
Quality Measurement Scenarios in Software Migration

Gaurav Pandey, Jan Jelschen, Dilshodbek Kuryazov, Andreas Winter

Carl von Ossietzky Universität, Oldenburg, Germany

{pandey,jelschen,kuryazov,winter}@se.uni-oldenburg.de

Abstract. Legacy systems are migrated to newer
technology to keep them maintainable and to meet
new requirements. To aid choosing between migra-
tion and redevelopment, a quality prognosis of the
migrated software, compared with the legacy system
is required. Moreover, as the driving forces behind a
migration effort differ, migration tooling has to be tai-
lored according to project-specific needs, to produce
a migration result meeting significant quality criteria.

Available metrics may not all be applicable identi-
cally for both legacy and migrated systems, e.g. be-
cause of paradigm shifts during migration. To this
end, this paper describes identifies three scenarios for
utilizing quality measurement in a migration project.

1 Introduction

Migration, i. e. transferring the legacy systems into
new environments and technologies without changing
their functionality, is a key technique of software evo-
lution [4]. It removes the cost and risk of develop-
ing a new system from scratch and allows to continue
modernization of the system. However, it needs to be
found out whether the conversion leads to a change in
internal software quality. To decide between software
migration and redevelopment, the quality measure-
ment and comparison of legacy and migrated systems
is required. Moreover, a migration project requires an
especially tailored toolchain [3]. To choose the tools to
carry out an automatic migration, assessment of the
quality of migrated code is needed against the combi-
nation of involved tools.

The identification of project-specific quality crite-
ria and corresponding metrics for quality comparison
can be achieved with the advice from project experts.
However in a language based migration, e.g. from
COBOL to Java, there is a shift from procedural to
object-oriented paradigm. This can lead to limiting
the usability of a metric, as its validity and interpre-
tation might not hold in both platforms. For example,
the metrics calculating object-oriented properties like
inheritance or encapsulation, can be used on migrated
Java code but not on COBOL source code. To over-
come this, it is required to have a strategy regarding
utilization and comparison of metrics in migration. To
this end, this paper identifies the quality measurement
scenarios with suitable metrics, enabling the quality
calculation in different situations. The next two sec-
tions explain the Q-MIG project and the measurement
scenarios and are followed by a Conclusion.

2 Q-MIG Project

The Q-MIG-project (Quality-driven software MIGra-
tion)1 is a joint venture of pro et con Innovative In-
formatikanwendungen GmbH, Chemnitz and Carl von
Ossietzky University’s Software Engineering Group.
Q-MIG is aimed at advancing a toolchain for auto-
mated software migration [2]. To aid in deciding for
or against a migration, selecting a migration strategy,
and tailoring the toolchain and individual tools, the
toolchain is to be complemented with a quality control
center measuring, comparing, and predicting internal
quality of software systems under migration.

The project aims at enabling quality-driven de-
cisions on migration strategies and tooling [6]. To
achieve this, the Goal /Question /Metric approach [1]
is used. The goal is to measure and compare the
quality of the software before and after migration,
to enable migration decisions and toolchain selection.
The questions are the quality criteria based on which
the quality assessment and comparison needs to be
carried out. The Q-MIG project considers internal
quality attributes, i. e. focuses on quality criteria
maintainability and transferability in terms of the
ISO quality standard [5]. Moreover, expert advice is
taken for selecting and identifying criteria relevant for
software migrations. For example, maintainability-
related metrics are important in a project that needs
to keep on evolving, but not when the migrated
project is meant to be an interim solution, until a re-
developed system can replace it. Then, to measure the
quality criteria, metrics need to be identified. How-
ever, a metric that is valid for the legacy code might
not be valid for the migrated code and vice versa. In
order to identify the metrics for quality criteria cal-
culation, the metrics are categorized as per the use
case they can be utilized in. To achieve this, scenar-
ios for quality comparison and toolchain component
selection are defined in Section 3.

3 Measurement Scenarios

This section presents the quality measurement sce-
narios that utilize the quality metrics according to
the properties measured and their applicability to the
legacy and migrated platforms. While the first two
scenarios facilitate the quality comparison between

1Q-MIG is funded by Central Innovation Program SME of
the German Federal Ministry of Economics and Technology –
BMWi (KF3182501KM3).

{pandey, jelschen, kuryazov, winter}@se.uni-oldenburg.de


the legacy and the migrated systems, the third sce-
nario is particularly useful for selecting components
of the migration toolchain. While the Q-MIG project
focuses on quality measurement of a COBOL to Java
migration, the essence of the scenarios presented re-
mains the same for other combinations of platforms.

