

University of Oldenburg

Faculty II – Computer Science, Law and Economics

Software Engineering Group

Method to Derive

Energy Profiles for

Android Platform
11.03.2014

written by: Andrey Saksonov

reviewed by: Andreas Winter

2014

3

Abstract

To improve quality of mobile applications on Android platform in

sense of energy-efficiency, the programmers need appropriate tools. One of

the method to estimate energy consumption of mobile applications is Energy

Profiling (for example, using reference implementation - Android Power

Profiles). This method allows to estimate energy consumption online, i.e.

without using any external devices, while using reference data obtained via

prior using of offline measurements tools.

The first-class entity of this method is Energy Profile of target device

that contains information about distinct energy consumption of each

component. There are at least two reasons why it is may be needed to derive

Energy Profiles for specific Android device. First is inappropriate quality of

built-in Android Power Profile for most of the devices presented on market.

The significant improvement may be achieved even using reference power

model developed for Android Power Profiles while using updated (i.e.

derived for concrete target device) Power Profile. The second reason is using

non-reference power models. Of course many engineers may consider using

of specific power models that are suitable for Energy Profiling of very specific

applications. In this case, the will need to have a method to obtain Energy

Profile for this private power model.

This thesis describes the method of deriving various Energy Profiles for

Android mobile devices. The following points are considered in this thesis:

choosing appropriate hardware and architecture of software needed to

automate the process of deriving Energy Profiles for Android mobile devices.

The method was evaluated using test Android device and satisfactory

improvement of estimation of energy consumption using reference power

model (Android Power Profiles) was observed.

4

Contents

 Introduction ... 7

1.1 Motivation ... 7

1.2 Approach .. 12

1.3 Related Works .. 13

1.3.1 PowerTutor .. 14

1.3.2 Little Eye .. 14

1.3.3 General Questions .. 15

1.4 Work Packages ... 16

1.5 Structure ... 16

 Foundations .. 17

2.1 Battery Capacity ... 17

2.2 Measuring Voltage & Amperage ...18

2.3 Choosing Hardware for Test Environment 19

2.3.1 About Yoctopuce .. 19

2.3.2 Yoctopuce Yocto-Amp USB Electrical Sensor 21

2.3.3 Connecting Ammeter to the Phone ... 22

2.4 Benchmarking ... 23

2.5 Energy Profiles .. 24

2.5.1 Android Power Profiles ... 24

2.6 Java Internals .. 27

2.6.1 Classloaders .. 27

2.6.2 Java Language Specifications – Constant Inlining 29

2.6.3 Java Reflection API ... 30

5

2.7 Android OS ... 31

2.7.1 Android SDK .. 31

2.7.2 Activity Component .. 35

2.7.3 Background Tasks (Services & AsyncTask)37

2.7.4 Alarm Managers ... 39

2.7.5 SQLite Database ... 40

2.7.6 Using Internal and Hidden APIs .. 40

2.7.7 Root Access ... 42

2.8 Implementation Technology Stack .. 42

2.8.1 The Scala Language .. 43

2.8.2 HyperSQL Database ... 45

2.8.3 Gradle ... 45

2.8.4 Guava .. 46

2.8.5 SL4J .. 47

2.8.6 OpenCSV ... 48

2.8.7 Apache POI ... 48

 Setup Test Environment .. 49

3.1 Defining Component Tests Set .. 49

3.1.1 CPU Benchmarks .. 52

3.1.2 GPS Benchmark .. 56

3.1.3 Screen Benchmark ... 57

3.1.4 3G/Bluetooth/Wi-Fi Benchmarks .. 59

3.1.5 Missed Components.. 63

3.1.6 Battery Capacity Benchmarking ... 64

6

3.2 Automated Measuring Technique ... 65

3.2.1 Measurement Software Tool (YAmpy Application) 66

3.2.2 Android Energy Benchmark (PowerEichel Application) 67

3.3 Defining Validation Technique .. 69

3.3.1 The Role of the Battery Capacity in Validation 69

3.3.2 Estimation of the Battery Life using Power Profile 69

 Results .. 71

4.1 CPU Energy Profile .. 72

4.2 GPS Energy Profile .. 78

4.3 Screen Energy Profile .. 79

4.4 Radio Energy Profiles .. 82

4.5 Comparison with the Original Power Profile 87

4.6 Energy Profiles Validation ... 89

4.7 HOW-TO: Derive Energy Profiles .. 91

4.8 Generalization ... 94

4.9 Direction of the Future Research .. 95

 Conclusion ... 98

 References ... 99

 Figures .. 113

 Tables .. 114

7

Introduction Motivation

 Introduction

Nowadays, smartphones and other mobile devices with mobile

operating systems consume a lot of energy. Users are forced to charge their

phones at least once a day (see example of power

consumption statistics on Figure 1. Android Battery

Usage - Sony Xperia ZL). To improve user experience

on mobile devices, developers try to optimize energy

consumption of their applications. However, usually

it is done not in appropriate manner and existing

applications suffers from energy consumption bugs.

Quotation from article by Philippe Michelon:

“According to a study made by P. Vekris: “55% of 328

applications using wakelocks do not follow our

policies for no-sleep bugs” [2012]. Some major

applications have been released with No-Sleep bugs."

[1] To improve application battery consumption appropriate tools are

needed. This thesis focuses on improving existing methods of Energy

Profiling for mobile applications.

1.1 Motivation

Android OS is a multitasking operating system for mobile devices [2].

On mobile platforms, one of the most significant quality criteria of

applications is their energy-efficiency [3]. The Energy consumption index is

so important that many application developers include tests for energy-

efficiency of mobile application in the QA phase of application development

[4]. Control over energy consumption of mobile applications helps to

increase battery life of mobile devices. Battery Life can be viewed from two

separate perspectives. It can refer to the operating time of devices without

recharging the battery, which is the primary goal on mobile devices. In

Figure 1. Android Battery Usage
- Sony Xperia ZL

8

Introduction Motivation

addition, it may refer to the count of cycles a battery can be charged (Li-Ion

battery, which is most used in consumer electronics can be recharged only

limited number of cycles). However, these two ways of improving battery life

is interconnected. Optimizing battery life of mobile devices obeys the general

approach in software engineering: measure before optimizing. Processes of

such measures for detecting “hot spots” in application’s energy consumption

called “Energy Profiling”. Necessary to distinguish the offline and online

measurements. Offline measurements usually done by using external

measuring device with a “reference” device for testing. It is even

recommended to measure with a “fake” test battery, which is just source of

direct current with fixed level of voltage. This approach helps to minimize

interference of battery properties on measured values. On other hand,

online measurements usually is estimation done programmatically by

software on device (e.g. every phone should be able to display current battery

level) or some values pulled from diagnostic hardware of the Android device

(if present). Therefore, online measurements usually done using results of

reference offline measurements. There exist three main methods of

measuring battery consumption online on Android platform [5]:

1. BatteryManager API is an application interface available through

libraries of Android SDK. It allows measuring the following

parameters: current battery state (charging/charged/discharging),

source of charging – USB/PSU/Wireless PSU (some devices on

Android platform are supporting wireless charging – Qi), level of

battery charge in percent, estimated battery wear – Good / Cold /

Dead (Overheat) / Dead (Overvoltage), battery temperature and

current voltage [6]. This API allows only rough calculations, as the

step for changing values is big and time of changing the value is not

determined (it is updated by system service with interval specified by

vendor of device).

9

Introduction Motivation

2. Linux Kernel Index Nodes. Data provided by the sysfs – subsystem of

Linux kernel, which exports information about devices and drivers

from the kernel device model to user space [7]. Usually, battery

information is available through files in node

/sys/class/power_supply/battery. File set and its contents depend on

the mobile device model. On many devices (e.g. Samsung, ASUS)

these files contains only current voltage information. On certain

Motorola devices currently detected current (amperage) and

estimated full charge capacity are available [8]. On some HTC devices,

these files may be moved to another location or data can be presented

in non-standard format. There is an open source application available,

which suffers from issues with this technique – CurrentWidget [9].

The author of this application chose the way of supporting number

device on the market via “Factory” software concept (in object-

oriented computer programming, a factory is an object for creating

other objects, an abstraction of a constructor, and can be used to

implement various allocation schemes [10]). This approach is hard to

use to perform tests on wide range of devices, as every device will need

separate support by testing tool/framework, which is hard to achieve

on extremely fast growing market of Android devices.

3. Approximation with Android Power Profiles is the most accurate

method for collecting power data. This method consists in pulling per

application statistics about component usage of mobile device from

system service – android.os.BatteryStats [11]. This service logs time

of component usage by applications (in milliseconds) in system

journal. Most obvious solution is to approximate consumed power by

formula: 𝑞 = 𝐼 × 𝑡, where 𝐼 is average component power drain in mA

and 𝑡 is the time of component usage is ms. OEMs of Android devices

have to provide file with component’s battery consumption

http://en.wikipedia.org/wiki/User_space

10

Introduction Motivation

information (Android Power Profile) and ship it with firmware of

devices. Google provides the recommended approach for collecting

this data. This file with Android Power Profile placed to overlay file

system before building runtime for the specific device in following

location

device///frameworks/base/core/res/res/xml/power_profile.xml [12]

and available in runtime via resources of framework-res.apk package.

Therefore, Android platform do not provide suitable instruments for

precise power measurement. The BatteryManager API can be used in simple

situations when it is only necessarily to compare values obtained by running

the same scenario, as this method allows comparing in terms of “more” or

“less” energy were spent. Nevertheless, making two different measurements

under different loads using BatteryManager API it is hard to exactly define

the difference between the obtained values.

The Linux Kernel has a mature infrastructure for providing different

information about power consumption and it is good candidate to be the

generic approach for measuring power consumption, but it is originally was

designed on PC platform, where powerful interface – ACPI – is available and,

what is more important, supported by hardware [13]. On ARM and MIPS

devices, which is the biggest part of Android devices present on market [14],

there is no such support to provide rich information about battery state from

hardware. As a result, many Android devices are not supporting this method

– system files are empty or not present in virtual file system. On the other

side, Intel provides the tool for precise monitoring power consumption on

Intel x86 based Android devices [15]. However, the number of Intel x86

based devices through Android platform is not very significant [16].

The most practically applicable method, approximation with Android

Power Profiles, relies on the quality of Power Profiles. Experiments show that

11

Introduction Motivation

standard Power Profiles shipped with devices contains big fault and

sometimes completely irrelevant (e.g., some users reported practically

impossible values in Power Profile provided by the vendor’s firmare:

http://forum.xda-developers.com/showthread.php?t=1732722). In other

cases firmware update cause significant permutations in Power Profile due

to unknown reasons [5].

There are many existing methods for energy-consumption profiling,

but measured values cannot be compared between different devices and

measuring environments until we have precise Power Profiles. Getting

accurate values of energy-consumption in various scenarios will allow doing

comparison across many devices and applications and tracks the absolute

numbers of consumed energy. Such data could be used for decision making

in field of applications refactoring (process of improving code quality [15]) –

refactoring, of course, should be done if profit is major compared to

resources needed for refactoring.

For collecting precise power data on the Android platform, it is

necessarily to develop a method of automated collecting the average energy-

consumption values for separate components of mobile devices. This will

allow improving power-measuring techniques on Android Platform.

Main components include (according to what components usage is

tracked via android.os.BatteryStats service): Display, Bluetooth, Wi-Fi,

DSP, GPS, GSM/UMTS, and CPU. Almost all devices may operate in

different states (e.g. display has many levels of backlight, power consumed

on every level is different). However, some devices are not present in the list.

Android OS itself, for instance, do not track GPU 3D accelerator usage, so for

games energy profiling other techniques should be applied (for example,

Trepn Profiler diagnostic tool by Qualcomm Corp. [16]).

http://forum.xda-developers.com/showthread.php?t=1732722

12

Introduction Approach

1.2 Approach

In this thesis, we will use an offline (hardware-based) approach for

measuring average power consumption for each device component based on

battery current measuring, what will lead to deriving energy profile for

concrete device. Software on devices will execute series of predefined tests

(component test scenarios) against certain components of mobile devices,

while a digital measuring device will be collecting power consumption of the

device’s component (in mA). We will call derived power model “Energy

Profile” to distinguish it from “Power Profile”, which is built-in Android

entity. It is also possible to supply Energy Profiles, which are not following

Android power model (i.e. define other reference test scenarios).

In real world scenarios, components of device cannot operate fully

isolated - the result of every measurement is aggregated power consumption

of number of device components. The approach recommended by main

vendor of Android platform, Google Inc., is just to subtract “standby” energy-

consumption of device from energy consumption of devices in scenario when

certain component is loaded on certain level (Power Profile) [12]. However,

some device components always operate and we cannot simply switch them

off (CPU in our case). For calculating power consumption of such

components it may be possible to solve algebraic linear equations system,

consisting of sum of power consumptions of number of components and

total power consumption of device in different scenario. Another issue,

which need to be solved, is application isolation – we cannot guarantee that

CPU is not used by other applications (e.g. background services [17]).

Therefore, such calculations can be not very precise and this hypothesis and

obtained values should be validated.

To validate calculated Energy Profile we are proposing the following

approach:

13

Introduction Related Works

1. Estimate device battery lifetime in certain (fixed) test scenario

(validation test scenario) using obtained Energy Profile

2. Perform chosen test scenario until battery is fully drained and

determine the real life battery lifetime

3. Compare estimated lifetime with derived battery lifetime

If estimated time is between 90-110% of real lifetime then Energy Profile is

“Good”. Otherwise, the test, in which this value was obtained originally,

should be reworked until we will get reliable values, which fit this

requirement. Such validation tests could be done against provided by

vendors Power Profiles to determine how much the Power Profile were

improved (or not) for certain device.

Accordingly, the expected results of research in this work are divided

into three parts:

1. Developing component test scenarios for measuring power under

different components load

2. Choosing hardware for measuring current and developing software for

automated tests running

3. Developing validation test scenarios and measuring the “precision” of

derived Energy Profiles, reworking component test scenarios if needed

However, it is not guaranteed that all three parts are fully covered by this

thesis due to unexpected limitations of Android API that make things harder

to measure.

1.3 Related Works

There are number of existing works in the field related to the Android

Power Consumption topic. This section gives a short overview of the works

that was used as an inspiration for this master thesis.

14

Introduction Related Works

1.3.1 PowerTutor

PowerTutor [20] an application that was developed by University of

Michigan Ph.D. students Mark Gordon, Lide Zhang and Birjodh Tiwana

under the direction of Robert Dick and Zhuoqing Morley Mao at the

University of Michigan and Lei Yang at Google [21]. It is able to indicate the

power consumed by major system components such as CPU, network

interface, display, and GPS receiver and group this power consumption by

the appropriate applications. The primary goal of the application is to be able

to track power consumption changes after modifying the application

architecture and implementation details.

PowerTutor uses its own power consumption model built by direct

measurements of the defined device power management states. This model

generally provides power consumption estimates with 5% fault. This is quite

precise; however, this model was built only for the HTC G1, HTC G2 and

Nexus One Android mobile phones.

The last update of the application was made in April, 2013. However,

the commit history on the GitHub repository currently does not look very

active and now the project looks abandoned by its creators. The application

is an open source and the source code is available at GitHub [22].

1.3.2 Little Eye

Little Eye [23] is a commercial profiler tool, aimed mostly on Android

Platform. In particular, it provides a functionality for monitoring power

consumption of certain applications installed on the Android device. It

consists of two parts - the agent application that should be installed on the

Android device and the desktop application that connects to the agent on the

Android device and analyzes stream of telemetry from the device [24]. The

user interface of the application presented on the screenshot (see Figure 2.

Little Eye).

15

Introduction Related Works

There are two power models available in the tool – first is based on the

reference power consumption of the Nexus One Android phone and the

second is based on the SAMSUNG Galaxy Nexus Android phone. Power

models use internal Energy Profiles obtained by offline measurements [25].

This is good demonstration that the Energy Profiling is an actual topic.

However, this application is closed source and was selling using subscription

model, i.e. to use this app it was needed to pay every year. The situation even

worse now, because the company was acquired by Facebook [25] and now

application is available only for prior customers – even the trial version of

the application is not available for download anymore.

1.3.3 General Questions

There are also were a group of researchers from the University of

California supported by SUPINFO International University [27]. The

overview of the work done by this group is available through the video record

of the presentation made by Frank Maker, Eric Jung, and Yichuan Wang

[28].

Through the talk, the following questions were discussed:

Figure 2. Little Eye

16

Introduction Work Packages

1. Mobile Architecture – speaker was focused on explaining the

differences between the best practices of programming for desktop

platforms and mobile platforms

2. Measuring Power/Energy - difference between energy and power was

discussed, differences in battery technology and why it is not expected

to have a significant improvement of the batteries in near future

3. Software Optimizations - different ideas were discussed that may help

to lower the power consumption of the mobile applications

The slides of this talk are available at SlideShare (hosting provided by

LinkedIn) [29].

1.4 Work Packages

Roughly, this thesis may be divided into four main parts – choosing

hardware and investigating the ways to collect measured values,

investigating possibilities of the Android Platform to control power states of

the mobile device, implementing software helpers for testing automation

and analyzing results.

1.5 Structure

This thesis contains five main chapters – Introduction, Foundations,

Setup Test Environment, Results and Conclusion. Each chapter has short

announce at the beginning and divided into smaller sections. Some sections

may have sub-sections.

17

Foundations Battery Capacity

 Foundations

This section describes the mandatory prerequisites, which are needed

to develop the system to derive Android Energy Profiles. The following topics

are required to be explained:

1. Electricity Fundaments (“2.1 Battery Capacity”, “2.2 Measuring

Voltage & Amperage”)

2. Hardware Fundaments (“2.3 Choosing Hardware for Test

Environment”)

3. Discussing Power Model (“2.5 Energy Profiles”)

4. Technical Fundamentals (“2.6 Java Internals”, “2.7 Android OS”)

Information available in this section may be referenced in next sections. It is

strongly recommended not to skip this section.

