various approaches to self-optimizing software systems
have been proposed in literature [GWCA12, CC05]. The
basic principle of a feedback loop is common to all ap-
proaches. This loop comprises four steps: (1) the sys-
tem continuously monitors itself and its environment, (2)
it analyzes the collected data and (3) decides for or against
as well as (4) performs reconfiguration. These four steps
(monitor, analyze, plan/decide, act) have been introduced
in literature by Oreizy et al. [OGT+99]. In our previous
work [GWS+10, GWCA12], we proposed a reification of
this feedback loop for energy efficiency.

For example, an audio processing system that improves
the quality of audio files (e.g., noise reduction, loudness
normalization, etc.) for multiple concurrent users can
make good use of self-optimization in terms of energy ef-
ficiency. One strategy to save energy is to automatically
choose the best server to process a user request based on
the current state of the system. Imagine two servers: one
is very good in terms of energy consumption but provides
poor performance, and the other one is bad in terms of en-
ergy consumption but offers very good performance. Let
us assume that the efficient server is currently fully uti-
lized, whereas the inefficient server is optimally utilized
but is able to process additional requests. If a user sends a
request to process an audio file and agrees with waiting for
the result for some time, a self-optimizing system would
schedule this user request on the efficient server at a later
point in time instead of the apparent choice to process the
file on the currently free, but inefficient server.

The goal of self-optimizing systems is to automatically
reconfigure to the most efficient state possible [ST09a].
Thus, the time of the system being in an inefficient state

Monitor Analyze Plan Execute

Situation

Detected

Stable

System

time of system in inefficient state

tmon tanalyze tplan texec

Figure 1: Time Behavior of Feedback Loop

should be as short as possible. Figure 1 depicts the four
steps of the feedback loop and highlights the actual prob-
lem: the first two steps are continuously performed un-
til a situation, which requires reconfiguration is detected.
Whenever such a situation is detected, the last two steps
are performed. For the time of these two steps the system
is in an inefficient state. If the system aims at optimizing
energy efficiency, the time of being in an inefficient state
conforms to wasted energy. A peculiarity in this regard is
the question when the plan/decide step is performed. In our
previous work [GWCA12], this step is performed when a
user invokes functionality of the system. That is whenever
a user interacts with the system, the optimal configuration
is computed and the system gets adjusted accordingly. The
approach of Chang and Collet [CC05] initiates the deci-
sion step whenever a condition, specified at design time,
is sensed to be violated. The problem of both approaches
is that they initiate the time-consuming decision step at a
point in time, when an immediate reconfiguration is re-
quired. That is the system will be in an inefficient config-
uration for the time of decision making as well as the time
required to reconfigure the system.

Thus, an intelligent approach to decision making should
be performed before the system gets into an inefficient
state. This requires a classification of situations which de-
mand for system reconfiguration, as it allows for the appli-
cation of situation recognition to proactively detect the im-
minent demand for the decision step [End00]. Thereby, the
time between the actual occurrence of a situation and when
reconfiguration starts can, in the best case, be decreased
by the time required for the decision step. In consequence,
the time spans of the system being in an inefficient state
are reduced.

Our envisioned solution uses predictive situation recog-
nition [End00] based on description logic reasoning. For

11

this purpose we developed an automatic translation of soft-
ware engineering artifacts (models, code, etc.) to the web
ontology language (OWL) called OWLizer1. Keeping an
ontology synchronous to the running software system al-
lows the reasoner to recognize predefined situations and,
by investigating the history stored in the ontology, allows
for the prediction of imminent situations.

2 Envisioned Approach
As a basis for our approach to self-optimizing
software system, we follow the models@run.time
paradigm [MBJ+09]. The system is developed in a
model-driven manner and a special model is kept syn-
chronous to the runtime state of the system. This model
is used to reason about the system. A peculiarity of our
approach is the application of non-functional contracts
to specify how implementations of software components
behave. These contracts specify and qualify the depen-
dencies between software components and hardware
components, which are the direct consumers of energy.

To enable predictive situation recognition, we plan to
synchronize the runtime model of our previous approach
with an ontology using the tool OWLizer. The applica-
bility of this synchronization has been shown in [Sch12].
The applicability of description logics for situation recog-
nition has been shown in [ST09b]. Based on this, ontology
situations can be recognized by standard reasoners. As a
prerequisite, the types of situations to be recognized have
to be classified. We identified two major classes of situa-
tions, which subdivide into two minor classes each:

• contract-concerned situations: (1) violation of con-
tract clauses, which have been valid at the last de-
cision made, (2) contract clauses, which have been
invalid at the last decision made, but became valid

• user-concerned situations: (1) system overload, i.e.,
the system cannot serve more users, (2) increas-
ing/decreasing number of concurrent users

Each of these situation types potentially demands for
reconfiguration as they imply the likelihood of the exis-
tence of a better system configuration. For example, imag-
ine a contract clause for an audio normalization algorithm,
which specifies the requirement to have a CPU with less
than 20% load to guarantee a processing time of at most
10% of the time a playback of the audio file would take.
Notably, the processing time impacts energy consumption,
as the longer the algorithm runs, the more energy will be
consumed. The system decides to run this algorithm on a
CPU with 10% load. Later, the load of this CPU increases
to 50% due to some other processes, which are not under
control of the self-optimizing software system. This situ-
ation is a contract clause violation. The guarantee of the
contract (max. processing time) does not hold anymore,
and another system configuration needs to be computed.

1http://st.inf.tu-dresden.de/owlizer

3 Conclusion
In this paper we first motivated the application of self-
optimizing software systems to improve the energy effi-
ciency of software at runtime. Then, we outlined the need
to anticipate decision making in self-optimizing software
systems to reduce their time in inefficient configurations.
This is because the time of the system in an inefficient con-
figuration implies a potential waste of energy. Finally, we
proposed to utilize predictive situation recognition to de-
tect imminent situations, which demand for reconfigura-
tion. Thus, decision making can be anticipated and the
inefficient time of the system can be reduced.