Same Interpretation and Implementation:
This scenario facilitates quality comparison of legacy
code (COBOL) and migrated code (Java) to help in
project planning. It is achieved by utilizing the qual-
ity metrics that are valid and have the same imple-
mentations and interpretations in both platforms, and
hence allowing for direct quality comparison between
the systems. For example, Lines of Code, measur-
ing the size of the project, is calculated identically for
COBOL and Java (In some cases Lines of Code can be
platform specific requiring adaptations like Function
Point Analysis). Similarly Number of GOTOs, Com-
ments Percentage, Cyclomatic Complexity (Mc Cabe
Metric) and Duplicates Percentage can be calculated
for both languages in the same fashion.

Same Interpretation Different Implementa-
tion: In this scenario the metrics that have differ-
ent implementations but same interpretation in legacy
and target code are utilized for quality comparison.
COBOL and Java codes are different in construct and
the building blocks. So, certain metrics can have same
interpretation but different ways of calculation in the
platforms. For example, Cohesion is the degree of in-
dependence between the building blocks of a system.
So, it can be calculated in the COBOL code consid-
ering procedures as building blocks, while in the mi-
grated Java code they can be represented by classes.
The two calculations can provide comparable metrics,
hence enabling quality comparison. Similarly, other
metrics can be utilized for quality comparison, that
might not have exactly the same implementation for
COBOL and Java. Some metrics conforming to this
scenario are: Halstead’s metrics (because it uses oper-
ators and operands, that differ among the languages),
Average Complexity per Unit and Average Unit Size.

Target Specific Metrics: In this scenario, the
metrics that are specific to target platform Java (and
may not be applicable to COBOL legacy code) are
utilized for toolchain selection and improvement. For
example, the metric Depth of Inheritance can be cal-
culated for Java, but not for COBOL (procedural lan-
guages have no inheritance). Also, value of the met-
ric can change on changing components of migration
toolchain or by additional reengineering steps. This
allows to use the metrics to choose a suitable toolchain
by analyzing how the quality of migrated software
changes with respect to the chosen components.

But, in a one-to-one migration from COBOL to
Java that introduces no restructuring, Depth of In-
heritance metric value would not change with respect
to the migration tools. This is because such migra-

tion will not introduce inheritance in the target code.
However, the source code can be refactored before mi-
gration. And, an analysis of the metrics against the
combination of refactoring tools allows the selection
of the components of the refactoring toolchain.

This scenario allows the metrics relevant to Q-MIG
project and applicable for Java code, to be utilized for
selecting the migration and refactoring tools. Here,
various object-oriented metrics are used like: Number
of Classes representing level of abstraction in code.
Also, Attribute Hiding Factor and Method Hiding
Factor that calculate the percentages of hidden at-
tributes and methods respectively, are related to mod-
ifiability. Moreover, Average Number of Methods per
Class calculates complexity of the code. Also, the
metrics that are applicable in previous two scenarios
can be used here, as they are applicable to the mi-
grated code. However, the reverse might not be true.

4 Conclusion

This paper identified three scenarios for measuring
and comparing internal quality of software systems
under migration, paired with applicable metrics. The
scenarios stress the challenge of comparing quality
measurements in the context of paradigm shifts, e. g.
when migrating from procedural COBOL to object-
oriented Java. They delimitate pre-/post-migration
comparison to assess suitability of migrating, from
comparing migration results using different toolchain
configurations to improve the tools and tailor the
toolchain to project-specific needs. Further steps in
the project include the design and evaluation of a
quality model by identifying relevant quality criteria,
and making them measurable using appropriate met-
rics, with the scenarios providing an initial structure.

References

[1] V. R. Basili, G. Caldiera, and H. D. Rombach. The
goal question metric approach. In Encyclopedia of
Software Engineering. Wiley, 1994.

[2] C. Becker and U. Kaiser. Test der semantischen
Äquivalenz von Translatoren am Beispiel von CoJaC.
Softwaretechnik-Trends, 32(2), 2012.

[3] J. Borchers. Erfahrungen mit dem Einsatz einer
Reengineering Factory in einem großen Umstel-
lungsprojekt. HMD, 34(194):77–94, mar 1997.

[4] A. Fuhr, A. Winter, U. Erdmenger, T. Horn,
U. Kaiser, V. Riediger, and W. Teppe. Model-Driven
Software Migration - Process Model, Tool Support and
Application. In A. D. Ionita, M. Litoiu, and G. Lewis,
editors, Migrating Legacy Applications: Challenges in
Service Oriented Architure and Cloud Computing En-
vironments. IGI Global, Hershey, PA, USA, 2012.

[5] ISO/IEC. ISO/IEC 25010 - Systems and software
engineering - Systems and software Quality Require-
ments and Evaluation (SQuaRE) - System and soft-
ware quality models. Technical report, 2010.

[6] J. Jelschen, G. Pandey, and A. Winter. Towards
quality-driven software migration. In Proceedings
of the 1st Collaborative Workshop on Evolution and
Maintenance of Long-Living Systems, 2014.


	Introduction
	Q-MIG Project
	Measurement Scenarios
	Conclusion