2.1 Battery Capacity

A battery's capacity is the electric charge, which can be deliver by

battery at the certain voltage level (usually it referred as “nominal voltage”).

The more electrode material contained in the cell the greater its capacity. A

small cell has less capacity than a larger cell with the same chemistry,

although they develop the same open-circuit voltage [18]. Capacity is

measured in units such as amp-hours (Ah), or milliamp-hours (mAh). The

rated capacity of a battery is usually expressed as the product of 20 hours

multiplied by the current that a new battery can consistently supply for 20

hours at 68 °F (20 °C), while remaining above a specified terminal voltage

per cell. For example, a battery rated at 100 Ah can deliver 5A over a 20-hour

period at room temperature [19]. Batteries that are stored for a long period

or that are discharged at a small fraction of the capacity lose capacity due to

the presence of generally irreversible side reactions that consume charge

carriers without producing current. This phenomenon is known as internal

self-discharge. Another effect that is important when doing measurements

18

Foundations Measuring Voltage & Amperage

with batteries is that full-charge capacity is decreased with time. This may be

considered by noticing the voltage of fully-charged capacity. Usually

batteries in mobile devices should be replaced after two years of exploitation

[20].

2.2 Measuring Voltage & Amperage

There can be a difference when measuring a battery voltage when the

battery is under load and not under load. When a battery is under load, it is

connected to the circuit in which it is intended to be used and the circuit or

device is turned on. For example, a mobile phone battery is under load when

it is installed in a phone and the phone is turned on. For devices such as cell

phones, which do not draw much current from the battery, the battery

voltage can typically be accurately measured when the battery is not under

load. However, for larger batteries in which the current draw can be higher,

such as car batteries, the battery voltage can drop dramatically when it is

under load. To measure voltage of the battery with voltmeter it is possible

simply make a circuit with battery and voltmeter [21].

In order to measure the current flowing, we need to connect a load to

the battery (this means that battery should installed and device powered on)

and connect an ammeter in series with the load. This measurement will give

us the current flowing and not the total producible current of the battery.

Such measurement is referred to as drained capacity. In other words, here

capacity viewed as the amount of time a battery can put a given current. If

take out the battery we can observe 4 or 3 pin connector. In this work we are

interesting only in power contacts which is usually marked as plus (“+”) and

minus (“-“). The rest battery contacts (one or two) are management

communication or/and temperature sensor contacts accordingly.

In order to constantly measure amperage it is required to synchronize

time between Android device, which is under measurement and measuring

19

Foundations Choosing Hardware for Test Environment

device. Approach used in this thesis is following: every test logs start time

and finish time, while measuring device constantly measures the amperage

with fixed interval. After finishing the tests, two logs are combined with each

other, which allows to know amperage, load and timing at the same moment.

2.3 Choosing Hardware for Test Environment

To measure flowing current on operating cell phone during continuous

period of time the digital ammeter is needed. In order to keep multiple values

of multiple measurements in some database ammeter with digital interface

is preferred (e.g. USB or RS-232). Another two important things about

choosing measurement device to perform experiments described in this

master thesis is ability to manipulate device programmatically, so, such

device should have a public and documented API to control it and device

measuring precision. Flowing current in cell phones according to

specification from the vendors varies between ~5mA in standby modes up to

300-350 mA in full loaded scenarios.

There are many professional tools, like Moonson Power Monitor

(~750,- EUR) or Rigol DS1052E (~360,- EUR) are available (approximate

prices are valid for the time of writing this thesis). They provide many

options for doing electrical equipment measurements. However, they are

complicated and integrating them into custom measurement system

requires a significant effort due to commercial closed source software for

manipulation. In this thesis, we will use tiny specialized device, which is very

cheap and has only one function (to measure amperage) and open source

management software available. For measurements in this work, Yoctopuce

Yocto-Amp [22] device is used.

2.3.1 About Yoctopuce

“Yoctopuce is a company based in Geneva, Switzerland. It has been

founded by three engineers with the intent of enabling anyone to create

20

Foundations Choosing Hardware for Test Environment

simple systems to automate daily tasks, implement original ideas or simply

build home automation gadgets” [23]. Yoctopuce products include many

different types of devices: electrical sensors, environmental sensors,

actuators, displays, etc. All devices may be connected with another device

such as PC with USB interface and have internal flash memory to memorize

measurement results.

The software toolbox called VirtualHub is available for Yoctopuce USB

devices [24]. It allows to:

 configure and test Yoctopuce devices

 remotely control Yoctopuce devices through network

 control Yoctopuce devices with languages which do not provide a direct

access to USB devices, such as JavaScript and PHP

It can either be used in command-line, or started as a service/daemon.

The VirtualHub software is available for Windows, Mac OS X and Linux

(both Intel and ARM). It can be freely downloaded from Yoctopuce website.

For unmanaged languages such as C/C++ native libraries available and allow

to control devices directly without using VirtualHub middleware [25]. Also,

there is so-called “Command Line API” available. This API consists of pack

of precompiled native executable binaries, which have only one function, i.e.

they represents one function from VirtualHub. Part of this API, YCurrent

application, is used in this thesis to communicate with Yoctopuce device.

Documentation for both VirtualHub software and API libraries is also

available for free. Example usage of YCurrent consists from the following call

in terminal: C:\> YCurrent.exe YAMPMK01-12C90.current1 get_currentValue.

Here YCurrent.exe is Windows binary file, YAMPMK01-12C90 is logical name of

connected device (serial number by default), current1 is logical name of the

21

Foundations Choosing Hardware for Test Environment

sensor and get_currentValue is API function, which returns measured

amperage [26].

2.3.2 Yoctopuce Yocto-Amp USB Electrical Sensor

Yoctopuce Yocto-Amp USB Electrical Sensor

is a digital ammeter that allows you to measure

current automatically. It can provide quite precise

digital measures (2 mA, 1%). It works with direct

current (DC) as well as alternating current (AC) for

which it provides the RMS value (5 mA or 3%)

[22]. It can be connected to the PC via USB and accessed programmatically

directly via native API libraries using languages such as C/C++. In addition,

it may be accessed with Java/Python/PHP

applications using VirtualHub

middleware (or Command Line API). Such

technical characteristics is fulfill needs for

measurement experiments of this master

thesis. It costs 60 CHF and is available

online via official Yoctopuce shop.

To start measuring current, it is

required to connect “-” contact of battery

with “-” contact of Yocto-Amp and connect

the “-“ contact of the phone with the “+”

contact of Yocto-Amp. If start VirtualHub

and go to the http://localhost:4444 and

then choose the device, the current current

values may be observed. Example of such

values are on Figure 4. VirtualHub

Software.

Figure 3. Yoctopuce Yocto-Amp
(taken from [22])

Figure 4. VirtualHub Software

http://localhost:4444/

22

Foundations Choosing Hardware for Test Environment

There is example of using Yocto-Amp for measuring amperage of

Nokia 105 phone (probably, the cheapest cell phone in the world). For this

example, we will use YCurrent binary from the Command Line API and

simple Windows Batch script:

1. @echo off
2. :loop
3. YCurrent.exe YAMPMK01-12C90.current1 get_currentValue
4. goto loop

This script produces the following output (amperage in mA after “equals”

sign):

 OK: YAMPMK01-12C90.current1.get_currentValue = 0

OK: YAMPMK01-12C90.current1.get_currentValue = 4

OK: YAMPMK01-12C90.current1.get_currentValue = 13

OK: YAMPMK01-12C90.current1.get_currentValue = 23

OK: YAMPMK01-12C90.current1.get_currentValue = 26

OK: YAMPMK01-12C90.current1.get_currentValue = 46

OK: YAMPMK01-12C90.current1.get_currentValue = 67

OK: YAMPMK01-12C90.current1.get_currentValue = 83

OK: YAMPMK01-12C90.current1.get_currentValue = 87

The output is easy to parse programmatically, which allows us to pipeline the

measurements into database (with timestamps). In this case, we will be able

to trace the current values at any moment of time and confront these values

with profile of the load on device.

2.3.3 Connecting Ammeter to the Phone

It is good idea to use the plastic battery adapters for connecting the

ammeter to device’s battery. The design models of such adapters for the test

phone, HTC Desire, are given on Figure 5 and Figure 6. However, three

attempts of printing these models on the MakerBot Replicator 2 [39] was

made and none of them give an adapters of quality good enough to provide

robust electrical contact.

23

Foundations Benchmarking

In this work the ammeter connected directly in series (there is no direct

contact between battery and corresponding battery contact of the phone

itself) to the “+” contact of the battery (see photo on Figure 7).

2.4 Benchmarking

Benchmark is the act of running some program to measure some kind

of performance. In our case, the device benchmarking is understood as the

process of running predefined set of trials to derive Energy Profile under

different load profiles. To let results be more precise and consistent, the same

Figure 7. Yoctopuce Yocto-Amp Connection

Figure 6. Battery Stub 3D Model Figure 5. Battery Holder 3D Model

24

Foundations Energy Profiles

trial should be run multiple times. In our case, the device load (power state)

is fixed for a certain amount of time (e.g. 1 min.) and during this load,

measurement software is continuously pulling the current amperage values

from measuring device and store this amperage values into database.

To minimize the influence of the random factors, after analyzing of the

values trend, some time series values for certain load profile maybe filtered

out. After that, the average and the standard deviation across rest results is

re-calculated. However, such speculations on the measured values may be

modified in any way, according to the goal of the measurement session.

Looking for the best way of calculating the average across the time series

values in power benchmarking case is subject for the separate research and

is not covered by this thesis – the simple arithmetic average across whole

time series is used.

2.5 Energy Profiles

In this thesis, sometimes, the term “Energy Profile” is used. “Energy

Profile” comparing to the Android Power Profile is defined in more general

way and refers to the average power consumption in any user-defined

scenario. This means that this value is not bind (yet) to any determined

power model.

Nevertheless, the main goal of this thesis is to provide the way of

producing Android Power Profiles, using of the “Energy Profile” term made

many statements from the research applicable to the measurements for

another power models.

2.5.1 Android Power Profiles

The power profile is where the device manufacturer needs to provide

current consumption values for various components and their states in order

to approximate the actual battery drain caused by these components over

25

Foundations Energy Profiles

time [12]. Power consumption of components is specified in milliamps, and

can be fractional specifying microamps.

Usage of Power Profiles to approximate power consumption is

straightforward: using tracked by Android Framework battery per-

application statistics it is possible to get the usage time before the test, run a

test in which energy consumption should be measured, get the new usage

time, subtract first usage time value from the second and multiple the time

by average component consumption from Power Profile. This approach is

used in Android operating system itself in “Settings” application. For

instance, to attribute the cost of keeping the display on for a duration of time,

the framework gathers brightness levels and times spent at each level

(quantized to some number of bins). The power profile values specify how

many milliamps of current are required to keep the display on at minimum

brightness and at maximum brightness. The time spent at each brightness

level can then be multiplied by an interpolated display brightness cost to

compute an approximation of how much battery was drained by the display

component. Here is an example of Android Power Profile from ASUS Nexus

7 (2012) device running Android 4.4:

NONE CPU_IDLE CPU_AWAKE CPU_ACTIVE

0.0 3.8 54.6 100.0

WIFI_SCAN WIFI_ON WIFI_ACTIVE GPS_ON

100.0 2.9 3.1 29.7

CPU_SPEEDS BT_ON BT_ACTIVE BT_AT_COMMAND

[107.0, .., 148.0] 1.4 14.0 0.0

SCREEN_ON SCREEN_FULL RADIO_ON RADIO_SCAN

256.0 318.0 1.2 1.2

RADIO_ACTIVE AUDIO VIDEO BATT_CAPACITY

71.5 14.1 54.0 3260.0

Table 1. Android Power Profile - ASUS Nexus 7

26

Foundations Energy Profiles

Note: “BT_” prefix and the “BLUETOOTH_” prefix refers to the same values

of the Android Power Profile. Sometimes, the short variant is used in table

headers due to limited space of the page width.

In addition, Power Profile contains an array of CPU speeds (in KHz), on

which processor can operate, but there is no way to query this information

via internal API (only number of such steps, which, nevertheless, is enough

for estimation). Also, some values is redundant, e.g. “Audio” & “Video”

values are supposed to contains energy drained by DSP during audio and

video playback, but there is no way to track activity time of these DSPs. It

may be possible to build power model for such scenarios, if application itself

will keep tracking usage of DSPs, but this approach is hard to generalize.

The recommended way is to measure the current (usually the average

instantaneous current) drawn on the device at a nominal voltage. However,

manufacturers of the devices are allowed to use provided by components

suppliers’ values in device Power Profiles. This is not very accurate and leads

to errors in Power Profiles and imprecise approximation of energy consumed

by the applications.

Measuring the current drawn by components at nominal voltage can

be accomplished using a bench power supply or using specialized battery-

monitoring tools (such as Monsoon Solution Inc.’s Power Monitor [27] and

Power Tool [28] software). However, this approach is simplified in this thesis

– instead of measuring with special bench power supply, we are using real

cell phone’s battery with in series connected ammeter.

Many examples of the Android Power Profile XML files may be found

at the Git repository [31] of the Replicant project. Replicant is the open-

source fork of Android source code, which tries to provide “free-as-speech”

firmware for modern Android platform devices [32].

27

Foundations Java Internals

2.6 Java Internals

Usually Java applications run on reference JVM (core component of

Java SE platform) implementation – HotSpot by Oracle Corp [29]. In case of

Android, Android Compiler converts Java bytecode into Dalvik Executable

Format for the Dalvik Virtual Machine [30]. Java compiler and both HotSpot

and Dalvik have many known limitations. As we are going to deal with

hidden APIs of Android operating system, some deep knowledge about Java

Internals are required. Necessarily minimal Java background is provided in

the next paragraphs.

2.6.1 Classloaders

Java Classloaders are the classes, which are responsible for loading

classes into the Java Virtual Machine [31]. Usually classes are loaded on

demand. This is means that class are not loaded until the Java application

try to use some class which is not loaded yet. If class if not available in

runtime and JVM will try to implicitly load the class, it will leads to the

java.lang.NoClassDefFoundError. There are also few methods in JDK, which

allow to explicitly try to load the class:

1. Class.forName(String className)
2. ClassLoader.findSystemClass(String name)
3. ClassLoader.loadClass(String name)

Calls of these methods in case of class absence will produce

java.lang.ClassNotFoundException. There are three standard classloaders:

1. Bootstrap – implemented on the JVM level and does not provide

feedback to the Java Runtime Environment (i.e. it cannot be

controlled within runtime). This classloader maintains the

loading of jars located in $JAVA_HOME/lib. Therefore, rt.jar

(standard Java library) is loaded with this classloader. So, if you

will try to obtain the classloader from JDK’s classes, you will

always get null. Alternatively, you may control set of classes,

28

Foundations Java Internals

which are bootstrapped by providing –Xbootclasspath command

line option to the java binary at start.

2. System Classloader – implemented on the JRE level and can be

obtained via java.lang.Class.getClassLoader() method. This

classloader loads the classes, which are listed in $CLASSPATH

environment variable. It is possible to control the loading of

system classes with command line option –classpath or via

system option java.class.path.

3. Extension Classloader – classloader for extensions. This

classloader loads classes, located in $JAVA_HOME/lib/ext. It is

possible to control loading of extensions via system option

java.ext.dirs.

The important notice about classloaders, is that they are organized into

hierarchy. The right to load the class recursively delegated from the inferior

classloader to the most supreme classloader. This approach allows loading

the class with the classloader that are most close to the base classloader.

Therefore, rule of the widest scope of visibility is applied. Visibility scope

understood as follows: every classloader keeps track of the classes, which

were loaded by this classloader. Set of such classes forms the visibility scope.

In case when JVM need to run the code from some class, the process of

locating any class (e.g. MyClass) may be described as follows:

1. System Classloader tries to find MyClass class in own cache

1.1. If class found, loading is done

1.2. If class not found, loading is delegated to the Extension Classloader

2. Extension Classloader tries to find MyClass class in own cache

2.1. If class found, loading is done

2.2. If class not found, loading is delegated to the Base Classloader

3. Base Classloader tries to find MyClass class in own cache

29

Foundations Java Internals

3.1. If class found, loading is done

3.2. If class not found, Base Classloader tries to load MyClass class

3.2.1. If loading is successful, loading is done

3.2.2. Else, the control goes to the Extension Classloader

3.3. Extension Classloader tries to load MyClass class

3.3.1. If loading is successful, loading is done

3.3.2. Else, the control goes to System Classloader

3.4. System Classloader tries to load MyClass class

3.4.1. If loading is successful, loading is done

3.4.2. Else, exception NoClassDefFoundError is generated

The important observation here is that classes are resolved in runtime

(generally, so called “dynamic linking”) and System Classloader have higher

priority than other classloaders. In practice, this means if your Android

application contains its own implementation of class, let’s say,

com.android.util.PowerProfile, it will never be loaded. Instead, the System

Classloader will load the class with same name from Android Runtime

shadowing your implementation, as it have higher priority. Therefore, it is

possible to compile the Android application, which uses internal API’s

(official Android SDK lacks these classes) just by copying source code from

AOSP sources to the application source folder (or even put implementation

with empty stubs, but with same interface). In runtime, the correct version

of Android Runtime from the device will be used to load the core classes.

2.6.2 Java Language Specifications – Constant Inlining

If use the approach for access the hidden APIs described in

previousparagraph, it is important to mind, that implementation of this APIs

is subject to change. For example, it is possible that vendor modified some

code from AOSP with its own implementation. Problem comes to scene in

this case – constant inlining. Java compiler (javac) always inlines “… static

final …“ variables in places of usage (except for instances of enum and null

30

Foundations Java Internals

references) [32]. To avoid this, it is suggested never use the constants

directly. Reading the field value with Java Reflection API will solve the

problem in this case (value will be obtained in run-time, and not in compile-

time). However, it may slightly affect the performance of the Android

application.