Acknowledgements
This research has been funded within the Collaborative Research Center
912 (HAEC), funded by the German Research Foundation (DFG) and
within the research project ZESSY #080951806, by the European Social
Fund (ESF) and Federal State of Saxony

References
[CC05] H. Chang and P. Collet. Fine-grained contract ne-

gotiation for hierarchical software components. In
31st EUROMICRO Conference on Software Engi-
neering and Advanced Applications, pages 28–35,
2005.

[End00] M. R. Endsley. Theoretical underpinnings of situ-
ation awareness: a critical review. In M. R. Ends-
ley and D. J. Garland, editors, Situation Awareness
Analysis and Measurement, pages 3–32. Lawrence
Erlbaum Associates, Mahwah, NJ, USA, 2000.

[GWCA12] Sebastian Götz, Claas Wilke, Sebastian Cech, and
Uwe Aßmann. Sustainable ICTs and Manage-
ment Systems for Green Computing, chapter Archi-
tecture and Mechanisms for Energy Auto Tuning,
pages 45–73. IGI Global, June 2012.

[GWS+10] Sebastian Götz, Claas Wilke, Matthias Schmidt, Se-
bastian Cech, and Uwe Aßmann. Towards Energy
Auto Tuning. In Proceedings of First Annual In-
ternational Conference on Green Information Tech-
nology (GREEN IT), pages 122–129. GSTF, 2010.

[MBJ+09] Brice Morin, Olivier Barais, Jean-Marc Jezequel,
Franck Fleurey, and Arnor Solberg. Models@
Run.time to Support Dynamic Adaptation. Com-
puter, 42(10):44–51, 2009.

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N.
Taylor, Dennis Heimbigner, Gregory Johnson, Ne-
nad Medvidovic, Alex Quilici, David S. Rosen-
blum, and Alexander L. Wolf. An Architecture-
Based Approach to Self-Adaptive Software. IEEE
Intelligent Systems, 14:54–62, May 1999.

[Sch12] René Schöne. Ontology-based Contract-Checking
for Self-Optimizing Systems. Minor thesis, Tech-
nische Universität Dresden, December 2012.

[ST09a] Mazeiar Salehie and Ladan Tahvildari. Self-
adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst., 4:14:1–
14:42, May 2009.

[ST09b] Thomas Springer and Anni-Yasmin Turhan. Em-
ploying Description Logics in Ambient Intelligence
for Modeling and Reasoning about Complex Situ-
ations. Journal of Ambient Intelligence and Smart
Environments, 1(3):235–259, 2009.

12

Classifying Green Software Engineering - The GREENSOFT Model

Stefan Naumann, Eva Kern
Institute for Software Systems

Environmental Campus Birkenfeld
P.O. Box 1380, D-55761 Birkenfeld

(s.naumann|e.kern)@umwelt-campus.de

Markus Dick
Sustainable Software Blog

http://sustainablesoftware.blogspot.de
sustainablesoftwareblog@gmail.com

Introduction. Up to now several relationships be-
tween Information and Communication Technology
(ICT) and Sustainable Development (SD) are pub-
lished. However, especially in the field of energy aware
or green software there is a lack of detailed descrip-
tions. Since this field is rising, it is useful to formu-
late some definitions and take a look at the life cycle
of software. These classifications can also help to de-
velop a research agenda for energy aware software and
its development.

Green Software and Green Software Engineer-
ing. In many cases, the reason for establishing en-
ergy efficient software and systems is to achieve a
longer battery life or generally to reduce costs. On
top of that, moving to the ecological part of sustain-
ability, there is the potential to decrease energy and
resource consumption by ICT to support a SD. A first
impression on how software influences the life cycle of
the hardware by requiring more and more resources is
given by Hilty. The so called “Software Bloat” denotes
the effect that the availability of more powerful hard-
ware in the near future, relaxes software developers
efforts to produce highly efficient code [Hilty 2008]. A
methodology to measure and incrementally improve
the sustainability of software projects is presented by
[Albertao et al. 2010]. They say it is advisable to
implement sustainable aspects continuously, divided
into the following phases: Assessment Phase, Reflec-
tion Phase, and Goal Improvement Phase. In order
to make the different sustainability issues manageable,
they pointed out properties of a quality model [Alber-
tao et al. 2010]. Based on the life cycle of software,
Taina proposed metrics [Taina 2011] and a method
to calculate the carbon footprint of software [Taina
2010]. To do so, he analyzed the impacts of each soft-
ware development phase for a generic project. The
resulting carbon footprint is mainly influenced by the
development phase, but also by the way how the soft-
ware is delivered and how it will be used by the cus-
tomers. The main problem regarding the calculation
is that detailed data is required, which is often not
available. Summarizing, we have to look after the
(software) product and also after the process which
produces this product. In any case, the impacts on
environment and sustainable development have to be

considered. That leads to the following definition:
“Green and Sustainable Software is software, whose
direct and indirect negative impacts on economy, so-
ciety, human beings, and environment that result from
development, deployment, and usage of the software
are minimal and/or which has a positive effect on
sustainable development” [Dick et al. 2010]. Conse-
quently, Green and Sustainable Software Engineering
should produce Green and Sustainable Software in a
sustainable way.

The Software Life Cycle. Fig. 1 depicts an
overview for the life cycle of software and its rela-
tionship to different levels of effects. It is inspired by
the effect differentiation of [Berkhout et al. 2011] who
distinguish between first order effects (effects result-
ing directly from the product, e.g. energy consump-
tion), second order effects (usage results, e.g. effects
of dematerialization by software), and third order or
rebound effects (e.g. when an energy-efficient prod-
uct leads to more energy consumption in total). In
Fig. 1 we distinguish between the life cycle phases
development, usage, and end of life.

The GREENSOFT Model. To summarize these
different aspects of Green and Sustainable software we
developed the GREENSOFT Model [Naumann et al.
2011]. This is a conceptual reference model for “Green
and Sustainable Software”, which has the objective to
support software developers, administrators, and soft-
ware users in creating, maintaining, and using soft-
ware in a more sustainable way. The model comprises
the shown holistic life cycle model for software prod-
ucts, sustainability criteria and metrics for software
products, procedure models for different stakeholders,
and recommendations for action, as well as tools that
support stakeholders in developing, purchasing, sup-
plying, and using software in a green and sustainable
manner.