2.6.3 Java Reflection API

Reflection (synonym – type introspection) is the process, when

application is able to track and modify own structure and behavior in

runtime. Reflection allows retrieving information about fields, methods and

constructors of the classes. It is possible to do transformations over the fields

and methods. Reflection in Java used via classes in packages java.lang and

java.lang.reflect. Using Java Reflection API, it is possible to [33]:

1. Determine the class of the object

2. Retrieve information about class modifiers

3. List all fields and methods of the class

4. Create instance of class, which name is unknown in compile-time

5. Get and set value on the field

6. Call the method, which name is unknown in compile-time

We will use reflection to retrieve the constants which is unknown in compile

time (because of “fake” implementation of Android Internal API classes in

compile time of our application) to avoid constant inlining. Example of Java

Reflection API usage in this case might be the following:

1. import com.google.common.base.Optional;
2. import java.lang.reflect.Field;
3. import static java.lang.reflect.Modifier.isStatic;
4. public class ReflectionUtils {
5. public static <T> Optional<T> getDeclaredFieldValue(Class<?>
clazz, Object obj, String fieldName, Class<T> retType) {
6. Optional<T> res = Optional.absent();
7. try {
8. Field field = clazz.getDeclaredField(fieldName);
9. if (isStatic(field.getModifiers())) {

31

Foundations Android OS

10. res = Optional.fromNullable((T) field.get(null));
11. } else {
12. res = Optional.fromNullable((T) field.get(obj));
13. }
14. } catch (Exception e) {
15. // something wrong
16. }
17. return res;
18. }
19. }

2.7 Android OS

Android is an open-source operating system maintained by Open

Handset Alliance (Open Handset Alliance is a consortium of 84 companies,

which aimed to deliver open standards for mobile devices) [34]. To develop,

build, test and debug applications Android Software Development Kit

(Android SDK) is available. Google Corporation leads maintaining of this

SDK, provides support, and updates tools for developers. Unfortunately, not

all APIs are exposed to third-party developers, there are exists a number of

APIs which are “internal” and not available via Android SDK. Power Profile

API is one of such APIs. It is used only by built-in application “Settings”

which is shipped with generic Android image. We will need to use special

hacks described in previous section to access this APIs, as we need compare

derived Energy Profile with existing Android Power Profile presented on

device.

2.7.1 Android SDK

Android Software Development Kit contains a number of tools for

creating applications for Android OS [35]. These tools include IDEs (Eclipse-

based Android Developer Tools and IntelliJ-based Android Studio),

emulator (AVD – Android Virtual Device emulator based on QEMU project),

debugger (ADB – Android Debug Bridge), tools for assembling Java

applications (Android SDK) and C/C++ applications (Android NDK).

Currently these tools available for Linux, Mac OS X and Windows platforms.

Android compiler produces bytecode in *.dex (Dalvik Executable) format for

32

Foundations Android OS

Dalvik Virtual Machine from the common Java code. Therefore, to create

Android applications JDK (Java Development Kit) is also needed. Most

Android versions support Java 6 and latest version (Android 4.4 KitKat)

supports Java 7 natively. However, in practice all Java 7 features except “try-

with-resources” [40] are known to work normally on all Android versions

(“try-with-resources” feature requires support from the core library and this

library cannot be updated separately for old devices).

2.7.1.1 Android Debug Bridge

Android Debug Bridge is the command line tool for connecting to the

Android device or the emulator running Android OS using host development

computer. It supports Windows, Linux and Mac OS X hosts [51]. It consists

from three components:

1. client on the your development machine (adb binary)

2. server, which runs in background on development machine

3. daemon on the Android device (or emulator)

When adb command is invoked from the development machine’s shell,

firstly, it will check if server on development machine is up and running. If

not, it will bootstrap the server and bind it to the TCP port. When the server

up and running it listens for the incoming client requests. After receiving a

command from the client, it will setup the connection with the device’s

background daemon to start communication with the device. Android Debug

Bridge supports debugging with multiple devices simultaneously. The list of

all connected to the development machine devices can be obtained with adb

devices command. Another useful command is adb shell that allows you to

connect to the remote shell of the Android device and execute commands

directly.

33

Foundations Android OS

On the Android OS version 4.2.2 and higher

there is one additional step. After issuing first

command from the development machine the

Android OS will show a dialog asking to accept the

new RSA key. This mechanism was introduced for

security purposes and prevents “silent” control of

the device via debug tools. It ensures that user is able

to unlock device and accept the key. Import note

that this mechanism is requires adb version 1.0.31

and higher (part of Android SDK Platform Tools

16.0.1 and higher) to debug on a device running

Android 4.2.2 or higher. Otherwise, the Android

Debug Bridge client will end up with device offline

state on the development machine.

2.7.1.2 Android Recovery Utility

The recovery is special Android boot mode, which boot up to the text-

based utility, which allows flashing the device with images packed in zip

archives [37]. For example, you may find factory images provided by Google

for their reference Android devices (Google Nexus series) on the Android

Developers portal [38]. In general, such images may be downloaded from the

vendor’s websites. To flash the image with recovery the image zip file should

be placed on the external SD card, which is then put into the Android device

before booting to the recovery.

Figure 8. ADB prompts RSA key
authorization

34

Foundations Android OS

Recovery mode allows you even flash

different operating system on the Android device

(like Mozilla’s Firefox OS) [39]. In addition, it

allows performing some maintenance operations

like cleaning cache partition, resetting

permissions on the system partition, etc. There a

number of popular community-driven recoveries

with enhanced functionality available. The most

popular of them is CWMR (ClockworkMod

Recovery [40]) and TWRP (Team Win Recovery

Project [41]). For flashing HTC Desire phone,

which is used as main testing phone in this

master thesis CWM recovery was used.

To reboot into recovery there are usually two options. First is to power

on phone holding some predefined combination of keys (may be known from

vendor’s documentation). The second option is to use Android Debug Bridge

to reboot the device into recovery mode by executing adb reboot recovery

command from the development host machine.

2.7.1.3 Fastboot

Fastboot is the tool, which comes with Android SDK and allows

flashing the partitions of the Android device from the development host

machine (no SD card needed in general) [42]. It may be viewed as an

alternative to the recovery mode for flashing Android OS.

Fastboot mode is useful to update the device’s firmware without

copying the image to the SD memory card or the internal memory of the

device. In addition, fastboot is used to perform some device-specific

operations, like unlocking the bootloader of the Google Nexus devices. To

load the image with fastboot utility, first, you need to boot device into

Figure 9. ClockworkMod Recovery

35

Foundations Android OS

fastboot mode. It may be accomplished by using special key combination (see

the manufacturer’s documentation for your device) or by using adb

command: adb reboot bootloader. To check that device is connected to the

development host the following command may be used: fastboot devices. To

flash the partition of the device the following command format is used:

fastboot flash <partition> <partition>.img, where <partition> is the

partition you want to flash. Common partitions include boot, recovery,

userdata and system. However, some devices may use different number of

partitions. For example, HTC One X device contains more than 20 different

partitions [58].

2.7.2 Activity Component

“An activity is a single, focused thing that the user can do” [59]. This,

basically, means that Activity represents one screen of the Android

application. However, there other options of using Activities – Activity may

be used as floating window (via a theme with windowIsFloating set) or be a

part of another Activity using the ActivityGroup. There are two important

methods, which should be implemented while using Activity:

 onCreate(Bundle) – this is the method where Activity is usually is

initialized. Here, the method setContentView(int) should be called to

initialize the UI layout of the Activity.

 onPause() – in this method all changes made by user (e.g. data input)

should be saved

To be able to start Activity using another Activities (i.e. to provide navigation

path to this Activity) Activity should be presented in AndroidManifest.xml as

corresponded <activity/> declaration.

Navigation between different Activities are managed with an activity

stack. An activity has four states (description of states taken from [59]):

36

Foundations Android OS

 If an activity in the foreground of the screen (at the top of the

stack), it is active or running.

 If an activity has lost focus but is still visible (that is, a new non-

full-sized or transparent activity has focus on top of your

activity), it is paused. A paused activity is completely alive (it

maintains all state and member information and remains

attached to the window manager), but can be killed by the system

in extreme low memory situations.

 If an activity is completely obscured by another activity, it is

stopped. It retains all state and member information, however, it

is no longer visible to the user so its window is hidden and it will

often be killed by the system when memory is needed elsewhere.

 If an activity is paused or stopped, the system can drop the

activity from memory by either asking it to finish, or simply

killing its process. When it is displayed again to the user, it must

be completely restarted and restored to its previous state.

These states may be described using the diagram (see Figure 10. Activity

Lifecycle (taken from)).

For the benchmark application, it means that Activity should be

avoided to contain the benchmark code, because any long-running

operations may be interrupted due to Activity Lifecycle events. Therefore,

other Android application components like Services should be used to run

benchmark tests scenarios. However, some actions (like changing brightness

level programmatically) may be done using only Activity (it guarantees that

action was completed as response to user intent). Therefore, event-driven

model are used to communicate between foreground application

37

Foundations Android OS

components (Actvities) and background application components (e.g.

Services).

2.7.3 Background Tasks (Services & AsyncTask)

There are two possible ways of executing long-running operations on

the Android mobile devices – using of AsyncTask and using of Service

classes.

The first solution is to use AsyncTask class. The main purpose of this

class is to run long operations that are bound to Activity. By default, all

methods of the Activity class are run on so-called UI Thread. In case of long-

Figure 10. Activity Lifecycle (taken from [59])

38

Foundations Android OS

running operations in these methods, it will cause the hanging of UI. In

addition, if the method is taking more than 5 seconds, the Android OS will

show the “Application Not Responding" (ANR) dialog allowing user to force

close the application. To avoid this, the AsyncTask class should be used. It

allows to perform background operations and send results back on the UI

thread without having to manipulate threads manually. Ideally, it should be

used for short operations (few seconds at the most). An AsyncTask,

essentially, is defined by three generic types, called Params, Progress and

Result, and 4 methods that need to be overridden called onPreExecute,

doInBackground, onProgressUpdate and onPostExecute. It does not suite the

scenario, when it is needed to keep threads running for a long periods of

time. In such cases, it is recommended to use the plain Java APIs provided

by the java.util.concurrent package such as Executor, ThreadPoolExecutor

and FutureTask.

The second option for running background tasks is Service. The

Service class is providing a way to maintain long-running operations in

background and does not have any user interface [60]. Another application

component may trigger a start of service and the service will continue to run,

even if user switched to another application (and corresponding

application’s Activity was destroyed). Service may be used in two ways:

1. Started – service is started, when another application

component starts it by invoking the startService() method.

Once started, service may run indefinitely, even if client

component already destroyed. When the operation is done, the

service should stop itself by calling stopSelf() method.

2. Bound – service is bound, when another application component

binds it by invoking the bindService() method. A bound service

provides a client-server interface that allows client components

(i.e. Activity) to interact with the service, send requests, get

39

Foundations Android OS

results (also via IPC if Service is running in separate process).

Bound service is only running while it have alive clients bound to

it. Multiple application components (i.e. activities) may bind to a

service, however, if last application component is unbind the

service is destroyed.

Like activities (and some other components), service component must be

declared in application's AndroidManifest.xml file. The Service is

represented with <service/> xml tag inside the <application/> xml tag. Also,

including the xml android:exported attribute into <service/> tag and setting

it to “false” prevents other applications from being able to start or bind to the

declared Service.

Therefore, the Service application component if fulfill the benchmark

applications needs for running test scenarios.

2.7.4 Alarm Managers

For creating benchmark for Android Platform, it is important to know

how other applications may be started in the system. The class AlarmManager

provides access to the system alarm services [61]. It allows the applications

to be scheduled to run at some point in the future. When an alarm goes off,

the specified Intent [62] is automatically broadcasted causing the

subscribed applications to wake up (if application is not started, it will be

started) and start processing the incoming Intent. In addition, Android’s

documentation says that “Registered alarms are retained while the device is

asleep (and can optionally wake the device up if they go off during that time),

but will be cleared if it is turned off and rebooted”.

Therefore, rebooting the device before starting the benchmark

minimizes the possibility of waking up of the third-party applications (it is

also good idea to temporarily remove widgets from the main screen as they

have corresponding activities, which is able to register such alarms).

40

Foundations Android OS

2.7.5 SQLite Database

There are built-in database management system in Android Platform,

which is essentially built on top of SQLite database [63]. SQLite is a fast,

embedded database and it is designed to have a good performance on the

mobile devices like and Android mobile devices.

The Android Framework provides few classes to work with SQLite

database on the Android mobile devices. The first class is SQLiteOpenHelper.

It provides a skeleton for maintaining the database file itself.

SQLiteOpenHelper provides two convenient methods for doing so:

1. onCreate() – bootstraps the database from the DDL scripts (i.e.

creates tables in case of database absence)

2. onUpgrade(int oldVersion, int newVersion) – provides a way to

apply migration scripts in case of changing database schema

between application versions (i.e. alters tables if they are stale)

Class SQLiteOpenHelper provides methods getReadableDatabase and

getWritableDatabase, which returns the instance of the SQLiteDatabase class.

This class provides all methods for doing CRUD operations with the database

(i.e. insert(), query(), update(), delete()).

2.7.6 Using Internal and Hidden APIs

First, it is necessarily to explain how APIs are became inaccessible in

Android SDK. This is achieved in very straightforward way: libraries on

device actually consist of two files: core.jar and framework.jar that are found

in /system/frameworks/ directory on the device. The file android.jar (located

in Android SDK platform directory $SDK_DIR/platforms/platform-

X/android.jar, where X is API level, it can be 18 or 19 or any other number)

from the Android SDK, which is used for building applications, contains only

public APIs of those libraries (deployed on real devices). All

implementations of methods in actual bytecode in android.jar file is

41

Foundations Android OS

replaced with something roughly equal to the following Java code: “throw new

RuntimeException("Stub!");”. It is not necessarily for set of APIs of

android.jar and libraries on devices (core.jar and framework.jar) to be equal.

Vendors may modify any library and provide their own extensions. However,

subset, which is “public” and exposed to the android.jar, should be

compatible with reference Google’s implementation. This is achieved via

mandatory certification (if vendor wishes to use “Android” name and to be

able preinstall Google Play Services on the devices) from Google. First step

of this certification, Android Compatibility Test Suite checks compatibility of

the core library [44].

Android has two types of APIs, which are not accessible from Android

SDK. The first type is located in package com.android.internal.* and second

is various classes across whole Application framework [45] marked with

@Hidden annotation (removes Javadoc from resulting android.jar file) and

@hide annotation (removes the class files from resulting android.jar file). For

hiding device-specific internal APIs (the example of API which is contain

such hidden parts may be S Pen SDK by Samsung [46]) there is also a tool

called mkstubs, it is used for developing so-called “SDK Addons”. However,

in core AOSP project mkstubs tool is not used. Therefore, it is possible to

remove these @hide annotations from the code or disable appropriate

annotation processor from the build script and build your own version of

android.jar, which will contain any APIs you want to access.

However, it is no very convenient to build Android SDK every time new

version comes out. Slightly modified approach may be used – just to copy the

whole source code of internal class to source tree of your application. This

approach is easier to maintain by the developer.

42

Foundations Implementation Technology Stack

2.7.7 Root Access

We need to perform some operations on the device require rights of the

built-in root user. In UNIX operating systems, the superuser [47] may be

named with any name include baron in BeOS and avatar in some other

commercial UNIX distributives. However, in Linux and hence in Android

superuser by convention named root. To promote the shell to the superuser

shell su command is used.

In most stock Android images for the devices su binary is absent and

password from root user is unknown. There are two possible scenarios for

retrieving the Root Access. First, when bootloader of the phone is not locked

(e.g. all Google’s Nexus series devices), it is possible to use fastboot oem

unlock command and then use fastboot utility to flash the modified kernel

(flash custom boot.img to the boot partition of the internal memory).

However many Android smartphones manufacturers are known to prevent

access to the bootloader of the phone (for example, widely known HTC’s

technology Secure Boot which prevents loading images without digital

signature [58]). In this case, only some known vulnerability exploitation is

possible to retrieve the Root Access.

In this thesis, one of the phones included in benchmarks is HTC Desire.

It is running original Android 2.3.3 stock ROM for developers, downloaded

from HTCdev.com [48]. To get the Root Access for HTC Desire, toolkit

provided by some anonymous hackers from this link is used:

http://revolutionary.io/.

2.8 Implementation Technology Stack

This section covers additional tools and frameworks used for

implementing the software built for this master thesis. In addition, the

corresponding section usually provides the information why the particular

tool was chosen and how it differs from the analogs.

http://revolutionary.io/

43

Foundations Implementation Technology Stack

2.8.1 The Scala Language

Scala is a multi-paradigm language, which runs on top of JVM [69]. It

allows mixing object-oriented concepts and functional concepts in one place.

In addition, it provides seamless interoperation with Java language. It means

that any Java library may be used from the Scala language.

The measurement software we are going to implement is a kind of ETL

[70] tool. In this case, using of the Scala language have significant benefits

over the Java language due to rich Scala collections framework [71]. For

example, consider the following Java code (it uses the Google Guava [72]

library):

1. FluentIterable.from(strings)
2. .filter(new Predicate<String>() {
3. public boolean apply(String string) {
4. return CharMatcher.JAVA_UPPER_CASE.matchesAllOf(string);
5. }
6. })
7. .transform(new Function<String, Integer>() {
8. public Integer apply(String string) {
9. return string.length();
10. }
11. });

In Scala language, the same can be done using following one-liner:

1. strings.filter(CharMatcher.JAVA_UPPER_CASE.matchesAllOf(_)).map(
_.length)

Moreover, it can be dramatically improved reducing the number of iterating

through the collection from two to one applying the small change to the code:

1. strings.filterWith(CharMatcher.JAVA_UPPER_CASE.matchesAllOf(_)).
map(_.length)

Therefore, Scala collection framework allows writing less code in ETL

programs because functions and laziness are first-class citizenships of the

Scala language.

44

Foundations Implementation Technology Stack

2.8.1.1 SBT

SBT (acronym for the Simple Build Tool) is the build tool written in

Scala language and de-facto is standard for assembling programs written in

Scala language [73]. The main benefit of using sbt is that it requires almost

no configuration for simple projects. However, if addition features are

needed for the project setup, it can be easily done because sbt uses plain Scala

code to describe build definitions. Using of type-safe language (i.e. Scala) in

build definitions dramatically decrease numbers of errors in these build

definitions.

Another strong side of the sbt is supporting documentation generation

using the scaladoc utility, which integrates with GraphViz [74] to generate

diagrams in the documentation of Scala classes.

2.8.1.2 Scala Process API

Scala Process API is a wrapper around Java's Process and

ProcessBuilder classes to provide more convenient and idiomatic Scala API

for dealing with native processes in operating systems [75]. Basically, the API

is divided into three parts (description taken from [75]):

 Indicating what to run and how to run it

 Handling a process input and output

 Running the process

While there is no need to know underlying Java classes to use the API, it

should be taken into account which boundaries they impose to the API. For

example, it is not possible to retrieve a process id for the executed process.

In our case, handling the process output is important thing. The

described Scala Process API will be used to handle output of the native

measurement software command-line tools. The I/O of the running process

may be controlled using the scala.sys.process.ProcessIO object, which

45

Foundations Implementation Technology Stack

should be passed to the code that runs the external process. It introduces the

significant benefit over plain Java Process API, because the code, which is

responsible for running external process and the code, which is responsible

for handling process I/O are separated from each other (in Java API, the code

responsible for running the external processes in the same time has to handle

processes I/O).

2.8.2 HyperSQL Database

HSQLDB (HyperSQL DataBase) is the RDBMS written in Java. It

provides a fast multithreaded and transactional database engine with small

memory footprint. It may operate as in-memory and disk-based tables

database, supports embedded and server modes [76]. It supports almost all

features from the ANSI-92 SQL Standard [77]. It also supports many

extensions to the Standard, including syntax compatibility modes, which

provides a way to run a vendor-specific queries designed for other databases.

The main feature, which was taken into account while choosing

embedded database engine for the measurement software tool was stored

database format. Internally, HSQLDB used simple database logs, which

consist of the sequence of the DML statements (INSERT and UPDATE). It make

the process of exporting the measured raw data to other applications very

simple, because all you need in case of relational databases, is to run the

script against the database.

2.8.3 Gradle

As was already discussed, the SBT tool is used in case of building Scala

programs. However, the software for Android Platform is still implemented

using Java language. For assembling the Android package, the Gradle build

system is used.

There are two build systems available for assembling packages for the

Android – Ant [78] and Gradle [79]. The first build system, Ant, comes with

46

Foundations Implementation Technology Stack

stable version of the official Android IDE – Android Development Tools, a

plugin for Eclipse IDE [80]. However, in the meantime the primary IDE for

developing for Android is brand-new Android Studio [81] based on IntelliJ

IDEA [82]. It uses new project format that is based on the Gradle build tool.

Therefore, the build system of choice in the meantime is Gradle.

Gradle combines the concepts well known by using Ant and Maven

build tools like dependency management through Maven [83] and Ivy [84]

artifact repositories and declarative style of build description files. For the

build files, it uses domain-specific language based on Groovy [85]

programming language.

2.8.4 Guava

Guava is an umbrella library project by Google for the Java language.

It consists from following parts: collections, caching, primitives support,

concurrency libraries, common annotations, string processing and I/O [72].

It is very useful library for programming for Android Platform,

especially for working with collections. The architecture of the collection

component were motivated by Java generics introduced in Java 5. Although

generics may dramatically improve the productivity of programmers, the

standard Java Collection Framework (JCF) does not provide sufficient

functionality. Its complement Apache Commons Collections has not adopted

generics in order to keep backward compatibility. Because of this, two

engineers Kevin Bourrillion and Jared Levy developed an extension to JCF

that provides additional generic classes such as multisets, multimaps,

bimaps, and immutable collections.

In addition, the Guava library introduces some functional concepts to

the Java language (functional paradigm will be available natively in Java

language starting from the Java 8). It will help to keep the coding style

consistent between the desktop measurement application written in Scala

47

Foundations Implementation Technology Stack

language and the benchmark application for Android Platform written in

Java language.

2.8.5 SL4J

SL4J [86] is a Simple Logging Façade for Java. It provides an

abstraction for different logging frameworks allowing the end-user to

provide the desired logging framework in deployment time. Due to unified

SL4J API, the code that using logging itself is has no dependency on the

logging framework, but it depends only on small sl4j-api.jar. If no

implementation of SL4J is found in runtime, then application fallbacks to a

no-operation implementation (this means that logging is disabled and stubs

are used for the logging methods calls). It is a good practice to use SL4J for

libraries and frameworks projects, because it allows the user of

library/framework to choose the desired logging implementation and

maintain the logging in convenient manner.

In our case, the Logback [87] logging implementation is used for the

desktop measurement tool and Android SL4J [88] logging implementation

is used for the Android benchmark application.

2.8.5.1 ScalaLogging

ScalaLogging is a wrapper library for SL4J and Log4j 2 libraries to

provide a lazy-style logging on top of these frameworks [89]. It considered

being a good practice to avoid the corresponding methods calls if the given

log level is not enabled:

1. if (logger.isDebugEnabled)
2. logger.debug(s"Some ${expensiveExpression} message!")

It is also true for parameterized log methods of the Logback library:

1. if (logger.isDebugEnabled)
2. logger.debug("Some {} message!", expensiveExpression)

However, this idiom heavily clutters the code and decrease the code

readability. The ScalaLogging use the new feature of the Scala language

48

Foundations Implementation Technology Stack

called macros (macros were introduced in Scala language in version 2.10) to

provide log level check automatically. Therefore, the log level checks will be

added to the following code automatically at compile time:

1. logger.debug(s"Some ${expensiveExpression} message!")

It significantly improves the readability by hiding ugly log level checks inside

the macro.

2.8.5.2 SLF4J Android

Because Android Framework has its own logging framework built-in

and does not implement the SL4J API, using of the libraries that are

dependent on the SL4J API will lead to the falling back of these libraries to

the SL4j no-operation logging implementation. However, logging provided

by third-party libraries is a good source of information while debugging

applications. The SL4J Android library provides a logging implementation

that forwards all calls to the SL4J API to the logger provided by Android

platform. This allows to libraries based on SL4J logging API to write their

logging messages to the Android log circular buffer, and then these messages

may be viewed using logcat [90] tool from Android SDK.

2.8.6 OpenCSV

OpenCSV is very simple parser for the CSV file format (essentially,

comma-separated values) [91]. It will be used in some of the ETL operations

of the desktop measurement software tool. The CSV format is considered to

be used because of its simplicity and portability.

2.8.7 Apache POI

The Apache POI library [92] will be used for exporting the collected

data from the measurement tool database to the Microsoft Excel [93] file

format. The histograms and graphs provided in chapter 4. Results are drawn

using Microsoft Excel.

49

Setup Test Environment Defining Component Tests Set

 Setup Test Environment

In this section, we are going to describe how component power

consumption is measured in this thesis and how then Energy Profiles are

calculated using the measurement values. These tests include scenarios,

which collects data for calculating following values from the Android Power

Profiles:

1. CPU_IDLE

2. CPU_AWAKE

3. CPU_ACTIVE

4. BLUETOOTH_ACTIVE

5. BLUETOOTH_ON

6. GPS_ON

7. WIFI_ON

8. WIFI_SCAN

9. WIFI_ACTIVE

10. SCREEN_ON

11. SCREEN_FULL

3.1 Defining Component Tests Set

Many tests (actually, all non-CPU tests) should be developed in a way

to minimize upstream power-consuming dependencies. Here, by power

dependencies we mean another hardware components that are involved into

scenario, e.g. determining location with GPS requires using not only the GPS

hardware itself, but also some efforts from the CPU. Therefore, measured

consumption in the GPS_ON test is not pure GPS hardware power

consumption, but a total of GPS hardware consumption and the CPU (at

least). The open question is which CPU state consider as the “base

consumption” in non-CPU tests. In this work, the CPU_AWAKE is always

used, but in reality, this is most likely the intermediate state between the

50

Setup Test Environment Defining Component Tests Set

CPU_AWAKE and CPU_ACTIVE0. To get the more precise results the

following solution may be applied: each non-CPU tests should be ran in every

CPU state. If the difference between the pure CPU test and the same scenario,

but with powered on non-CPU component remains the same across different

CPU states, then this difference – pure consumption of this, non-CPU,

component. However, if the difference if different across CPU states, then

maintaining the component loads the CPU and “base consumption” for this

component should be assumed as the higher CPU power state than

CPU_AWAKE.

The isolation of power consumers on the Android platform is a

challenging task, because of the Android application lifecycle. Even if there

are no any running applications at the start of the test, there is no guarantee

that no application will be run simultaneously with the our Energy

Benchmark. It leads to some unpredictable raise of the power consumption

of the device and this methodology do not answers the question how to

separate power consumption of the currently observable component from

other possible “noise”. The only attempt to solve the issue consists from

filtering out most outstanding values from the measured series. However, it

might be not legal for the components that might use adaptive algorithms.

For example, all wireless devices will require more power if signal strength

is low. Therefore, it is possible that if during BLUETOOTH_SCAN,

WIFI_SCAN of other tests that involving radio devices some new devices

with low signal will appear in radio ester it might cause short increase of

power consumption of the scanning device to recognize the capabilities of

the new device in radio ester [49]. In this thesis, it is assumed legal for radio

devices to cause short raise of power consumption and the outstanding

values are not filtered (however, it needs to be strictly proven).

Another technical question, which should be solved, is how to set up

required power state on the Android device. Some operations (like a

51

Setup Test Environment Defining Component Tests Set

switching off/on screen, various radio devices) are done using Android SDK

functionality provided for the applications developers. However, operations

as locking CPU frequency or changing screen brightness silently (not

involving user interaction with the Android device) requires low-level

operations with the Linux command line tools (Root Access is needed).

Tests, which cannot be automated (like CPU_IDLE) and tests that

require a big effort to be automated (like BT_ACTIVE, BT_AT_COMMAND,

etc.) may be done manually. In this case, the operator just sets up the phone

using common “Settings” menu of the Android phone and starts the

measuring session manually. However, this thesis focuses more on cases that

can be automated in graceful manner providing a convenient Android

software for measuring Android Power Profiles values. In addition, this

software may be used as a framework for building Energy Profiles using

different power models (not only reference Power Profiles).

All tests, except the screen ones running with screen and all

components that are not subject of the test powered off. The benchmark

application manipulates the screen-off timeout setting it to the minimal

value and waits for the screen power off timeout. For running scenarios that

are defined in Android benchmark application the following code snippet is

used (Java code):

1. protected static void doWork(LoopWorker worker) {
2. long startTime = System.currentTimeMillis();
3. long estimatedEndTime = startTime + DURATION;
4. long currentTime;
5. long logTime = -1;
6. do {
7. worker.next();
8. currentTime = System.currentTimeMillis();
9. if (logTime == -1 || currentTime - logTime > 5_000) {
10. sLogger.info("Benchmarking.. Current CPU frequency: {}",

CPUMonitor.getCurrentFrequency());
11. logTime = currentTime;
12. }

52

Setup Test Environment Defining Component Tests Set

13. } while (currentTime < estimatedEndTime &&
!Thread.currentThread().isInterrupted());

14. }

Different implementations of the “loop test” should provide their own

implementation of the LoopWorker interface to do some work in cycle, until

time is up.

3.1.1 CPU Benchmarks

First, CPU benchmarks set contains the CPU_IDLE scenario, which

cannot be automated by Android application. Any application activity like

logging “Benchmark Start” timestamp (we need such timestamps to bind

measured values to the test scenarios) will cause wake up and device will not

be in desired state (it will be in CPU_AWAKE state instead of the

CPU_IDLE). To measure the CPU_IDLE value manually the device, which

currently is in sleep mode needed. Android device need some time to go sleep

after screen if off. In addition, some applications can cause No-Sleep bugs

[1], which prevents the device from going to sleep. To set up a trustworthy

test, device is used immediately after factory reset [49] is done. Therefore,

no other applications is installed and this minimizes the risk of No-Sleep

bugs. It needs to be pointed, that it is possible that stock Android image

contains software with such bugs, so the measured values anyway should be

checked for adequacy. To prevent running any applications in response to

the system events on the phone with applications installed the Autostarts

[62] Android application may be used. It allows to forbid running the

applications in background. However, the application requires Root Access

(see section 2.7.7 Root Access).

The next major value is CPU_AWAKE, this value is important because

it has downstream dependencies, e.g. other Power Profile values depend on

how precise CPU_AWAKE was measured. This happens because any other

tests require CPU activity to perform operations to maintain optional devices

53

Setup Test Environment Defining Component Tests Set

(Wi-Fi, Bluetooth, and GPS). In addition, the energy benchmark itself

requires some little efforts from the CPU for switching hardware states and

logging timestamps to the database. CPU_AWAKE scenario defined as

following: the CPU frequency is locked using ability of the Linux Kernel to

control CPU governor directly with following commands in the shell:

echo temporary > /sys/power/wake_lock
echo userspace >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
echo 245000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
echo 245000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq
echo 245000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

To undo the effect of these commands:

echo temporary > /sys/power/wake_unlock
echo ondemand >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
echo 998000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

Note: if execute these commands “as-is” on other device the desired effect

may not be achieved. This particular command is applied to the first logical

core of the CPU (cpu0). Therefore, to control power state of multi-core CPU

you need to issue these commands for each available core of the CPU

(replacing cpu0 with cpu1, cpu2, cpu3, etc.).

Android application on the Android device reads the current values of

this Linux Kernel Nodes and saves them (to restore original values after test

end), issues these commands and then writes journal timestamp

“Benchmark Start” to the built-in Android SQLite database. Then it runs

empty cycles of Thread.sleep() Java instructions for the predefined amount

of time (all tests in this thesis use a one minute time window for collecting

current measurements). After time is ran out, application writes “Benchmark

End” timestamp to the database and restores the power state, which was

preserved before starting the test. The code of the CPU_AWAKE scenario

LoopWorker cycle is following:

54

Setup Test Environment Defining Component Tests Set

1. public void next() {
2. counter++;
3. ThreadUtils.sleep(3);
4. }

In general, this test case might be described using the following preuso-code:

1. -> Disable Wi-Fi
2. -> Disable Bluetooth
3. -> Acquire Partial Wake Lock
4. -> Turn Off Screen/Wait for Screen Off Timeout
5. -> Lock CPU Frequency at Minimum Level
6. -> Run the LoopWorker

The CPU_ACTIVE test scenarios simulating the load doing some

calculation job (calculating the digits of the Pi number) with predefined CPU

frequency. Actually, CPU_ACTIVE is not a scalar value, but a set of values

that can be viewed as a vector. These values correspond to the different

operating CPU frequencies. It is supposed to match the all-possible CPU

frequencies of the device’s CPU. However, vendors may not follow this rule.

For example, our test phone, HTC Desire, has following CPU frequencies in

the Power Profile XML file (obtained via using Java Reflection API on the

com.android.internal.os.PowerProfile class): [245000.0, 384000.0,

460800.0, 499200.0, 576000.0, 614400.0, 652800.0, 691200.0, 768000.0,

806400.0, 844800.0, 998400.0]. However, if you read the states that are

reported by the CPU governor driver you will get different CPU frequency

series:

$ cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state

The output if this command is following:

245000 4940688
384000 56809
460800 56067
499200 55898
576000 53777
614400 48705
652800 48743
691200 48672
768000 48816

55

Setup Test Environment Defining Component Tests Set

806400 49540
844800 49031
883200 732
998400 86111

Surprisingly, CPU governor driver reports the extra value that are not

presented in the Power Profile XML file (883200 KHz). To preserve the

structure of derived Power Profile same as the default Power Profile (to be

able to do a comparison) we also skip measuring this extra value (according

to the output on previous page, it is used very rarely). However, on other

devices this may lead to noticeable discrepancy, when calculating consumed

energy using Android Power Profiles (the solution for this is presented in 4.1

CPU Energy Profile section, it will be shown that for CPU power

consumption linear approximation will give good result). To measure

CPU_ACITVE activity power consumption the simplest solution is to use

endless mathematical calculations. For debugging purposes (it easy to notice

in this case that the CPU is actually works faster and “setup” part of the test

was done correct) calculation of the Pi number is used. Of course, any other

endless calculation activity (without waiting for I\O) will suite fine. The

example of the LoopWorker for the CPU_ACTIVE scenario (this code

calculates terms in the Madhava–Leibniz series [51] that very slowly

approximates the Pi number):

1. public void next() {
2. counter++;
3. BigDecimal currentTerm;
4. if (counter % 2 == 0) {
5. currentTerm = NEG_FOUR.divide(oddTerm, SCALE,

RoundingMode.HALF_UP);
6. } else {
7. currentTerm = POS_FOUR.divide(oddTerm, SCALE,

RoundingMode.HALF_UP);
8. }
9. oddTerm = oddTerm.add(POS_TWO);
10. piNumber = piNumber.add(currentTerm);
11. }

56

Setup Test Environment Defining Component Tests Set

In general, the scenario itself may be described using following pseudo code:

1. -> Disable Wi-Fi
2. -> Disable Bluetooth
3. -> Acquire Partial Wake Lock
4. -> Turn Off Screen/Wait for Screen Off Timeout
5. -> Lock Frequency at Desired Level
6. -> Run LoopWorker

This scenario should be executed for each CPU frequency that is mentioned

in the original Power Profile. The average of each measurement session will

produce the CPU_ACTIVE vector value.

3.1.2 GPS Benchmark

The GPS radio module has significant difference from other radio

devices in the Android device. It works only as receiver trying to catch and

decipher the long-wave radio signals from the GPS satellites. Therefore, it

have only two states – GPS turned off and GPS turned on. Android Power

Profile XML file has only one scalar value for the GPs device – GPS_ON

entry.