Summary and Conclusions. In our paper we de-
scribed a life cycle inspired view for Green Software
and its engineering. At first, we have to distinguish
between the process and the product itself. Regard-
ing the product and following the model, it is nec-
essary to specify metrics and measurements and clar-

13

Figure 1: Software Life Cycle and Effects of different Phases (www.green-software-engineering.de/images/
downloads/green_and_sustainable_software_product_life_cycle_96dpi_web.png), Accessed 30 March
2013

ify, how software products can be compared regarding
their energy consumption. Here, it is necessary to de-
fine usage scenarios especially for standard software in
order to compare different products. Another possi-
bilty is to compare the energy consumption of different
versions or releases. Here, an integration of measur-
ing energy consumption into the continous integration
process might be useful. Regarding the process, ad-
ditional aspects of the sustainability of software pro-
duction should be taken into account. Here, aspects
like heating, greenhouse gas footprint or energy con-
sumption have to be considered.

References

1. Albertao, F., Xiao, J., Tian, C., Lu, Y., Zhang,
K. Q., and Liu, C. 2010. Measuring the Sus-
tainability Performance of Software Projects. In
2010 IEEE 7th International Conference on e-
Business Engineering (ICEBE 2010), Shanghai,
China, 369-373.

2. Berkhout, F. and Hertin, J. 2001. Impacts of In-
formation and Communication Technologies on
Environmental Sustainability: speculations and
evidence. Report to the OECD. http://www.

oecd.org/dataoecd/4/6/1897156.pdf. Ac-
cessed 30 March 2013.

3. Dick, M., Naumann, S., and Kuhn, N. 2010. A
Model and Selected Instances of Green and Sus-
tainable Software. In What Kind of Information
Society? Governance, Virtuality, Surveillance,
Sustainability, Resilience. IFIP Advances in In-
formation and Communication Technology 328.
Springer, Berlin, Heidelberg, 248-259.

4. Hilty, L. M. 2008. Information technology and
sustainability. Essays on the relationship be-
tween ICT and sustainable development. Books
on Demand, Norderstedt.

5. Naumann, S., Dick, M., Kern, E., and Johann,
T. 2011. The GREENSOFT Model: A Refer-
ence Model for Green and Sustainable Software
and its Engineering. SUSCOM 1, 4, 294-304.
doi:10.1016/j.suscom.2011.06.004

6. Taina, J. 2010. How Green Is Your Software?
Software Business. First International Confer-
ence, ICSOB 2010, Jyväskylä, Finland, June 21-
23, 2010. Proceedings. Lecture Notes in Business
Information Processing 51, 151-162.

7. Taina, J. 2011. Good, Bad, and Beautiful Soft-
ware - In Search of Green Software Quality Fac-
tors. CEPIS UPGRADE XII, 4, 22-27.

14

PUE for end users - Are you interested in more
than bread toasting?

Kay Grosskop
Software Improvement Group, Amsterdam, The Netherlands

Email: k.grosskop@sig.eu

Abstract—The Power Usage Effectiveness (PUE) indicator for
efficiency of data center infrastructure has been very successful.
But focusing solely on PUE tends to restrict action to data center
infrastructure management and in some situations even gives a
perverse stimulus against optimization at the IT equipment and
software levels. Despite the high relevance, no accepted metric
has emerged to support optimization and allow the rating of the
energy efficiency of the whole stack.

This paper presents a metric, the Consumption Near Sweet-
spot (CNS), that for a part can fill this gap. It captures how well
the system-relative energy efficiency optimum and its utilization
are aligned. A strong point is, that it allows a comparison of
functionally very different services. The metric is compared to
the Fixed to Variable Energy Ratio (FVER) metric for data centers
recently proposed by the British Computer Society.

I. INTRODUCTION

The PUE is probably the single best known energy effi-
ciency metric for computing infrastructure in use today. The
PUE metric makes inefficiencies at the data center infras-
tructure level visible and allows decision makers to express
requirement and achieved improvements with a conceptually
simple, widely understood indicator.

But as the popularity of the PUE metric as a steering
instrument has grown also its limitations have become more
important. First, since it has not been designed to support
end-to-end optimization of the whole computing stack, it
cannot serve as an instrument to optimize the IT hardware and
software that constitute the other main layers in a data center
computing infrastructure (Figure 1). Even worse, infrastructure
efficiency is typically higher if the data center runs at full
capacity and hence optimizing solely for PUE values may
result in a perverse stimulus to keep consumption of the IT
as high as possible. Second, it does not relate the consumed
energy to any useful work done in the data center. As far as
concerned to the PUE, you could also operate bread toasters
instead of doing any useful computation and still obtain a
good efficiency rating. But the energy efficiency of an IT
service should be expressed in terms of how much energy
is used for a certain task that has some value for an end user
like for example streaming a video or completing a monetary
transaction.

Since IT equipment and Software are both interesting vec-
tors of optimization it would be very useful to provide decision
makers with an equally clear and widely applicable metric as
PUE that targets the efficiency of the whole stack. However,
two challenges to do so have proven to be hard to overcome:

System'&'Applica/on'So2ware'

IT'Hardware'

Data'Center'Infrastructure'

Electricity'from'Grid'

IT'Services'to'End'Users'

PU
E'

En
d–

to
Ce
nd

'

Fig. 1. The PUE indicator as part of an end-to-end service efficiency

1) Finding a unifying, yet meaningful unit of ’tasks ac-
complished’ for functionally different applications that
would allow comparison of different systems as opposed
to tracking a system’s energy efficiency relative to itself.

2) Defining some absolute (theoretical) optimum for the
energy efficiency of a system in a similar way as it exists
for the PUE, where 1 is the best possible value.

The approaches discussed in this article try to avoid these
challenges. They use a system-relative definition of unit of
work and reject the idea that a generic, normalizing unit is
necessary in order to establish a useful end-to-end metric
for efficiency. Moreover, instead of relating system efficiency
to some absolute optimum they attempt to measure known
sources of inefficiency. A well known source of inefficiency is
the inability of systems to scale with load. Barroso and Hölzle
have coined the term energy proportionality [1] to point out
that efficient systems and components should be able to scale
energy consumption according to the amount of work done and
when idle (unutilized) they should not consume any energy
at all. This is an important property to have, since many real
systems are actually underutilized most of the time, are unable
to scale down their power needs and hence operate generally
in a very inefficient mode. (Figure 2)

Yet, many of today’s most efficient systems are far from
energy-proportional but instead are optimized by shaping the
workload in a way that the system utilization is constantly
high. Our metric is designed to acknowledge this fact and to
support two different strategies for optimization:

1) Strive for energy proportionality.
2) Raise system utilization in order to let the system operate

in an efficient load region.
The second strategy would for example use workload place-

ment and performance tuning. The first will often boil down
to reducing energy consumption for an idle or underutilized
system.

15

En
er
gy
'

Load'
Effi

ci
en

cy
'

Load'

Propor%onal)system) typical)system)

Fig. 2. Energy consumption per load level for a typical and an ideal energy-
proportional system (left) and the resulting efficiency curves (right)

II. CNS

The basic idea behind our new metric can be summarized as
follows. The efficiency of a system or service can be expressed
by the amount of energy it takes to deliver some unit of work.
This efficiency will vary over time depending on the load level,
that is, the amount of work the system has to do at a given
moment. But there will be a maximum efficiency for some
system among all different load levels. This is the system-
relative optimum: its sweet spot. It may be possible that this
is still far from what is theoretically possible, but we know at
least that the system can reach this efficiency in practice. A
system is overall efficient if it operates most of the time close
to its sweet spot.

The consumption near sweet spot (CNS) is computed as
the ratio between the system’s average consumption and its
optimal consumption per unit of work. This is expressed in
the following equation:

CNS =
EU S

EU avg
(1)

Where EU is the energy consumed to deliver a single unit
of work, i.e. the system’s efficiency during a certain period.
EU avg is the average efficiency over an extended, representa-
tive period (e.g. a week, a month, or a year) and EU S is the
efficiency at the sweet spot, measured in a small time window
when the system performs at its highest efficiency.

Since optimal consumption is always smaller than or equal
to average consumption, the CNS can theoretically range
between 100% (average consumption coincides with the opti-
mum) and 0% (optimal consumption is negligible with respect
to average consumption).

The metric has several strengths: It covers both of the
aforementioned optimization strategies. It actually stimulates
moving top efficiency and typical load regions towards each
other.

Moreover it is an indicator that allows direct comparison
between services. Both the type and volume of the unit of
work have been fully factored out.

III. COMPARISON WITH FVER

The Data Centre Specialist Group of the British Computer
Society has proposed FVER the Fixed to Variable Energy
Ratio [2], a very similar metric to CNS although there are
some important differences.

The reasoning behind FVER is that an optimal energy
efficient system should behave energy-proportional. Hence the
higher the variation in energy consumption at different load
levels (typically between idle and max load) the more efficient
it is. Energy consumption that does not vary with load (the
fixed part) is suspect for being wasted.

The efficiency is expressed as a ratio between the fixed and
the variable part of consumption.

FVER =
EU fixed

EU variable
(2)

Where EU fixed is the consumption when idle and EU variable

is the difference between this idle baseline and the maximum
energy consumption per unit of work. (The original formula
is slightly simplified here for the sake of the discussion. Note
also, that in contrast to the CNS, FVER is formulated in a
way that a smaller value represents a more efficient system)

Like CNS, FVER allows for comparison of different sys-
tems by abstracting over the specific workload of a given
system. It captures the concept of end-to-end energy-efficiency
of a system in terms of useful work delivered to the end user.

But it has a serious shortcoming because it only takes into
account the scaling behavior of the system and not the usage
profile. The FVER value will not change whether I operate
a system most of the time at high utilization or whether it
is mostly in low utilization (and probably inefficient) mode.
As such it rewards only the first of the optimization strate-
gies mentioned in the introduction and many highly efficient
systems will score low.

In contrast, CNS quantifies the extent to which the energy
scaling behavior of a system matches the variability in its
workload. For systems with very constant, high workload,
limited scalability can already result in good CNS values. But
systems that have strong fluctuations in workloads a high CNS
can only be obtained with flexible scaling behavior.

IV. FUTURE WORK

We already applied the CNS metric in assessments of two
industry systems. By collecting a larger number of energy
profiles and CNS metrics for services across functional
domains and with a wide range of workload profiles and
technology footprints, we want not only get more experience
in application, but also build up a register of multiple
systems that will list the CNS together with two other energy
efficiency indicators: the average energy consumption per unit
of work and the total energy footprint of a service or system.

The CNS metric was developed together with Dirk Harryvan
(Mansystems) and Jeroen Arnoldus and Joost Visser (SIG).

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The case for energy-proportional comput-
ing,” IEEE Computer, vol. 40, no. 12, pp. 33–37, 2007.

[2] L. Newcombe, Z. Limbuwala, P. Latham, and V. Smith,
“Data centre fixed to variable energy ratio met-
ric (dc-fver),” 2012. [Online]. Available: http://dcsg.bcs.org/
groundbreaking-white-paper-new-dc-metric-available-review

16

An Energy Abstraction Layer for Mobile Computing Devices

Mirco Josefiok
OFFIS e.V., Oldenburg
mirco.josefiok@offis.de

Marcel Schröder Andreas Winter
Carl von Ossietzky Universität, Oldenburg

marcel.s@gmx.de winter@se.uni-oldenburg.de

Abstract
Since the growing popularity of smartphones and

tablet devices, energy-efficiency in mobile computing
is an increasingly interesting topic. But in case of
software development engineering energy-efficiency is
widely neglected, even clear and simply applicable
means to measure and visualize energy consumption
caused by software usage is still in its infancy. This
work provides basic research in the field of measur-
ing energy and power related information on mobile
computing devices and proposes an abstract specifica-
tion for implementing a measurement infrastructure
on different mobile computing devices.

1 Motivation
In Germany every year more then 600 Mrd. kWh of

electrical energy are consumed1. From this, more than
10% are accounted for information and communica-
tion technology [11]. Here, Energy consumption of
mobile devices counts for ca. 11.6% [10], which results
in half of the capacity of Germanys2 most powerful nu-
clear power plant ISAR 2. Following the idea, that the
mobile calculating power increases in the same speed,
as in the past years, there is an optimization potential
of about 20% to 40% of the ICT related power con-
sumption if a holistic approach for optimizing every
connected part can be found [6]. Even more, reducing
energy consumption of mobil devices will also increase
the lifetime of batteries due to fewer required charge
cycles. But, in case of software development and engi-
neering, improving energy-efficiency of mobile devices
is widely neglected [3].