However, Android Location Services (it is a system interface to access

location information on the Android devices) provides different ways to

retrieve device’s coordinates. There are additional Location Providers like

cellular network information analysis and Wi-Fi network information

analysis. This scenario should ensure that only GPS Location Provider is

used and Wi-Fi and cellular modules are both completely off.

In addition, it is needed to keep in mind that GPS depends on the CPU.

Therefore, the GPS_ON test scenario is actually is extension of the

CPU_AWAKE test scenario. This test turns on the GPS hardware and

subscribes to receive the location updates of the device. It is important to

notice that, in general, the GPS consumption does not depend on fact was

the current location calculated or the calculation was failed do due low GPS

signal. After the test’s time is up, GPS hardware is turn off and the previous

57

Setup Test Environment Defining Component Tests Set

power state of the device (which was preserved before the test start) is

restored. To get a GPS hardware consumption metric, we assume subtraction

of the CPU_AWAKE energy from the average value during the measurement

session. Therefore, the same LoopWorker as for CPU_AWAKE test scenario is

used. The following pseudo code may be used to describe this scenario:

1. -> Disable Wi-Fi
2. -> Disable Bluetooth
3. -> Acquire Partial Wake Lock
4. -> Turn Off Screen/Wait for Screen Off Timeout
5. -> Lock Frequency at Minimum Level
6. -> Start GPS
7. -> Run LoopWorker
8. -> Stop GPS

3.1.3 Screen Benchmark

The screen hardware like CPU has many power states because of

different brightness levels. The colors displayed while screen is on can also

affect power draw on certain screen technologies. Another important thing

that powered on screen prevents the system from going to the standby mode

(however, it is not relevant for our methodology, as we are holding partial

wakelock in all test scenarios for more predictable results).

It is important to keep in mind that “screen” refers not only to the

graphical display itself, but also for a touchscreen and navigation buttons

backlight. Despite the fact that screen may have many different power states,

the reference Android Power Profile defines only two non-trivial values for

the screen. First value is SCREEN_ON refers to the screen powered on with

completely disabled backlight. Depending on the display technology and the

driver implementation, it may not be possible to switch off backlight

completely. If backlight switching off is not possible, the solution is to

measure power consumption at the lowest possible backlight value and at

the greatest possible backlight value. Then extrapolate the obtained values

to get approximation of the power consumption for the screen with disabled

backlight (actually, it is more important that calculated value for the minimal

58

Setup Test Environment Defining Component Tests Set

brightness should be precise, as applications anyway will not be able to

disable backlight on such device). The following pseudo code is used to

describe this test case:

1. -> Disable Wi-Fi
2. -> Disable Bluetooth
3. -> Acquire Screen Wake Lock
4. -> Turn On Screen/Wake Up Device
5. -> Lock Frequency at Minimum Level
6. -> Adjust Screen Brightness to Minimum Level
7. -> Run LoopWorker
8. -> Restore Screen Brightness Settings to User Level

Second screen Power Profile value is SCREEN_FULL. This value

defines additional power for the backlight on maximum brightness. To

calculate the power for the intermediate backlight steps a fraction on this

value based on the current brightness should be added to the initial

SCREEN_ON value.

To manipulate the screen brightness the built-in Android Framework

functionality may be used. However, this method have significant restriction

– due to security reasons the application allowed only to change the

brightness of currently shown Activity. However, it is not very suitable for

benchmarking purposes. For benchmark application, it is better to control

screen brightness directly using following commands in the shell:

1. # echo 100 > /sys/class/leds/lcd-backlight/brightness
2. # echo 0 > /sys/class/leds/button-backlight/brightness

The second command is applicable only to the devices that have buttons

backlight. Providing values less than minimal possible brightness or values

that are greater than maximum possible brightness has no effect. It is safe to

pass zero for the minimal brightness scenario and pass big enough value for

the maximum brightness scenario. On the test device, HTC Desire, the lowest

effective value is 30 and the greatest effective value is 250.

59

Setup Test Environment Defining Component Tests Set

Screen scenarios also depend on the CPU_AWAKE value as CPU is

running to draw the UI on the display. As in other scenarios, the CPU

frequency is kept as low as possible and no additional work on the

benchmark thread is done. Therefore, CPU_AWAKE value subtraction is

assumed for all screen scenarios. Scenarios are using the same LoopWorker as

CPU_AWAKE test scenario. The following pseudo code may be used to

describe the test case:

1. -> Disable Wi-Fi
2. -> Disable Bluetooth
3. -> Acquire Screen Wake Lock
4. -> Turn On Screen/Wake Up Device
5. -> Lock Frequency at Minimum Level
6. -> Adjust Screen Brightness to Maximum Level
7. -> Run LoopWorker
8. -> Restore Screen Brightness Settings to User Level

3.1.4 3G/Bluetooth/Wi-Fi Benchmarks

Measuring power consumption of the radio interfaces hardware is

most challenging task and few assumptions are needed before the test is set

up. All radio interfaces (Cellular, Bluetooth, Wi-Fi) may be disabled by the

user completely avoiding power consumption by these hardware

components. Measuring the cellular radio module power consumption is not

covered in this thesis due to complexity of the setup for this test scenario (e.g.

measuring RADIO_ON values require influence on the incoming GSM signal

strength).

Therefore, the first value refers to the powered on, but not actively used

component. Such values as RADIO_ON, BLUETOOTH_ON, WIFI_ON

indicate additional power consumption of the mobile device when

corresponding radio interface is turned on. However, these scenarios may

have some noticeable undesirable raises of energy consumption due to

external reasons. Such effects include broadcast traffic in Wi-Fi network,

receiving service information in cellular network, responding to the scan

requests of the other devices and so on. To avoid influence of these effects

60

Setup Test Environment Defining Component Tests Set

simple filtering on the measurement time series may be applied. After raw

data is collected, the average (a) and the standard deviation (s) of the series

[51] are calculated. Then, all values that are not in the interval [𝑎 − 𝑠, 𝑎 + 𝑠]

filtered out from the series. The average of the left values is assumed a Power

Profile value. As usual, it is required to subtract the CPU_AWAKE amount

of power from the raw measurements data to calculate the pure radio device

consumption.

Note: the RADIO_ON Power Profile value is a vector value, it should

contains a vector of values that are corresponds to the power consumption

of the cellular radio module with different signal strength of the cellular

network.

The all “ON” scenarios may be in general described using the following

pseudo code:

1. -> Disable Other Radio Interfaces
2. -> Enable Radio Interface
3. -> Acquire Partial Wake Lock
4. -> Turn Off Screen/Wait for Screen Off Timeout
5. -> Lock CPU Frequency at Minimum Level
6. -> Run the LoopWorker

The next common radio interfaces Power Profile value is power

consumption in scanning mode. Due to unknown reasons, Bluetooth Power

Profile does not include value corresponding to the scanning process.

However, in this thesis such value is referred as BLUETOOTH_SCAN value.

The analogic value for the Wi-Fi hardware is WIFI_SCAN entry. For cellular

radio module, the entry RADIO_SCAN refers to the state when this module

is paging the cellular network radio tower. Wi-Fi hardware and Bluetooth

hardware implement radio scanning in different ways due to differences in

functionality of these wireless protocols. The Android Framework provides

slightly different API for Wi-Fi networks scanning and Bluetooth neighbor

devices scanning. In case of the Bluetooth it is possible to request scanning,

61

Setup Test Environment Defining Component Tests Set

register Broadcast Receiver and receive the discovered devices information

once they are discovered. The API also allows querying of the Bluetooth

adapter for the current scanning state. However, the Wi-Fi Manager API in

the Android Framework lacks such capabilities. The way Wi-Fi Manager API

is used in the Android Framework is following: the method startScan() in

WifiManager used to start/restart Wi-Fi scanning and then you should use

the Broadcast Receiver to receive the notification that Wi-Fi scanning is

done. After such notification is received, it is safe to call getScanResults()

method to get list of the detected Wi-Fi networks. However, calling this

method in general is not safe and may produce many different exceptions.

Therefore, the LoopWorker implementation style is different for Bluetooth

and Wi-Fi scanning test scenarios. The example of the

BluetoothScanningWorker used in BLUETOOTH_SCAN scenario:

1. public void next() {
2. counter++;
3. if (!BluetoothManager.isDiscovering()) {
4. BluetoothManager.startDiscovery();
5. ThreadUtils.sleep(12);
6. } else {
7. ThreadUtils.sleep(0.25);
8. }
9. }

The analog for the WIFI_SCAN is the WiFiScanningWorker:

1. public void next() {
2. counter++;
3. WiFiManager.startScanAccessPoints();
4. ThreadUtils.sleep(0.1);
}

This set of scenarios may be in general described using the following pseudo

code:

1. -> Disable Other Radio Interfaces
2. -> Enable Radio Interface
3. -> Acquire Partial Wake Lock
4. -> Turn Off Screen/Wait for Screen Off Timeout

62

Setup Test Environment Defining Component Tests Set

5. -> Lock CPU Frequency at Minimum Level
6. -> Run the LoopWorker

The last set of wireless values set is called “active”. RADIO_ACTIVE,

WIFI_ACTIVE, BLUETOOTH_ACTIVE Power Profile entries refer to the

some usual activity done by the corresponding hardware. In case of Wi-Fi it

is transmitting data over the network (downloading some file from the

internet, or browsing some web pages will be adequate), in case of Bluetooth

it is supposed to be transmitting the MP3 file stream to the A2DP-profile

enabled wireless headset [12]. In case of the cellular radio module it is state

when cellular module is transmitting/receiving (i.e. both making call and

downloading files via 3G connection is suitable, Google’s documentation

allows different interpretation of the scenario in this case). In this thesis, only

WIFI_ACTIVE scenario is covered. Other “active” scenarios might be

implemented using same approach. WIFI_ACTIVE scenario uses the

following implementation of the LoopWorker helper:

1. public void next() {
2. counter++;
3. InputStream urlInputStream = null;
4. try {
5. urlInputStream = new BufferedInputStream(url.openStream());
6. BufferedReader reader = new BufferedReader(new

InputStreamReader(urlInputStream));
7. String line;
8. int bytes = 0;
9. while ((line = reader.readLine()) != null) {
10. bytes += line.getBytes().length;
11. }
12. sLogger.info("Web document {} contains {} bytes.", url,

bytes);
13. } catch (UnknownHostException e) {
14. sLogger.warn("Internet connection is not available!");
15. } catch (IOException e) {
16. sLogger.error("Network I/O error!", e);
17. } finally {
18. if (urlInputStream != null) {
19. try {
20. urlInputStream.close();
21. } catch (IOException e) {
22. // ignore

63

Setup Test Environment Defining Component Tests Set

23. }
24. }
25. }
26. }

This set of scenarios may be in general described using the following pseudo

code:

1. -> Disable Other Radio Interfaces
2. -> Enable Radio Interface
3. -> Acquire Partial Wake Lock
4. -> Turn Off Screen/Wait for Screen Off Timeout
5. -> Lock CPU Frequency at Minimum Level
6. -> Run the LoopWorker

Android platform source code also mentions BT_AT_COMMAND

Power Profile XML file item (in particular, constant

com.android.internal.os.PowerProfile#POWER_BLUETOOTH_AT_CMD points to

this). However, except the source code comment “Power consumption when

Bluetooth driver gets an AT command” there is no any other traces of this

entry, neither through Android developers forums, nor official Google’s

documentation for Android platform. Inspecting the Power Profile XML files

from real devices also does not give an understanding of this entry purposes,

because all devices, that we have seen contains some dummy (big enough to

be sure that it is fake value) or zero mA.

3.1.5 Missed Components

There are many other components in typical Android mobile device,

which are not covered by Android Power Profiles energy model. Such

components may include GPU, Sound (Headphones & Speakers) and

Vibration. However, usage of these components significantly affects the total

power consumption of the mobile device. This may lead to significant

discrepancy between estimated time and real operating time, when Android

Power Profiles are used for prediction of the Battery Life time.

Therefore, using of Android Power Profiles should be avoided for

prediction Battery Life time in scenarios, where these components are used

64

Setup Test Environment Defining Component Tests Set

hard. Such scenarios include games, music listening, video watching, etc. In

fact, almost every common usage scenario are not fully covered by the

Android Power Profiles entries. The positive side of this question is that, in

most cases, programmer have no influence on these factors – power

consumption of the speakers and vibration cannot be decreased

programmatically without affecting functionality (i.e. decreasing volume of

length of vibration). Therefore, measuring power consumption of the sound

and vibration are rare use-case of the usage of Android Power Profiles.

However, different power models may be used more effectively than

the Android Power Profiles. Using the technique from this thesis allows to

implement different scenarios according to needs of the power model.

Extension of the benchmark application and the analyzing software with new

scenarios for new Energy Profiles does not require significant effort. This

technique also allows you to validate the hypothesis of the component usage

by the application. If the offline measured total power consumption while

using the application equals (with some fault of course) to the sum of the

components power usage from the Energy Profile, then you have good

enough model to work with this particular application. It also might be a

good idea to use different power models for different types of apllications.

3.1.6 Battery Capacity Benchmarking

Let function 𝑓 = 𝑓(𝑡), where 𝑓 – instant value of amperage, flowing

through the battery at the time moment 𝑡 ∈ [0; 𝑇]. Then battery capacity 𝐶

drained at the moment 𝑇 may be calculated using following formula:

𝐶 = ∫ 𝑓(𝑡) 𝑑𝑡

𝑇

0

 (1)

Note: fast discharging (discharging with high flowing current) causes the

decreasing of the battery capacity for the current cycle. Therefore, it is

65

Setup Test Environment Automated Measuring Technique

important to measure battery capacity discharging the battery with the

common usage scenario to get the results applicable to further calculations.

Therefore, for estimating battery capacity any common usage scenario

may be used (e.g. streaming video from the internet using headphones at

80% sound level would be fine). In our methodology, we use special

application called Nova Battery Tester [65] [66]. It has the “Long

Benchmark” tool, which will drain the battery from 98% to 1%. The

application also tries to estimate the battery capacity by itself.

Because 𝑓 – continuous function, the First Mean Value Theorem for

Integrals [56] may be used to simplify the calculations. If 𝐹 – average value

of 𝑓 on the interval [0; 𝑇], then 𝐶 = 𝐹 × 𝑇.

3.2 Automated Measuring Technique

Maintaining all measuring scenarios manually is time-consuming

process and this process requires precise setup of the initial settings of the

device. To reduce the probability of mistakes during measurement session a

number of helpful tools were developed to automate the measuring process.

The general idea of the way used to derive Energy Profiles may be

described using the data flow diagram (see Figure 11. Data Flow Diagram).

As it is seen from the diagram, the software is divided into two parts –

Measurement Software for the desktop and Benchmark Software for the

Android mobile device itself. Next sections give an overview of these tools.

Figure 11. Data Flow Diagram

66

Setup Test Environment Automated Measuring Technique

3.2.1 Measurement Software Tool (YAmpy Application)

YAmpy is the working codename of helper measurement software. It is

responsible for pulling current measurements from the Yoctopuce Yocto-

Amp ammeter and keeping track of these measurements in the database.

Also, it contains the export module called “analyzer”, which is responsible

for simple data aggregation.

Figure 12. YAmpy Application Architecture

67

Setup Test Environment Automated Measuring Technique

This application is written in Scala language and uses SBT as a build

tool. The database layer is covered up by HyperSQL database. The class

hierarchy diagram presented at Figure 13. YAmpy Class Hierarchy Diagram.

Logically, the application architecture may be learned from the diagram

presented at the Figure 12. YAmpy Application Architecture.

The usage of the application may be known using the build-in help

command line argument: java –jar yampy-main.jar –help.

3.2.2 Android Energy Benchmark (PowerEichel Application)

PowerEichel is the name of Android application, which helps to setup

tests for Android Power Profiles usage scenario.

PowerEichel is written in Java language with help of Android SDK and

Guava library and uses Gradle build tool for assembling the package, which

can be installed on the Android device.

It is guaranteed that this application will work on the HTC Desire

phone (it was tested against it). However, to support other Android mobile

devices, some modifications may be required. It includes the adding checks

Figure 13. YAmpy Class Hierarchy Diagram

68

Setup Test Environment Automated Measuring Technique

against the device model application running on and returning correct paths

to the system files application working with. Also, application may have

issues with running on new versions of Android. It was tested against

Android 2.3.3. However, there are some restrictions in the new versions of

the Android operating systems, which will prevent the application from

correct functioning (basically, it refers to the revoking of some permissions

from being able to use from third-party applications).

Usage of the application is very intuitive (see screenshots at Figure 14.

Android Energy Benchmark Application).

After the “Start Benchmark” button pressed, the user interaction is not

required anymore. All tests, which are built-in, will be automatically

executed by the benchmark application.

To see concrete implementation of the test cases used in this work see

class org.powereichel.android.benchmark.service.EnergyBenchmarkService

in the powereichel-gradle project (see Appendix A for CD Contents).

Figure 14. Android Energy Benchmark Application

69

Setup Test Environment Defining Validation Technique

3.3 Defining Validation Technique

This section provides the description of possible validation scenario of

the derived Energy Profile value (it is applicable not only to Android Power

Profile).

3.3.1 The Role of the Battery Capacity in Validation

To make a validation of the adequacy of the derived value (i.e. it

represents the scenario it supposed to use in) it is need to know the total

battery capacity of the Android mobile device. For brand new batteries, it

may be possible to use designed battery capacity (information provided by

the manufacturer of the battery). However, for phones that was in use it is

expected to have battery degradations. In this case, it is import to measure

by offline methods (i.e. with hardware) the real battery capacity.