There exists many chances for optimizing energy
consumption on mobile computing devices. This can
be archived on different levels, ranging from hard-
ware, operating system, and machine code to ap-
plication level [4]. Low-level software optimization
and improving machine code are adequately studied
[8]. Optimizing energy consumption from a software
point of view may vary from using alternative algo-
rithms, resource substitution, applying compression
techniques purposefully, using user profiles for en-
ergy efficient process scheduling, applying alternative
hard/software-sensors, identifying and eliminating en-
ergy code smells etc. [1].

Validating these approaches and showing their con-

1http://www.ag-energiebilanzen.de/componenten/

download.php?filedata=1326461230.pdf&filename=

BRD_Stromerzeugung1990-2011%2020Dez2011&mimetype=

application/pdf
2http://www.kernenergie.de/kernenergie/themen/

kernkraftwerke/kernkraftwerke-in-deutschland.php

tribution on saving energy requires sufficiently grained
measurement techniques. Offline measurement, by us-
ing external measurement devices, is not always pos-
sible, since this requires breaking mobile devices. On-
line measurement, by using software means provided
by the operation system, often does not furnish suffi-
cient precision and relies on certain details of the op-
erating system capabilities. This work aims at provid-
ing an Energy Abstraction Layers (EAL) in the field
of mobile computing. For this purpose the EAL will
abstract measurement capabilities and provide uni-
fied access to them independently from the device it
is used on.

2 Requirements for an EAL
In this section the requirements for an abstract

measurement specification will be described. Func-
tional requirements resemble the intended function-
ality of the the EAL in an implemented form on a
concrete platform. The following (most central) func-
tional and non-functional requirements have been con-
ducted [5]:
The EAL must provide power and energy measure-
ment functionality. Per device and platform exists
various ways of gathering energy and power related in-
formation (e.g. battery capacity, electricity and power
consumption etc.). Access of those information is even
restricted to certain access levels or only available an
some devices.
The EAL must provide measurement functionality
for estimating the runtime of each hardware com-
ponent. Different hardware components in different
states of operation require different energy consump-
tion. Knowing their runtime, and combining these
data with appropriate energy consumption models
leads to meaningful information on hardware related
energy consumption.
The EAL has to respect and report accuracy. Different
measurement techniques result in different accuracy.
It is the desired to know the accuracy of a measure-
ment method [12].
The EAL should provide measurement capabilities per
application and component. This would be especially
helpful for finding energy wasting code patterns in
applications [2].
The EAL should provide suitable error handling. As
not every device and platform supports every mea-
surement method, the EAL should report, if certain
measurement capabilities are not present.
The EAL must be platform independent. For mobile
devices, there exist at least two major platforms (An-
droid, iOS) which have to be treated analogously.

17

Figure 1: Energy consumption measured with three dif-
ferent methods on a HTC One X.

The EAL must be in device independent. Different de-
vices offer different possibilities for measuring power
consumption. Furthermore, energy efficiency of appli-
cations also depends on used hardware components.
The EAL should not rely on hardware measurement
procedure. Measuring energy consumption my rely on
various online techniques (cf. [7]).

3 Implementation
Most of the demanded requirements of the EAL

were implemented in a prototype to measure the en-
ergy consumption on Android devices [9]. Measuring
energy consumption requires to access voltage and the
discharging current. While the voltage could be easily
read by Android API methods, the discharging cur-
rent is more complicated to access. The current EAL
implementation provides three different techniques to
estimate the discharging current. Figure 1 shows the
energy consumption measured by these online tech-
niques for running a simple GPS application.

The first and simplest technique is Delta-B mea-
suring. Delta-B compares the changes of the bat-
tery charge level in relation to the battery capac-
ity. All needed values are derived by using the
BatteryManager class of Android API which is avail-
able since API level 5. Since this method is based on
the battery charge level, Delta-B only provides 100
real measurement values, which finally only approxi-
mates for a realistic trend.

The second method reads the discharging current
from the file system (File). Providing these files re-
lies on the devices vendors, so these undocumented
system files are not available on every device and up-
dated in different time intervals . On a HTC One X
the discharging current was updated every 60 seconds
which is more accurate then the Delta-B method.

The third technique relies on energy profiles
(Model) provided by the devices vendor. The aver-
age power consumption of different hardware compo-
nents, like display in different brightness levels, en-
abled states for GPS, Bluetooth, CPU speed etc. are
made available in an XML-file of the Android device.
Android internally collects the up-time of these hard-
ware components. A hidden part of the Android API
provides methods to access these data. Comparing
data measured at different times allows to calculate
the enabled time and the related energy consumption
in a millisecond resolution for many hardware compo-
nents. This technique strongly depends on the qual-
ity of the provided energy model. Using this model

based technique also allows to calculate the distribu-
tion of energy consumption related to different hard-
ware components.

4 Summary
This paper shortly introduced the need for a stan-

dardized technique for measuring the energy con-
sumption of apps running on mobile devices. Based
on a set of requirements, an implementation of such
an API was presented, which provides three different
measurement techniques resulting in different accu-
racy. This API was already applied in [2] so show
a trend of effectivity for energy smell refactorings.
But further experiments on applying these techniques
to measure energy consumption are required to show
their reliability and to validate their benefit.

References

[1] C. Bunse, S. Naumann, A. Winter. Entwicklung und Klas-
sifikation energiebewusster und energieeffizienter Software.
In J. Marx Gómez, C. V. Lang, V. Wohlgemuth, (eds.),
IT-gestütztes Ressourcen- und Energiemanagement, Kon-
ferenz zu den 5. BUIS-Tagen, to appear. Springer, 2013.

[2] M. Gottschalk, M. Josefiok, J. Jelschen, A. Winter. Re-
moving Energy Code Smells with Reengineering Services.
In U. Goltz et al. (eds.) 42. Jahrestagung der Gesellschaft
für Informatik e.V. LNI 208, pp. 441-455, 2012.