3.3.2 Estimation of the Battery Life using Power Profile

First, the real battery capacity of the phone

should be benchmarked. It may be done using Nova

Battery Tester or any other activity that will drain

the battery from 100% to 1% accompanying by the

offline measurements of the amperage. In this thesis

the combination of these tools are used: while using

the Nova Battery Tester application for the battery

draining, the measurement software (see section

3.2.1) are used for tracking the amperage of the

discharge (in this case, the current flowing through

the battery may be viewed as speed of the battery

discharge). During the 221 minutes (3 hours and 41 minutes) 30488 values

of instant amperage were registered by the measurement tool. For this usage

scenario, the measurement tool does not provide a built-in analyzer for time

series data. So, for the measurement session the custom “TAG” (again, see

Figure 15. Nova Battery Tester

70

Setup Test Environment Defining Validation Technique

section 3.2.1) was used for data distinction. The following SQL queries give

all needed data for further calculations of the battery capacity:

1. select AVG(MEASUREMENT_VALUE) from MEASUREMENTS where MARKER =
'BATTERY_CAPACITY_TEST_001'

2. select MIN(MEASUREMENT_TIMESTAMP) from MEASUREMENTS where MARKER
= 'BATTERY_CAPACITY_TEST_001'

3. select MAX(MEASUREMENT_TIMESTAMP) from MEASUREMENTS where MARKER
= 'BATTERY_CAPACITY_TEST_001'

In our case, the following input data was observed:

AVG (VALUE) MIN (TIMESTAMP) MAX (TIMESTAMP)

331 2014-01-30 10:30:15 2014-01-30 13:11:28

Table 2. Benchmark Data - HTC Desire [Battery Capacity]

Therefore, the battery capacity in this case:

331 𝑚𝐴 × (221 ÷ 60) ℎ = 1219 𝑚𝐴 × ℎ (2)

After the total battery capacity is known, it is possible to start make

estimations of the Battery Life in different scenarios. For example, the

assumption for the video playback scenario is that the total energy

consumption is CPU_ACTIVE_N (the power state of the CPU for each video

file should be checked) and WIFI_ACTIVE plus SCREEN_ON plus relative

brightness level (0. .1) multiplied by SCREEN_FULL value. If then divide the

battery capacity by the estimated power consumption the time, which phone

should be able to operate in such mode should be derived. After this, it is

possible to check empirically the correctness of the estimated time.

71

Results Defining Validation Technique

 Results

This section describes the observed issues with the measurement

sessions and the measurement results. Android Power Profile was

derived for the test phone, HTC Desire (running Android 2.3.3). The

tools described in previous section were used for deriving this Power

Profile.

Before proceed with reviewing values derived using direct

hardware measurement (offline measurement), let review the original

Power Profile supplied by the vendor of our test phone (see Table 3).

NONE CPU_IDLE CPU_AWAKE CPU_ACTIVE

0.0 2.8 0.0 66.6

WIFI_SCAN WIFI_ON WIFI_ACTIVE GPS_ON

100.0 2.9 120.0 170.0

CPU_SPEEDS BT_ON BT_ACTIVE BT_AT_COMMAND

[84.0, .., 168.4] 0.3 142.0 35690.0

SCREEN_ON SCREEN_FULL RADIO_ON RADIO_SCAN

100.0 160.0 3.0 70.0

RADIO_ACTIVE AUDIO VIDEO BATT_CAPACITY

300.0 88.0 88.0 1390.0

Table 3. Android Power Profile - HTC Desire

First, as we explained before, the entry BT_AT_COMMAND contains

dummy value because it is not used in current implementation of

Android Power Profiles. Second, CPU_AWAKE entry looks to be missed

(zero mA does not qualified to look like real value). Other values doesn’t

look very suspicious, however, comparing to the ASUS Nexus 7 Power

Profile (see Table 1. Android Power Profile - ASUS Nexus 7) the

difference for Wi-Fi and Bluetooth modules looks huge. It is unlikely

that there is so big difference in reality.

72

Results CPU Energy Profile

Next sections describe the method of converting raw measured

values to the Energy Profile values (according to the Android Power

Profile Energy Model). All descriptions are structured in a similar way

to provide a good way to analyze the data. Description of each Power

Profile entry includes list of the dependencies of the entry (basically, the

list of values that should be subtracted from the total measured device’s

consumption), count of instant measured values, example of the time

series values, average and standard deviation in series and a histogram

with a graph to observe measured values visually.

4.1 CPU Energy Profile

The first scenario, CPU_IDLE, is set up manually. The test phone,

HTC Desire, was rebooted and then we wait until device goes to the

standby mode (screen is off because of the timeout). This scenario have

not any dependencies. Because the beginning and the ending of the

measurement session were set up manually, the measurement was last

longer than default 1 minute tests that are done by Android application

benchmark. In total 305 values were observed. The average is 6 mA and

the standard deviation is 12 mA. If we will look at the histogram

(Histogram 1. CPU_IDLE) and the graph (Graph 2. CPU_IDLE) we may

notice that there are suspicious significant pikes.

0

50

100

150

200

1 2 3 4 5 10 25 50 100 …

M
e

as
u

re
m

e
n

ts

mA

CPU_IDLE

Histogram 1. CPU_IDLE

73

Results CPU Energy Profile

This energy consumption pikes may belong to the accidental CPU

wakeups because of the triggering of the scheduled Alarm Managers

(this is the mechanism of the Android framework, which allows

scheduling to run a program in the future [56]). Therefore, it might be

good idea to filter out the outstanding values in this case. The average

with filtered out values that are equals of greater than 10 mA is 2.8 mA

and the standard deviation is 0.6 mA. The sorted graph (Graph 1.

CPU_IDLE [Sorted] – values less than 10 mA are not included) gives

the overview of the values used for calculating such average.

The next scenario is CPU_AWAKE. It is dependent from

CPU_IDLE scenario as it is defined as additional amount of power,

Graph 2. CPU_IDLE

-20

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350

m
A

Measurements

CPU_IDLE

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350

m
A

Measurements

CPU_IDLE

Graph 1. CPU_IDLE [Sorted]

74

Results CPU Energy Profile

when CPU is not in deep sleep state. This scenario is the part of

automated pack of energy tests built in Android benchmark application

implemented for this thesis (see section 3.2.2). In this case,

measurement session report from our measurement tool (see section

3.2.1) is used. This report contains 191 measured values. The average

value is 71 mA and the standard deviation is 9 mA. The histogram

(Histogram 2. CPU_AWAKE) and the graph (Graph 3. CPU_AWAKE)

give the overview of the character of the changes in power draining.

In this case, there are also few outstanding values that may be filtered in

order to have more smooth results. However, if take look at sorted

graph, it may be noticed that there are very few such values and they

does not affect the average significantly. Sorted graph is presented on

Graph 4. CPU_AWAKE [Sorted].

Graph 3. CPU_AWAKE

0

50

100

150

25 50 65 75 85 95 110 135 150 175 …

M
e

as
u

re
m

e
n

ts

mA

CPU_AWAKE

Histogram 2. CPU_AWAKE

0

50

100

150

200

0 50 100 150 200 250

m
A

Measurements

CPU_AWAKE

75

Results CPU Energy Profile

The CPU_ACTIVE entry is a vector value; therefore, it actually

contains a set of values that should be obtained using the same scenario,

but CPU clock is fixed at different frequencies. Our test device, HTC

Desire, may operate at 12 different CPU frequencies. We will give the

overview for the edge cases scenarios (with lowest and highest CPU

frequency clock). These values are dependent on CPU_IDLE and

CPU_AWAKE scenarios (it is good idea to subtract “raw” values

measured during CPU_AWAKE scenario). For the CPU_ACTIVE_0

(CPU runs at 245 MHz) scenario 188 instant amperage values were

measured during 60 seconds. The average value is 105 mA and the

standard deviation is 8 mA. The histogram (Histogram 3. CPU_ACTIVE

0

50

100

80 85 90 95 100 105 110 115 120 150 200 250 …

M
e

as
u

re
m

e
n

ts

mA

CPU_ACTIVE [245000 KHz]

Histogram 3. CPU_ACTIVE [245 Mhz]

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

m
A

Measurements

CPU_AWAKE

Graph 4. CPU_AWAKE [Sorted]

76

Results CPU Energy Profile

[245 Mhz]) and the graph (Graph 5. CPU_ACTIVE [245 MHz]) give an

overview of the power consumption of the CPU under load.

The same scenario also was run at 998 MHz (CPU_ACTIVE_11). In this

case, 191 instant amperage values were measured. The average value is

217 mA and standard deviation is 13 mA. The histogram (Histogram 4.

0

50

100

150

200

0 20 40 60 80 100 120 140 160 180 200

m
A

Measurements

CPU_ACTIVE [245000 KHz]

Graph 5. CPU_ACTIVE [245 MHz]

0

20

40

60

80

150 175 185 195 205 215 225 235 245 255 275 300 350 …

M
e

as
u

re
m

e
n

ts

mA

CPU_ACTIVE [998000 KHz]

Histogram 4. CPU_ACTIVE [998 MHz]

0

50

100

150

200

250

300

350

0 50 100 150 200 250

m
A

Measurements

CPU_ACTIVE [998000 KHz]

Graph 6. CPU_ACTIVE [998 MHz]

77

Results CPU Energy Profile

CPU_ACTIVE [998 MHz]) and the graph (Graph 6. CPU_ACTIVE [998

MHz]) give the overview of the power draining character.

To summarize the CPU measurement session results, take an

overview of all “raw” measured values (see Table 4. CPU Energy Profile

– HTC Desire).

IDLE AWAK ACTIV0 ACTIV1 ACTIV2 ACTIV3 ACTIV4 ACTIV5

6±12 71±9 105±8 129±6 142±9 147±11 157±7 163±9

 ACTIV6 ACTIV7 ACTIV8 ACTIV9 ACTIV10 ACTIV11

 167±11 176±14 186±9 191±12 197±11 217±13

Table 4. CPU Energy Profile – HTC Desire

To convert this data to the actual Android Power Profile, it is

needed to subtract the dependencies to get the “pure” additional values

(see Table 5. Android Power Profile - HTC Desire [CPU]).

IDLE 6 mA

AWAKE 65 mA

ACTIVE [245 MHz] 34 mA

ACTIVE [384 MHz] (+139 MHz) 58 mA (+24 mA)

ACTIVE [460.8 MHz] (+76.8 MHz) 71 mA (+13 mA)

ACTIVE [499.2 MHz] (+38.4 MHz) 76 mA (+5 mA)

ACTIVE [576 MHz] (+76.8 MHz) 86 mA (+10 mA)

ACTIVE [614.4 MHz] (+38.4 MHz) 92 mA (+6 mA)

ACTIVE [652.8 MHz] (+38.4 MHz) 96 mA (+4mA)

ACTIVE [691.2 MHz] (+38.4 MHz) 105 mA (+9 mA)

ACTIVE [768 MHz] (+76.8 MHz) 115 mA (+10 mA)

ACTIVE [806.4 MHz] (+38.4 MHz) 120 mA (+5 mA)

ACTIVE [844.8 MHz] (+38.4 MHz) 126 mA (+6 mA)

ACTIVE [998.4 MHz] (+153.6 MHz) 146 mA (+20 mA)

Table 5. Android Power Profile - HTC Desire [CPU]

78

Results GPS Energy Profile

4.2 GPS Energy Profile

The GPS hardware tests set consists only of the one test scenario

– GPS_ON. In this, scenario the GPS Location Provider constantly

updates the current location of the device. This scenario is dependent

on the CPU_AWAKE scenario (however, it is open question – it may be

better idea to use CPU_ACTIVE_0 instead after investigating how much

actually GPS Location Provider requires CPU efforts). Our test

application subscribes for location updates for the 1-minute interval. In

this scenario, 178 instant amperage values were registered. The average

value is 136 mA and the standard deviation is 12 mA. The histogram

(Histogram 5. GPS_ON) and graph (Graph 7. GPS_ON) may give a

better “big picture” of character of power draining of the GPS. It is

0

50

100

150

100 125 125 145 155 165 175 200 225 250 …

M
e

as
u

re
m

e
n

ts

mA

GPS_ON

Histogram 5. GPS_ON

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

m
A

Measurements

GPS_ON

Graph 7. GPS_ON

79

Results Screen Energy Profile

expected that radio device have more unstable energy consumption

graph than CPU due to nature of how radio devices are functioning (they

are adapting to the external signal strength).

After normalizing the result (subtracting CPU_AWAKE value),

the Power Profile entry value for the GPS_ON scenario is 65 mA.

GPS_ON 65mA

Table 6. Android Power Profile - HTC Desire [GPS]

4.3 Screen Energy Profile

First scenario, SCREEN_ON is related to the state when screen is

running at minimal brightness. Actually, value defined as powered on

screen without powered on backlight. However, it is quite hard to

distinguish for certain display technologies is backlight off or just

running at small brightness. We will assume that in our case, the

backlight is completely off. Another assumption should be made

regarding the screen color. For different screen technologies different

colors on screen give different power consumption. Our test use the

mostly white screen with black text on it (almost the same conditions as

reading e-book). The screen scenarios depend on the CPU_AWAKE

entry. The screen is turned on for 1 minute and during this time 175

instant amperage values were registered with our software. The average

value of the series is 143 mA and the standard deviation is 12 mA. The

0

20

40

60

80

125 135 145 155 165 175 200 250 …

M
e

as
u

re
m

e
n

ts

mA

SCREEN_ON

Histogram 6. SCREEN_ON

80

Results Screen Energy Profile

histogram (Histogram 6. SCREEN_ON) and the graph (Graph 8.

SCREEN_ON) give the overview of the character of the screen power

draining.

There are almost equal probabilities of consuming any value in the

interval of 135 ~ 155 mA. Few outstanding values may belong to the

other Android system activities (in case of powered on screen, the device

operates normally and any application may react on the system-wide

broadcast messages).

Next values, SCREEN_FULL refers to the full-brightness state of

the screen backlight. The entry in Android Power Profile defined as

additional power needed for the backlight. Therefore, SCREEN_FULL

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

m
A

Measurements

SCREEN_ON

Graph 8. SCREEN_ON

0

50

100

150

200

325 350 375 400 425 450 500 …

M
e

as
u

re
m

e
n

ts

mA

SCREEN_FULL

Histogram 7. SCREEN_FULL

81

Results Screen Energy Profile

value depends not only on CPU_AWAKE entry, but also on the

SCREEN_ON value (so, it is possible just to subtract the “raw” values of

the SCREEN_ON test scenario). During common 1-minute test, 178

instant amperage values were measured. The average value is 368 mA

and the standard deviation is 13 mA. The histogram (Histogram 7.

SCREEN_FULL) and the graph (Graph 9. SCREEN_FULL) give an

overview of the character of the screen power draining.

The result of the scenario is very stable, there are almost no outstanding

values. This is because of the relatively high energy consumption of the

primary target hardware itself. In this case, other background activities

have almost no influence on the measured values.

After calculating the “pure” values, which are show only

additional power consumption of the appropriate components the

following Android Power Profile (screen-only) takes the place (see Table

7. Android Power Profile – HTC Desire [Screen]).

SCREEN_ON SCREEN_FULL

72 mA 225 mA

Table 7. Android Power Profile – HTC Desire [Screen]

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160 180 200

m
A

Measurements

SCREEN_FULL

Graph 9. SCREEN_FULL

82

Results Radio Energy Profiles

4.4 Radio Energy Profiles

For the radio devices, we have full coverage with test scenarios

only for the Wi-Fi hardware. Bluetooth Power Profile is incomplete

(BT_AT_COMMAND is missing because it is not documented and we

don’t know how the test should be set up and BT_ACTIVE value is

missing because we were unable to find suitable Bluetooth Headset with

A2DP profile). The Radio Module (GSM) Power Profile is absent

because all RADIO values are vector-based values and require many

measurements under different external conditions (i.e. base tower

strength signal) to derive them. However, the general idea behind the

scenarios for the radio devices remains the same.

First value, WIFI_ON, refers to the additional power consumption

when the Wi-Fi module is simply turned on, connected to the network

and not doing any tasks. This test, however, depends on the

CPU_AWAKE test scenario, as device is waken up, but doing nothing.

During standard 1-minute test, 187 instant amperage values were

measured. The average value is 78 mA and the standard deviation is 22

mA. Big standard deviation value is noticeable and it caused by some

activity which constantly appearing after each 20 seconds of the test,

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

m
A

Measurements

WIFI_ON

Graph 10. WIFI_ON

83

Results Radio Energy Profiles

which may be observed on the histogram (see Histogram 8. WIFI_ON)

and the graph (see Graph 10. WIFI_ON).

This activity may be caused by some application, which is triggered

when network connection is available (push updates, location updates,

etc.) or by some service traffic in Wi-Fi network (e.g. responding to the

DHCP and DNS requests).

Second value, WIFI_SCAN, refers to the scanning for the available

Wi-Fi networks. In addition to the CPU_AWAKE, it depends on the

WIFI_ON entry (again, it is just needed to subtract “raw” WIFI_ON

value from the measured one in the WIFI_SCAN test). During 1-minute

scanning test, our measurement software registered 188 instant

amperage values. The average value is 144 mA and the standard

deviation is 10 mA. The graph (Graph 11. WIFI_SCAN) and the

0

50

100

150

55 65 75 85 95 105125135145155175180200 …

M
e

as
u

re
m

e
n

ts

mA

WIFI_ON

Histogram 8. WIFI_ON

0

50

100

150

100 125 135 145 155 165 175 200 250 300 …

M
e

as
u

re
m

e
n

ts

mA

WIFI_SCAN

Histogram 9. WIFI_SCAN

84

Results Radio Energy Profiles

histogram (Histogram 9. WIFI_SCAN) give an overview of the power

consumption character.

Energy consumed in the Wi-Fi scanning scenario is relatively stable.

There are few outstanding values; however, they have not significant

influence on the average value.

Third Wi-Fi test scenario is WIFI_ACTIVE. It refers to the state,

in which files are constantly downloaded. Therefore, it depends on the

WIFI_ON and CPU_AWAKE Power Profile entries (is acceptable to

subtract “raw” WIFI_ON measured value). During 1-minute test

scenario, 180 instant amperage values were measured. The average

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

m
A

Measurements

WIFI_SCAN

Graph 11. WIFI_SCAN

0

50

100

150

90 100 110 120 130 140 150 175 200 250 …

M
e

as
u

re
m

e
n

ts

mA

WIFI_ACTIVE

Histogram 10. WIFI_ACTIVE

85

Results Radio Energy Profiles

value is 115 mA and the standard deviation is 25 mA. Graph and

histogram give an overview of the power consumption character.

Same outstanding activity, as in WIFI_ON test, is observed each 20

seconds during the test. However, in “pure” Power Profile WIFI_ON

“raw” values will be subtracted, so this entry is not affected by this effect.

First Bluetooth test scenario, BLUETOOTH_ON, refers to the

state, in which Bluetooth is powered on and paired with another device

and no activity is done. This test depends only on the CPU_AWAKE

entry. During standard 1-minute test, 180 instant amperage values were

measured. The average value is 71.4 mA (in this case rounding contains

decimal value after point) and standard deviation is 8 mA. The graph

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

m
A

Measurements

WIFI_ACTIVE

Graph 12. WIFI_ACTIVE

0

50

100

60 70 80 90 100 120 140 160 …

M
e

as
u

re
m

e
n

ts

mA

BLUETOOTH_ON

Histogram 11. BLUETOOTH_ON

86

Results Radio Energy Profiles

(Graph 13. BLUETOOTH_ON) and the histogram (Histogram 11.

BLUETOOTH_ON) give an overview of the power consumption

character.

In this scenario, there is no any significant deviations in the time series

values.

Second Bluetooth test case scenario, BLUETOOTH_SCAN is not

part of the standard Android Power Profile. However, it is good idea to

add such value to the Power Profiles to unify the model across entries

set in Power Profile of different radio modules hardware. This value

refers to the discovering of another Bluetooth devices. It depends on the

CPU_AWAKE and BLUETOOTH_ON Power Profile values. During

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200

m
A

Measurements

BLUETOOTH_ON

Graph 13. BLUETOOTH_ON

0

50

100

75 80 85 90 95 100 110 120 130 140 160 180 …

M
e

as
u

re
m

e
n

ts

mA

BLUETOOTH_SCAN

Histogram 12. BLUETOOTH_SCAN

87

Results Comparison with the Original Power Profile

standard 1-minute test, 203 instant amperage values were measured.

The average value is 91 mA and the standard deviation is 10 mA. The

graph (Graph 14. BLUETOOTH_SCAN) and the histogram (Histogram

12. BLUETOOTH_SCAN) give an overview of the power consumption

character.

The resulting Power Profile for the radio modules hardware (after

subtracting dependencies from the “raw” values) presented in the table

(see Table 8. Android Power Profile – HTC Desire [Wi-Fi & Bluetooth]).

WIFI_ON WIFI_SCAN WIFI_ACTIVE

7 mA 66 mA 37 mA

BLUETOOTH_ON BLUETOOTH_SCAN BLUETOOTH_ACTIVE

0.3 mA 20 mA N/A

RADIO_ON RADIO_SCAN RADIO_ACTIVE

N/A N/A N/A

Table 8. Android Power Profile – HTC Desire [Wi-Fi & Bluetooth]

4.5 Comparison with the Original Power Profile

To summarize the measurement session, the quick overview of the

discrepancies between the original Power Profile and derived Power

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250

m
A

Measurements

BLUETOOTH_SCAN

Graph 14. BLUETOOTH_SCAN

88

Results Comparison with the Original Power Profile

Profile is given. There is table (see) that have both original Power Profile

of the test phone, HTC Desire, and the Power Profile, which was updated

using the values derived from the measurement session (see sections

4.1, 4.2, 0, 4.4).

 NONE CPU_IDLE CPU_AWAKE CPU_ACTIVE

1 0 2,8 0 66,6

2 0 6 65 34

 WIFI_SCAN WIFI_ON WIFI_ACTIVE GPS_ON

1 100 2,9 120 170

2 66 7 37 65

 BT_ON BT_ACTIVE SCREEN_ON SCREEN_FULL

1 0,3 142 100 160

2 0,3 N/A 72 225

 RADIO_ON RADIO_SCAN RADIO_ACTIVE BATT_CAPACITY

1 3 70 300 1390

2 N/A N/A N/A 1220

Table 9. Comparsion of Power Profiles - HTC Desire

The original values in regular font and measured values are marked in

bold.

The significant difference in CPU Power Profile may be explained

by different handling of Android Power Profiles. Because, the Android

Power Profiles documentation [12] is poor quality, contains mistakes

and lacks an examples the handling of Android Power Profiles may vary

in very different ways. In our case, it looks like the CPU_AWAKE value

(in interpretation of this thesis) was moved as the first value of the

CPU_ACTIVE vector. The details on the CPU_IDLE value measuring

and high influence of the other activities is discussed in section 4.1. The

non-filtered value is taken because it mirrors better the real-world usage

scenario and, therefore, is more suitable for battery life estimation (see

next section).

89

Results Energy Profiles Validation

However, the radio interfaces and screen values were improved a

lot. There is only one coincidence – BLUETOOTH_ON, all other values

are have completely different values. It might be caused by different

measurement scenarios or mistakes during measurement. There is also

assumption, that these values were not actually measured, but taken

from the components manufacturers’ specifications and refer to power

consumption in completely different environments.

4.6 Energy Profiles Validation

In this section, the battery life estimation using the updated Power

Profile and original Power Profile will be done. For this, two scenarios

were chosen – GPS navigation application usage (Google Maps) and

online video streaming application (YouTube).

The running time is considered to be calculated using following

formula:

𝑇𝑏 = 𝐶 ÷ (∑ 𝐸𝑖

𝑛

𝑖=1

) (3)

𝑇𝑏- is the time battery supposed to run (in hours), 𝐶 – the battery

capacity (see section 3.3.2 for details on measuring this value) and 𝐸𝑖 is

the energy consumption from the Power Profile of the corresponding

component.

First scenario, using GPS navigation application, is done under

following conditions: CPU may be considered being in the

CPU_ACTIVE_2 state in average. Actually, the CPU uses aggressive

policy in this scenario; it runs at maximum state to process GPS

response and goes to sleep as soon as possible (this behavior was

observed querying /proc/cpuinfo, see details in section 3.1.1). Display is

tuned to maximum brightness, GPS and Wi-Fi devices are powered on

90

Results Energy Profiles Validation

and GPS is actively using. The rated battery life for vendor’s Power

Profile is 1220 ÷ (2.8 + 0 + 90 + 100 + 160 + 2.9 + 170) = 2,32 ℎ (the

power consumption should be 525 mA in average). For the updated

Power Profile it is 1220 ÷ (6 + 65 + 71 + 72 + 225 + 7 + 65) = 2,38 ℎ

(the power consumption should be 511 mA in average). The average

power consumption also were measured directly with Yocto-Amp (see

section 2.3.2) hardware and the measured average during battery

discharge was 514 mA. The battery was fully discharged in 2,37 ℎ. The

fault of vendor’s Power Profile is 2.2% and the fault of updated Power

Profile is 0.4% (relatively to real discharge time).

Second scenario, playing the video online, involved the following

components: CPU may be considered being in the CPU_ACTIVE_5

state while decoding video, display is tuned to maximum brightness and

Wi-Fi is up and downloads the video stream (therefore, it is viewed as

WIFI_ACTIVE). The rated battery life for vendor’s Power Profile is

1220 ÷ (2.8 + 111 + 100 + 160 + 2.9 + 120) = 2,46 ℎ (the power

consumption should be 496 mA in average). For the updated Power

Profile it is 1220 ÷ (6 + 65 + 92 + 72 + 225 + 7 + 37) = 2,42 ℎ (the

power consumption should be 504 mA in average). The average power

18%

49%

1%

32%

GPS Navigation [Built-In
Power Profile]

CPU SCREEN WIFI GPS

28%

58%

1%
13%

GPS Navigation [Updated
Power Profile]

CPU SCREEN WIFI GPS

Figure 16. GPS Navigation Power Usage

91

Results HOW-TO: Derive Energy Profiles

consumption also were measured directly with Yocto-Amp (see section

2.3.2) hardware and the measured average during battery discharge was

503 mA. The battery was fully discharged in 2,43 ℎ. The fault of vendor’s

Power Profile is 1.2% and the fault of updated Power Profile is 0.4%

(relatively to real discharge time).

Both Power Profiles give reasonable estimation of the battery life

time. However, the updated Power Profile gives better picture of each

component power usage.

4.7 HOW-TO: Derive Energy Profiles

In this section the example of the measurement application

extension is given. For example, all appropriate things for measuring

Energy Profile for the Vibration hardware will be added and then step-

by-step the Energy Profile for Vibration hardware will be measured.

First, the new scenario should be added to Android benchmark

application (see section 3.2.2). For this, the following tools are needed:

Android Studio (version >=0.4.4) (see section 2.7.1) and Gradle build

tool (version 1.10) (see section 2.8.3). Open the powereichel-gradle

project in Android Studio. Create new class VibrationManager in

org.powereichel.android.benchmark.util package. This class will be

23%

52%

25%

Online Video Streaming
[Built-In Power Profile]

CPU SCREEN WIFI

32%

59%

9%

Online Video Streaming
[Updated Power Profile]

CPU SCREEN WIFI

Figure 17. Online Video Streaming Power Usage

92

Results HOW-TO: Derive Energy Profiles

responsible for switching vibration hardware states. To access any

system service of Android OS the instance of Context class are needed.

Access to the global application context implemented via additional

fields on Application class (it looks like singleton, however things are

more complicated under the hood – this class holds a reference to an

actual application context, refreshing this reference when Application

object is recreated by Android OS). Add the following line to the

PowerEichel class:

1. private Vibrator mVibrator;

Then initialize this variable in onCreate() method:

1. mVibrator = (Vibrator)
getSystemService(Context.VIBRATOR_SERVICE);

Do not forget to add getter to provide access to this service from other

application classes:

1. public static Vibrator getVibrator() {
2. return sApplication.mVibrator;
3. }

Go back to the VibrationManager class:

1. public class VibrationManager {
2.
3. private static final String TAG = "VibrationManager";
4. private static final Logger sLogger =

LoggerFactory.getLogger(TAG);
5.
6. private static volatile boolean isVibrating = false;
7. private static final Object monitor = new Object();
8.
9. public static void startVibration() {
10. Vibrator vibrator = PowerEichel.getVibrator();
11. long[] pattern = {0, 1000};
12. synchronized (monitor) {
13. isVibrating = true;
14. vibrator.vibrate(pattern, 0);
15. }
16. }
17.
18. public static void stopVibration() {

93

Results HOW-TO: Derive Energy Profiles

19. Vibrator vibrator = PowerEichel.getVibrator();
20. synchronized (monitor) {
21. isVibrating = false;
22. vibrator.cancel();
23. }
24. }
25.
26. public static boolean isVibrating() {
27. return isVibrating;
28. }
29. }

The only thing left is the implementation of the scenario itself. For this,

open the class EnergyBenchmarkService in the

org.powereichel.android.benchmark.service package. Create method

runVibrationActiveBenchmark():

1. private void runVibrationActiveBenchmark(String
benchmarkGUID) {

2. EnergyBenchmark benchmark = new CPUAwakeEnergyBenchmark();
3. List<EnergyBenchmarkTimestamp> timestamps = new

ArrayList<>();
4. // === Setup Benchmark ===
5. waitForScreenOff();
6. disableWiFi();
7. disableBluetooth();
8. // === Start Benchmark ===
9. String benchmarkName = "VIBRATION_ACTIVE";
10. VibrationManager.startVibration();
11. CPUManager.lockFrequencyAt(CPUMonitor.getMinimumFreq());
12. doWork(benchmark, benchmarkGUID, benchmarkName,

timestamps);
13.
14. // === Finish Benchmark ===
15. VibrationManager.stopVibration();
16. processBenchmarkResults(timestamps);
17. }

Add the call of this method to the run() method of closure Runnable

inside the onStartCommand() method. You are done with new scenario

implementation.

To measure the energy consumption, connect the Yocto-Amp

ammeter to the PC that running YAmpy measurement tool (see section

3.2.1) and start the benchmark (you need an SD card to be available on

94

Results Generalization

the phone to get the CSV report). After benchmark is finished, copy the

CSV report from the device to the computer, which runs the YAmpy tool

and use analyze command to export the measured data in XLSX

(Microsoft Excel) format.

4.8 Generalization

The approach used in the thesis, has some limitations and works

only with described assumptions. This section gives an overview of how

to apply this approach to another devices and platforms.

The hardware part of this work includes taking a look at

alternatives. However, the device was chosen mostly because of its

availability and low price. If you will consider choosing another device,

keep in mind the easy-to-use API and compatibility. It also will be good,

if the measurement device will have higher refresh rate because modern

phones tries to go to lower power state as soon as possible and

sometimes the refresh rate of Yocto-Amp (see section 2.3.2) might be

not sufficient. It also need to be considered that many modern phones

have non-removable batteries and it is not possible to connect ammeter

to them without cracking the case of the phone.

From the software prospective, it need to keep in mind that

delivered Android app (see section 3.2.2) was tested using only one

single phone running specific HTC’s build of Android 2.3.3. The

application full of workarounds for Android API limitations and

therefore, the code might need to be ported to other phones. The CPU

tests were implemented in assumption that we have only one CPU core,

which is not true for modern phones. It is easy to overcome this

limitation, but it requires additional testing. In addition, the paths to the

Linux kernel system files in application are specific for this particular

model of the phone and it is needed to implement dynamical choosing

95

Results Direction of the Future Research

of the correct path depending on the phone model to adapt the app to

the other phones.

From the methodology prospective, the approach may be applied

to other platforms like iOS or Windows Phone. However, before

applying it, the API of those systems should be carefully revised and test

scenarios (see examples in pseudo-code in subsections of section 3.1)

need to be implemented regarding native system API. In addition, it

need to be checked if there are way on those platforms to count the

component usage time. Other platforms than Android are known to lack

the multi-tasking implementation, due to this limitation the approach

should be revised. For example, it might be possible for applications on

these platforms to have some library built-in to keep tracking the

components usage time. In this case, at least the access to the state of

components (the ability to query system is certain component in

particular state at least) is required.

4.9 Direction of the Future Research

This thesis is mostly focused on the technical side of measuring

Energy Profiles for Android platform. However, there are many related

questions, which need to be solved before the Energy Profiles become a

usable technique.

First, as it was seen sometimes during the measuring scenario

some deviations occurs. The assumption, that some other applications

are triggered by alarm managers or broadcast receivers. It might be

good idea to implement filtering of measured values. However, it is need

to be determined which activity is belongs to the test scenario and which

period of time was affected by external influence. For this, the precise

system of component usage, which is able to exactly determine which

components were active in certain moment of time. If such information

96

Results Direction of the Future Research

will be available, it will increase the precision of the measured values a

lot.

Second, the main goal of the Energy Profiling process is to

determine energy inefficient applications. For this, it is needed to map

instant energy of consumption of each component to the application

that use the component in particular time moment. It is even more

challenging task than in previous paragraph, because it is needed to

know not only which components were active, but also which

applications triggered the component activation respectively. This

information will allow calculating of how much each application

consumed the power and detect battery drains efficiently.

Third, the Android Power Profile model lacks many components.

For accurate calculation, it is important to keep tracking of as many

components as device may have. For this the custom Android power

model should be developed, which will include all components and

probably more convenient combination of components usage. For

example, it is hard to measure separately how much energy spent by

CPU and DSP co-processor while decoding the video. However, it is

more convenient to know how the energy consumption increases in total

while decoding particular format by particular implementation (i.e.

library). This requires classifying the common application’s work

patterns (video decoding, audio decoding, etc.) and providing and well-

documented scenario (probably, also the tool) to measure energy

consumption for this scenario of that particular implementation.

Another example of the Android Power Profiles inadequacy is that they

do not provide a way of providing hardware-specific information. For

example, for displays the energy consumption also depends from the

colors on the screen, not only the screen brightness. However, the

Android Power Profiles have no colors section for display states. Other

97

Results Direction of the Future Research

components may have states that are not covered by Android Power

Profiles. All this limitations significantly affects the energy consumption

estimations.

98

Conclusion

 Conclusion

In this thesis, it was shown how to calculate Energy Profiles for

Android Platform using the reference Android power model – Android

Power Profiles. The extendable software tools were developed in order to

provide an example of general methodology of Energy Profiles calculation.

The approach was evaluated using the HTC Desire test phone and updated

Power Profiles for this Android mobile device was delivered. In addition, it

was shown that the updated Power Profiles give more precise results for

estimation of the mobile device battery life time.

99

References

 References

[1] Intel Developer Zone, "Wakelocks: Detect No-Sleep Issues in

Android* Applications," [Online]. Available:

http://software.intel.com/en-us/articles/wakelocks-detect-no-

sleep-issues-in-android-applications. [Accessed 23 December 2013].

[2] Google Inc., "Android, the world's most popular mobile platform,"

[Online]. Available:

http://developer.android.com/about/index.html. [Accessed 10

November 2013].

[3] Android Developers, "Best Practices for Performance - Optimizing

Battery Life," [Online]. Available:

http://developer.android.com/training/monitoring-device-

state/index.html. [Accessed 17 November 2013].

[4] C. Wilke, "JouleUnit - A generic framework for profiling ICT

applications," [Online]. Available:

https://code.google.com/p/jouleunit/. [Accessed 10 November

2013].

[5] M. Gottschalk, Energy Refactorings, Oldenburg: University of

Oldenburg, 2013.

[6] Android Developers, "BatteryManager API (Javadoc)," 2013.

[Online]. Available:

http://developer.android.com/reference/android/os/BatteryManag

er.html. [Accessed 10 November 2013].

100

References

[7] P. Mochel, "The sysfs Filesystem," 2005. [Online]. Available:

https://www.kernel.org/pub/linux/kernel/people/mochel/doc/pap

ers/ols-2005/mochel.pdf. [Accessed 10 November 2013].

[8] T. H. Bui, "Android* Power Measurement Techniques," Intel

Corporation, 6 January 2012. [Online]. Available:

http://software.intel.com/en-us/articles/android-power-

measurement-techniques. [Accessed 10 November 2013].