[3] H. Höpfner and C. Bunse. Energy Awareness Needs a Re-
thinking in Software Development. In ICSOFT 2011 -
Proceedings of the 6th International Conference on Soft-
ware and Data Technologies, Seville, Spain, 2011.

[4] J. Jelschen, M. Gottschalk, M. Josefiok, C. Pitu, and
A. Winter. Towards Applying Reengineering Services to
Energy-Efficient Applications. In R. Ferenc, T. Mens, and
A. Cleve (eds.), Proceedings of the 16th Conference on
Software Maintenance and Reengineering, 2012.

[5] M. Josefiok. An Energy Abstraction Layer for mobile com-
puting Devices. Masterthesis, University Oldenburg, 2012.

[6] W. Nebel, M. Hoyer, K. Schröder, D. Schlitt. Unter-
suchung des Potentials von rechenzentrenübergreifendem
Lastmanagement zur Reduzierung des Energieverbrauchs
in der IKT, 2009.

[7] A. Pathak, Y. C. Hu, and M. Zhang. Where is the Energy
spent inside my App?: Fine grained Energy accounting on
Smartphones with Eprof. In EuroSys ’12: Proceedings of
the 7th ACM european conference on Computer Systems,
pp 1–14. ACM, April 2012.

[8] K. Roy, M. C. Johnson. Software Design for low Power. In
W. Nebel, J. P. Mermet (eds.), Low power design in deep
submicron electronics, pp 433–460. Springer, Berlin, 1997.

[9] M. Schröder. Erfassung des Energieverbrauchs von An-
droid Apps. Diplomathesis, University Oldenburg, 2013.

[10] L. Stobbe. Stromverbrauch von Informations- und Kom-
munikationstechnik in Deutschland. Technical Report
BMWi, November 2008.

[11] L. Stobbe, N. F. Nissen, M. Proske, A. Middendorf, B.
Schlomann, M. Friedewald, P. Georgieff, T. Leimbach. Ab-
schätzung des Energiebedarfs der weiteren Entwicklung
der Informationsgesellschaft Abschlussbericht an das Bun-
desministerium für Wirtschaft und Technologie. Technical
report, Fraunhofer-Institut für System- und Innovations-
forschung, 2009.

[12] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z.
Wang, and L. Yang. Accurate online Power estimation and
automatic Battery Behavior based Power Model genera-
tion for Smartphones. In IEEE/ACM/IFIP International
Conference on Hardware/Software Codedesign and Sys-
tem Synthesis (CODES+ISSS), pp 105–114. ACM, 2010.

18

Towards Network-Wide Energy Estimation for
Adaptive Embedded Systems

Patrick Heinrich
Fraunhofer Institute for Communication Systems ESK,

Munich, Germany
firstname.lastname@esk.fraunhofer.de

Abstract—This paper discusses the next steps towards how sys-
tem developers can easily and accurately evaluate the impact of
their system design choices on energy consumption during the
early stages of the design process. To do this, energy estimations
in every phase of system development are necessary. Our re-
search focuses on adaptive systems, where applications are acti-
vated according to the actual need.
In this paper we present an approach which derives the energy
consumption per application using a combination of energy-
relevant software and hardware parameters. The aim is to create
energy building blocks for applications to estimate the energy
consumption of a system with multiple applications running on it.
This approach utilizes the high environmental interaction of
embedded systems where sensors and actors consume more ener-
gy than CPUs. The granularity of the energy estimation is the
application level, due to focusing on adaptive systems.

Keywords - embedded systems, energy-efficiency, network-wide
optimization, adaptive systems, automotive

I. INTRODUCTION
This paper focuses on estimating energy consumption in

adaptive networked embedded systems during the early stages
of design. As embedded systems become more prevalent and
powerful, they are consuming more energy. Our research con-
centrates on the area of networked embedded systems com-
monly found in automobiles, aircraft and industrial systems. To
save resources, these systems will be designed more adaptive
in future. These systems activate their applications only when
they are required. In today's luxury-class vehicles for instance,
the electrical and electronic components draw up to 2.5 kW
([1], [2]). An increase of 100 W thus means that fuel consump-
tion rises by 0.1 liter per 100 km, leading to an increase in CO2
emissions of 2.5 g per km [2]. This illustrates the considerable
potential for energy savings, an aspect that must be factored in
during the development process.

Embedded systems designers, such as those active in the
automotive industry, are frequently given energy consumption
requirements for the finished product. Because the automotive
industry has especially long development cycles, hardware and
software design choices must be made very early during the
development process [3]. This makes it necessary to estimate
the energy consumption early in the design process. Networked
systems feature a wide range of technologies and topologies
that significantly impact energy consumption down the road.
For instance, the placement of functionality within an ECU
impacts partial networking modes, which involves deactivating
certain system components that are not being used. It was
shown that partial networking can reduce energy consumption
by as much as 30 percent [2].

Figure 1, which depicts the various phases of a typical sys-
tem development process, reveals exemplarily that the energy
savings potential gradually decreases over the course of devel-
opment. Energy savings estimates are also imprecise, as shown
by the dotted line.

Fig. 1: Energy Design Space during System Development [4]

A structure to estimate the energy consumption of a system
throughout the entire system design process is already present-
ed in [4]. Here models for estimating the energy consumption
at the different phases of development are presented which use
the available system information at the particular phase.

The aim of this paper is to show the next steps towards how
system developers can easily and accurately evaluate the im-
pact of their design choices on energy consumption during the
early stages of the design process. To do this, accurate energy
estimations at every phase of system development are neces-
sary. In this paper we present an approach which derives the
energy consumption per application using a combination of
energy-relevant software and hardware parameters. The aim is
to create an energy building block per application to estimate
the energy consumption of a system with multiple applications
running on it.

II. ADAPTIVE NETWORKED EMBEDDED SYSTEMS
In this section, the system characteristics of adaptive net-

worked embedded systems and the resulting challenges for
estimating energy consumption are discussed.

Adaptive: Within systems such as automobiles and the con-
text of energy saving, adaptiveness means the activation and
deactivation of applications according to the current need of
functionality. At the moment most automobiles support only
two systems states, i.e. all on and all off, which does not utilize

19

the existing energy saving potentials. Future systems will have
a lot more system states, because not all functionalities are
necessary at every point during operation. These systems will
switch their system states caused by external conditions and
will be able to save energy by deactivating unused components.
However, planning a lot of system states is challenging and it is
unresolved how many system states optimize the energy con-
sumption of a system [5], because also changes between sys-
tem states consumes energy.

Networked: A networked embedded system consists of a
number of components which communicate with each other.
These components are independent processing units commonly
known as Electronic Control Units (ECUs) within the automo-
bile industry. Tasks executed on ECU depend on each other
and form together applications which are visible for the user.
Estimating energy consumption of networked embedded sys-
tems, for example, includes the energy demand of network
communication. In addition to that, energy saving is commonly
largest by deactivating whole ECUs. This is attributable to the
fact that energy consumption of peripherals, memory and other
parts are often not scalable – contrary to CPUs [6].

Embedded: Embedded systems are characterized by a larger
amount of non-functional requirements compared to other
systems such as personal computers. These limitations are for
example limited resources (energy, memory, etc.) or strict time
limits for the execution of tasks (deadlines). The need to design
energy efficient systems makes it necessary to estimate the
energy consumption as early as possible in the design process.
Embedded systems are also characterized by a high degree of
interaction with the environment using sensors and actors.
Normally almost every application within automobiles is inter-
acting with the environment. This results in our approach to
estimate energy consumption, which is presented in the follow-
ing section.

III. AN APPROACH TO ESTIMATE ENERGY CONSUMPTION
DURING SYSTEM DESIGN

In this section, an approach to derive the energy consump-
tion per application using a combination of energy-relevant
software and hardware parameters is presented. The aim is to
create an energy building block per application to estimate the
energy consumption of a system with multiple applications
running on it. This granularity is necessary because adaptive
systems activate individual applications, i.e. tasks on ECUs,
according to the actual need as mentioned in section II.

To realize this, the energy consumers of embedded systems
were analyzed and it was ascertained that the energy consump-
tion of peripherals, such as sensors and actors, is much larger
than the consumption of CPUs. Although CPUs are not the
major consumers of energy, they are nevertheless of great
importance for the energy consumption – and the software
which runs on the CPU respectively. The impact of software
and CPU is the resulting active time of peripherals or the whole
component, because energy is defined by the used electrical
power over a specific time. That means for energy estimation
per application power and time estimations are necessary. We
suggest deriving these information from software and hardware
as outlined below.

Power Consumption: Power consumers within embedded
systems are CPUs, sensors and actors and other hardware mod-
ules. Within embedded systems the major amount of power
consumption is performed by sensors, actors and other applica-
tion-specific hardware – not by the CPU. This results in the

fact that the main part of the energy is consumed by using
peripherals, i.e. when applications are active and use their spe-
cific peripherals. Applications consist of several individual
tasks and the power consumption per task is assumed to be
constant. This mapping of power consumption simplifies the
estimation for adaptive systems, because the power consump-
tion is assignable to a specific task, i.e. application. Through
that the main part of the energy consumption of applications
depends on the active time of the application, i.e. how long an
application uses its peripherals.

Active Time: As discussed above the major power con-
sumption depends on the application-specific hardware which
is used by software running on the CPU. There are two causes
which result the active time of an application. On the one hand
there are functional requirements, for example on and off dura-
tion of indicator lights, and on the other hand the execution
time of a task on a CPU. To estimate task execution times
existing methods such as [7] can be used.

This approach aims energy estimation per application
which can be used to estimate the energy demand of the differ-
ent system states of adaptive embedded systems. Future re-
search evaluates usability and accuracy of this approach and
identifies the relevant software and hardware parameters.

IV. CONCLUSION AND FURTHER STEPS
This paper has discussed an approach which estimates the

energy consumption per application using a combination of
energy-relevant software and hardware parameters. These
parameters are the power consumption of application-specific
hardware and the active times of this hardware resulted by
software running on a CPU. This approach assigns energy
demands to applications and simplifies the energy estimation
for adaptive systems, because such systems activate individual
applications according to the actual need. This assignment is
founded on the reason that peripherals such as sensors and
actors are the main consumer of energy within networked em-
bedded systems.

Our approach allows one to evaluate the impact of the de-
sign choices on energy consumption during early stages of the
design process. This enables the design of adaptive networked
embedded systems which are more energy efficient. Validating
our approach and evaluate the accuracy is necessary and
planned for future work.

REFERENCES
[1] Arthur D. Little, Market and Technology Study Automotive Power

Electronics 2015. Available: http://www.adlittle.com/downloads/
tx_adlreports/ADL_Study_Power_Electronics_2015.pdf.

[2] A. Monetti, T. Otter, and N. Ulshöfer, “Spritverbrauch senken,
Reichweite erhöhen: System-Basis-Chip für den Teilnetzbetrieb am
CAN-Bus,” Elektronik Automotive, no. 11, pp. 24–27, 2011.

[3] J. Weber, Automotive Development Processes: Processes for Successful
Customer Oriented Vehicle Development. Berlin, Heidelberg: Springer-
Verlag Berlin Heidelberg, 2009.

[4] P. Heinrich and C. Prehofer, “Early Energy Estimation in the Design
Process of Networked Embedded Systems,” in Proceedings of the 3rd
International Conference on Pervasive Embedded Computing and
Communication Systems, 2013

[5] P. Heinrich and C. Prehofer, “Network-Wide Energy Optimization for
Adaptive Embedded Systems,” in Proceedings of the 4th Workshop on
Adaptive and Reconfigurable Embedded Systems (APRES 2012), 2012

[6] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for systemwide
energy minimization in real-time embedded systems,” in Proceedings of
the International Symposium on Low Power Electronics and Design
(ISLPED’04), 2004, p. 78.

[7] P. González, P. P. Sánchez and L. Diaz, “Embedded software execution
time estimation at different abstraction levels,” in Proceedings of the
 XXV Conference on Design of Circuits and Integrated Systems, 2010

20

Evaluation of Embedded System Energy Usage
with Extended UML Models

Dmitriy Shorin and Armin Zimmermann
Ilmenau University of Technology
System & Software Engineering

P.O. Box 100 565, D-98684 Ilmenau, Germany
Dmitriy.Shorin@tu-ilmenau.de; Armin.Zimmermann@tu-ilmenau.de

Abstract—Energy consumption as an increasingly
important decision criterion has to be included in the
search for good architectural and design alternatives
to make an embedded system as energy-efficient as
possible. The proposed method describes a system
with dedicated extended UML models for applica-
tions and hardware components and evaluates the
energy use via a transformation into an analyzable
stochastic Petri net.

I. Introduction

Energy-efficiency is a so-called non-functional pro-
perty which is of great importance in the current discus-
sion about resource efficiency. While some components in
the industry such as microcontrollers are already being
developed with low power consumption, we should draw
attention to the fact that an energy-efficient automation
system as a whole includes several other components
such as a controlled system and a digital control software
(on which we concentrate our work for now). There is
currently a lack of modeling and estimation procedures
which could be applied already in the early design phases
for energy consumption observation.

There are different levels of abstraction on which em-
bedded systems can be evaluated for this task [1]. While
there are some methods for the quite exact computation
of energy consumption, they all require very detailed
knowledge of the system under design. The description
has to be on a very low level, which is available only in
the later phases of the design process.

II. Method description

We propose a modeling and estimation procedure
for early design phases, in which major architectural
decisions are made, to consider energy consumption.
The Unified Modeling Language (UML) [2] is an in-
dustry standard for the description of software systems.
However, it is not intended to describe system prop-
erties equally well as there are no constructs for non-
functional properties. Domain profiles of the UML have

The authors would like to thank the Thuringian Ministry of Edu-
cation, Science and Culture and the German Academic Exchange
Service (DAAD) for the financial support of the project.

been developed for this task, namely, the MARTE Profile
(Modeling and Analysis of Real-Time and Embedded
Systems) [3] as a successor of the UML Profile for
Schedulability, Performance and Time (SPT). With its
help, non-functional properties like machine utilization,
failures, temporal relations etc. can be described. The
profile was developed especially for embedded systems
and, hence, is suitable for our purposes better than the
standard UML alone. In this work, we use state machines
to describe the system behavior.

UML models adopting the MARTE profile contain
the necessary information for energy consumption esti-
mation. However, they are not usable for a numerical
estimation directly, as UML models are not semantically
well-defined for a specification of the resulting stochastic
process. There is a lack of analysis algorithms. For
this work, we propose extended UML models to be
transformed into models for which analysis algorithms
already exist, so that the behavior and the properties
are preserved. Stochastic Petri nets (SPN) [4] are used
for this purpose, as they are well adapted for concurrent
and synchronized systems and powerful performance
evaluation algorithms. This is an extension of an earlier
work, in which extended UML statechart models were
transformed into uncolored SPNs and analyzed [5]. A
similar approach is taken in [6], where the work men-
tioned is applied to energy consumption evaluation in a
different way.

In the proposed procedure, we explicitly address the
hardware part of the system, which will be the same for
all applications. It is described in an operational model
and specifies all run modes of a processor (microcon-
troller), the possible state changes, and their associated
power consumption (as well as transition times, if appli-
cable) (Fig. 1 left top). This information can be taken
from data sheets and measurements, and the model has
to be constructed only once for a specific CPU.

On the other hand, the effect of the controlling soft-
ware is captured in an application model. It describes
which steps are taken and what time is spent in which
mode and may include stochastic behavior (interrupts,
for instance). Thus, it contains information about the

21

Figure 1: Operational and application UML models and their transformation into a Petri net

operational states used in the specified program and
their duration (Fig. 1 left bottom).

Two created UML state machines are combined and
converted into a Petri net. The application model is
taken as the basic one for this operation. The missing
information (missing states, power, duration) is taken
from the general operational model. In [7], we presented
a detailed example of the method implementation. The
procedure overview is presented in Fig. 1. The resulting
model can then be used to estimate the power consump-
tion of the system with the help of Petri net tools such
as TimeNET [4]. The calculation of the power occurs
automatically in the course of the static analysis of the
Petri net.

III. Conclusion

This paper presented a methodology for the model-
based estimation of energy consumption for embedded
systems. The UML language extended with the MARTE
profile is used for the modeling process. The main con-
tribution is to describe the overall processor behavior
with an independent general operational model, while
the software applications are specified in the applica-
tion model referencing the first one. The two models
are converted into a SPN, which is then used for a
performance evaluation. Thus, the design process for
embedded systems can be supported by predicting the
energy consumption. Currently, the automatic transfor-
mation of extended UML statecharts into SPNs is being

implemented as an extension of TimeNET. Besides,
actual lab setups are used to apply and validate the
proposed method.

References

[1] C. Talarico, J. Rozenblit, V. Malhotra, and A. Stritter,
“A New Framework for Power Estimation of Embedded
Systems,” Computer, vol. 38, pp. 71–78, Feb. 2005.

[2] Object Management Group (OMG). (2011, Aug.) OMG
Unified Modeling Language (OMG UML), Infrastructure,
Version 2.4.1.

[3] ——. (2011, Jun.) UML Profile for MARTE: Modeling
and Analysis of Real-Time Embedded Systems, Vers. 1.1.

[4] A. Zimmermann, Stochastic Discrete Event Systems -
Modeling, Evaluation, Applications. Springer, Oct. 2007.

[5] J. Trowitzsch, “Quantitative Evaluation of UML State
Machines Using Stochastic Petri Nets,” Ph.D. disserta-
tion, TU Berlin, Oct. 2007.

[6] E. Andrade, P. Maciel, T. Falcão, B. Nogueira, C. Araujo,
and G. Callou, “Performance and energy consumption
estimation for commercial off-the-shelf component system
design,” Innovations in Systems and Software Engineer-
ing, vol. 6, no. 1-2, pp. 107–114, 2009.

[7] D. Shorin, A. Zimmermann, and P. Maciel, “Transform-
ing UML State Machines into Stochastic Petri Nets for
Energy Consumption Estimation of Embedded Systems,”
in Second IFIP Conference on Sustainable Internet and
ICT for Sustainability (SustainIT 2012), Oct. 2012.

22