[9] CurrentWidget Source Code,

"com.manor.currentwidget.library.CurrentReaderFactory,"

[Online]. Available:

https://code.google.com/p/currentwidget/source/browse/trunk/C

urrentWidgetLibrary/src/com/manor/currentwidget/library/Curre

ntReaderFactory.java. [Accessed 15 November 2013].

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, 1 ed., Addison-

Wesley Professional, 1994, p. 416.

[11] Android Source Code (4.3_r2.1), "android.os.BatteryStats," [Online].

Available:

http://grepcode.com/file/repository.grepcode.com/java/ext/com.g

oogle.android/android/4.3_r2.1/android/os/BatteryStats.java.

[Accessed 15 November 2013].

[12] Android Developers, "Power Profiles for Android," 2013. [Online].

Available: https://source.android.com/devices/tech/power.html.

[Accessed 10 November 2013].

[13] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba.,

"ADVANCED CONFIGURATION AND POWER INTERFACE

101

References

SPECIFICATION," 6 December 2013. [Online]. Available:

http://www.acpi.info/spec50.htm. [Accessed 15 November 2013].

[14] T. Maturo, "Short ARM Holdings: Sensitivity Analysis On Market

Share," 16 May 2013. [Online]. Available:

http://www.nasdaq.com/article/short-arm-holdings-sensitivity-

analysis-on-market-share-cm246545. [Accessed 25 November

2013].

[15] Sushu Zhang (Intel), "Intel® Power Monitoring Tool for Android*

Devices – A power and performance related data profiling tool for

Android Software Developers," 2 October 2012. [Online]. Available:

http://software.intel.com/en-us/articles/intel-power-monitoring-

tool-for-android-devices-a-power-and-performance-related-data.

[Accessed 19 January 2014].

[16] ExtremeTech, "Medfield, two years in: What killed Intel’s mobile

phone ambitions?," 29 November 2013. [Online]. Available:

http://www.extremetech.com/extreme/171682-medfield-two-

years-in-what-killed-intels-mobile-phone-ambitions. [Accessed 19

January 2014].

[17] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring:

Improving the Design of Existing Code, 1 ed., Addison-Wesley

Professional, 1999, p. 464.

[18] Qualcomm Developer Network, "Trepn Profiler," [Online]. Available:

https://developer.qualcomm.com/mobile-

development/performance-tools/trepn-profiler. [Accessed 9

December 2013].

102

References

[19] Android Developers, "Best Practices for Background Jobs," [Online].

Available: http://developer.android.com/training/run-background-

service/create-service.html. [Accessed 17 November 2013].

[20] Google Play Store, "PowerTutor," [Online]. Available:

https://play.google.com/store/apps/details?id=edu.umich.PowerT

utor&hl=ru. [Accessed 28 January 2014].

[21] PowerTutor.org, "A Power Monitor for Android-Based Mobile

Platforms," [Online]. Available:

http://ziyang.eecs.umich.edu/projects/powertutor/. [Accessed 28

January 2014].

[22] GItHub, "PowerTutor Project," [Online]. Available:

https://github.com/msg555/PowerTutor. [Accessed 28 January

2014].

[23] Little Eye Labs, "Performance Analysis and Monitoring Tools for

Android Developers," [Online]. Available: http://www.littleeye.co/.

[Accessed 29 January 2014].

[24] Little Eye Labs, "Understanding, debugging and fixing power bugs,"

[Online]. Available:

http://www.littleeye.co/blog/2013/03/24/understanding-

debugging-and-fixing-power-bugs/index.html. [Accessed 29

January 2014].

[25] Little Eye Labs, "How Little Eye Measures Power Consumption,"

[Online]. Available: http://www.littleeye.co/blog/2013/07/30/how-

little-eye-measures-power-consumption/. [Accessed 30 January

2014].

103

References

[26] Little Eye Labs, "Little Eye Labs is joining Facebook!," [Online].

Available: http://www.littleeye.co/transition.php.html. [Accessed

29 January 2014].

[27] Meetup - The San Francisco Android User Group, "Learn about

power consumption and battery life on Android devices," [Online].

Available:

http://www.meetup.com/sfandroid/events/12803170/?action=deta

il&eventId=12803170. [Accessed 31 January 2014].

[28] YouTube, "Learn about energy consumption and battery life on

Android devices," [Online]. Available:

http://www.youtube.com/watch?v=TwVoxaO0f1A. [Accessed 31

January 2014].

[29] SlideShare by LinkedIn, "Mobile Energy Consumption," [Online].

Available: http://www.slideshare.net/marakana/learn-about-

energy-consumption-and-battery-life-on-android-

devices?from_search=4. [Accessed 31 January 2014].

[30] Responsible Energy Corporation, "Glossary of Battery Terms," 2013.

[Online]. Available:

http://www.greenbatteries.com/batteryterms.html. [Accessed 24

November 2013].

[31] SANYO Component Europe GmbH, "Capacity," 2013. [Online].

Available:

http://www.eneloop.info/home/technology/capacity.html.

[Accessed 2014 11 2013].

104

References

[32] Apple Inc., "Lithium-Ion batteries," [Online]. Available:

http://www.apple.com/batteries/. [Accessed 25 November 2013].

[33] N. Riedel, Electric Circuits, 9 ed., Prentice Hall, 2010, p. 816.

[34] Yoctopuce, "Yocto-Amp," [Online]. Available:

http://www.yoctopuce.com/EN/products/usb-electrical-

sensors/yocto-amp. [Accessed 24 November 2013].

[35] Yoctopuce, "About Us," [Online]. Available:

http://www.yoctopuce.com/EN/aboutus.php. [Accessed 24

November 2013].

[36] Yoctopuce, "VirtualHub," [Online]. Available:

http://www.yoctopuce.com/EN/virtualhub.php. [Accessed 24

November 2013].

[37] Yoctopuce, "Libraries," [Online]. Available:

http://www.yoctopuce.com/EN/libraries.php. [Accessed 24

November 2013].

[38] Yoctopuce, Yocto-Amp, User's Guide, p. 177.

[39] MakerBot, "MakerBot Replicator 2 Desktop 3D Printer," [Online].

Available: http://store.makerbot.com/replicator2. [Accessed 9

February 2014].

[40] Monsoon Solution Inc., "Power Monitor," [Online]. Available:

http://www.msoon.com/LabEquipment/PowerMonitor/. [Accessed

24 November 2013].

105

References

[41] Monsoon Solutions Inc., "PowerTool Software," [Online]. Available:

http://msoon.github.io/powermonitor/. [Accessed 24 November

2013].

[42] Gitorious (Replicant), "Samsung P3100 Power Profile XML,"

[Online]. Available:

https://gitorious.org/replicant/device_samsung_p3100/source/03

34722f0c1f854c68bee6b98913257411527b9b:common-

overlay/frameworks/base/core/res/res/xml/power_profile.xml.

[Accessed 20 January 2014].

[43] Replicant, "Replicant Wiki," [Online]. Available:

http://redmine.replicant.us/projects/replicant/wiki#Introduction.

[Accessed 20 January 2014].

[44] Oracle, "Java SE HotSpot at a Glance," [Online]. Available:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-

136373.html. [Accessed 10 December 2013].

[45] The Android Source Code, "Dalvik Executable Format," [Online].

Available: http://source.android.com/devices/tech/dalvik/dex-

format.html. [Accessed 10 December 2013].

[46] C. Mcmanis, "The basics of Java class loaders," 1 October 1996.

[Online]. Available:

http://www.javaworld.com/article/2077260/learn-java/the-basics-

of-java-class-loaders.html. [Accessed 24 December 2013].

[47] Sun Microsystems, Inc., "Java Language Specification - Constant

Expression," [Online]. Available:

106

References

http://docs.oracle.com/javase/specs/jls/se5.0/html/expressions.ht

ml#15.28. [Accessed 24 December 2013].

[48] Oracle Technology Network, "Trail: The Reflection API," [Online].

Available: http://docs.oracle.com/javase/tutorial/reflect/.

[Accessed 25 December 2013].

[49] Open Handset Aliance, "FAQ," [Online]. Available:

http://www.openhandsetalliance.com/oha_faq.html. [Accessed 10

December 2013].

[50] Android Developers, "Tools Help," [Online]. Available:

http://developer.android.com/tools/help/index.html. [Accessed 25

December 2013].

[51] Oracle, "The try-with-resources Statement," [Online]. Available:

http://docs.oracle.com/javase/tutorial/essential/exceptions/tryRes

ourceClose.html. [Accessed 26 January 2014].

[52] Android Developers, "Android Debug Bridge," [Online]. Available:

http://developer.android.com/tools/help/adb.html. [Accessed 15

January 2014].

[53] CyanogenMod Inc., "All About Recovery Images," [Online].

Available:

http://wiki.cyanogenmod.org/w/All_About_Recovery_Images.

[Accessed 15 January 2014].

[54] Android Developers, "Factory Images for Nexus Devices," [Online].

Available: https://developers.google.com/android/nexus/images.

[Accessed 15 January 2014].

107

References

[55] ZTE Corporation, "ZTE Firefox OS Update Website," [Online].

Available: http://firefox.ztems.com/. [Accessed 15 January 2014].

[56] ClockworkMod, "Recovery Builder," [Online]. Available:

http://builder.clockworkmod.com/. [Accessed 16 January 2014].

[57] TeamWin, "TWRP 2.6," [Online]. Available:

http://teamw.in/project/twrp2. [Accessed 16 January 2014].

[58] CyanogenMod Inc., "Fastboot Intro," [Online]. Available:

http://wiki.cyanogenmod.org/w/Doc:_fastboot_intro. [Accessed 15

January 2014].

[59] Android Revolution HD | Mobile Device Technologies, "Do we really

need S-OFF?," 14 June 2013. [Online]. Available: http://android-

revolution-hd.blogspot.de/2013/06/do-we-really-need-s-off.html.

[Accessed 2014 January 16].

[60] Android Developers, "Activity," [Online]. Available:

http://developer.android.com/reference/android/app/Activity.htm

l. [Accessed 31 January 2014].

[61] Android Developers, "Services," [Online]. Available:

http://developer.android.com/guide/components/services.html.

[Accessed 1 February 2014].

[62] Android Developers, "AlarmManager," [Online]. Available:

http://developer.android.com/reference/android/app/AlarmMana

ger.html. [Accessed 23 January 2014].

108

References

[63] Android Developers, "Intent," [Online]. Available:

http://developer.android.com/reference/android/content/Intent.ht

ml. [Accessed 1 February 2014].

[64] SQLite Website, "SQLite Home Page," [Online]. Available:

http://www.sqlite.org/. [Accessed 1 February 2014].

[65] Android Developers, "Compatibility Test Suite," [Online]. Available:

http://source.android.com/compatibility/cts-intro.html#how-

does-the-cts-work. [Accessed 27 December 2013].

[66] Android Developers, "Android Low-Level System Architecture,"

[Online]. Available: http://source.android.com/devices/. [Accessed

27 December 2013].

[67] SAMSUNG, "S Pen SDK," [Online]. Available:

http://developer.samsung.com/s-pen-sdk. [Accessed 27 December

2013].

[68] A. Goldfeld, "Superuser," [Online]. Available:

http://www.cs.bgu.ac.il/~arik/usail/concepts/basic-unix-

know/superuser.html. [Accessed 28 December 2013].

[69] HTC Developer Center, "Android 2.3 Update for HTC Desire,"

[Online]. Available:

http://www.htcdev.com/process/legal_download/152. [Accessed 28

December 2013].

[70] M. Odersky, "What is Scala?," [Online]. Available: http://www.scala-

lang.org/what-is-scala.html. [Accessed 2 February 2014].

109

References

[71] Webopedia.com, "ETL - Extract, Transform, Load," [Online].

[Accessed 2 February 2014].

[72] M. Odersky and L. Spoon, "The Architecture of Scala Collections,"

[Online]. Available: http://docs.scala-

lang.org/overviews/core/architecture-of-scala-collections.html.

[Accessed 2 February 2014].

[73] Google Inc., "Guava: Google Core Libraries for Java 1.6+," [Online].

Available: https://code.google.com/p/guava-libraries/. [Accessed 2

February 2014].

[74] sbt, "sbt Documentation," [Online]. Available: http://www.scala-

sbt.org/. [Accessed 2 February 2014].

[75] Graph Visualization Software, "Graphviz," [Online]. Available:

http://www.graphviz.org/. [Accessed 2 February 2014].

[76] Scala Standard Library API (Scaladoc) 2.10.3, "process - Scala

Standard Library API (Scaladoc) 2.10.3 - scala.sys.process," [Online].

Available: http://www.scala-

lang.org/api/current/index.html#scala.sys.process.package.

[Accessed 2 February 2014].

[77] The hsql Development Group, "HSQLDB - 100% Java Database,"

[Online]. Available: http://hsqldb.org/. [Accessed 2 February 2014].

[78] R. Savage, "BNF Grammar for ISO/IEC 9075:1992 - Database

Language SQL (SQL-92)," [Online]. Available:

http://savage.net.au/SQL/sql-92.bnf.html. [Accessed 2 February

2014].

110

References

[79] Apache Software Foundation, "Apache Ant," [Online]. Available:

http://ant.apache.org/. [Accessed 2 February 2014].

[80] Gradleware Inc., "Gradle - Build Automation Evolved," [Online].

Available: http://www.gradle.org/. [Accessed 2 February 2014].

[81] Eclipse Foundation, "Eclipse Downloads," [Online]. Available:

https://www.eclipse.org/downloads/. [Accessed 2 February 2014].

[82] Android Developers, "Getting Started with Android Studio,"

[Online]. Available:

http://developer.android.com/sdk/installing/studio.html.

[Accessed 2 February 2014].

[83] JetBrains Company Blog, "IntelliJ IDEA is the base for Android

Studio, the new IDE for Android developers," 15 May 2013. [Online].

Available: http://blog.jetbrains.com/blog/2013/05/15/intellij-idea-

is-the-base-for-android-studio-the-new-ide-for-android-

developers/. [Accessed 2 February 2014].

[84] Apache Software Foundation, "Welcome to Apache Maven,"

[Online]. Available: http://maven.apache.org/. [Accessed 2

February 2014].

[85] Apache Software Foundation, "Apache Ivy," [Online]. Available:

http://ant.apache.org/ivy/. [Accessed 2 February 2014].

[86] The Codehaus, "Groovy - Home," [Online]. Available:

http://groovy.codehaus.org/. [Accessed 2 February 2014].

[87] QOS.ch, "Simple Logging Facade for Java (SLF4J)," [Online].

Available: http://www.slf4j.org/. [Accessed 2 February 2014].

111

References

[88] QOS.ch, "Logback," [Online]. Available: http://logback.qos.ch/.

[Accessed 2 February 2014].

[89] QOS.ch, "SLF4J Android," [Online]. Available:

http://www.slf4j.org/android/. [Accessed 2 February 2014].

[90] Typesafe Inc. - GitHub, "ScalaLogging," [Online]. Available:

https://github.com/typesafehub/scalalogging. [Accessed 2 February

2014].

[91] Android Developers, "logcat," [Online]. Available:

http://developer.android.com/tools/help/logcat.html. [Accessed 2

February 2014].

[92] OpenCSV, "Frequently Asked Questions," [Online]. Available:

http://opencsv.sourceforge.net/#what-is-opencsv. [Accessed 2

February 2014].

[93] Apache Software Foundation, "Apache POI - the Java API for

Microsoft Documents," [Online]. Available: http://poi.apache.org/.

[Accessed 2 February 2014].

[94] Microsoft Inc., "MIcrosoft Excel," [Online]. Available:

http://office.microsoft.com/en-us/excel/. [Accessed 2 February

2014].

[95] Scientific American, a Division of Nature America, Inc., "How does

Bluetooth work?," 5 November 2007. [Online]. Available:

http://www.scientificamerican.com/article.cfm?id=experts-how-

does-bluetooth-work. [Accessed 17 January 2014].

112

References

[96] HTC, "Resetting HTC One (Hard Reset)," [Online]. Available:

http://www.htc.com/www/support/htc-one/howto/365398.html.

[Accessed 16 January 2014].

[97] Google Play Store, "Autostarts," [Online]. Available:

https://play.google.com/store/apps/details?id=com.elsdoerfer.and

roid.autostarts&hl=ru. [Accessed 29 January 2014].

[98] M. Bland and D. Altman, "Statistics Notes - Measurement Error," 29

June 1996. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2351401/pdf/bmj

00548-0038.pdf. [Accessed 19 January 2014].

[99] Google Play Store, "Nova Battery Tester," [Online]. Available:

https://play.google.com/store/apps/details?id=ru.NanoDinamics.

NovaTester&hl=ru. [Accessed 30 January 2014].

[100] Nano Dynamics, "Nova Battery Tester - for Android," [Online].

Available: http://cyberdine.ru/~novatester~/. [Accessed 30 January

2014].

[101] H. Knaust and M. A. Khamsi, "Mean Value Theorems for Integrals,"

[Online]. Available:

http://www.sosmath.com/calculus/integ/integ04/integ04.html.

[Accessed 26 January 2014].

[102] Android Tools Project, "New Build System," [Online]. Available:

http://tools.android.com/tech-docs/new-build-system. [Accessed

24 December 2013].

113

Figures

 Figures

Figure 1. Android Battery Usage - Sony Xperia ZL ..7

Figure 2. Little Eye ... 15

Figure 3. Yoctopuce Yocto-Amp (taken from [22]) 21

Figure 4. VirtualHub Software ... 21

Figure 5. Battery Holder 3D Model .. 23

Figure 6. Battery Stub 3D Model .. 23

Figure 7. Yoctopuce Yocto-Amp Connection .. 23

Figure 8. ADB prompts RSA key authorization .. 33

Figure 9. ClockworkMod Recovery ... 34

Figure 10. Activity Lifecycle (taken from [59]) ..37

Figure 11. Data Flow Diagram ... 65

Figure 12. YAmpy Application Architecture ... 66

Figure 13. YAmpy Class Hierarchy Diagram ... 67

Figure 14. Android Energy Benchmark Application 68

Figure 15. Nova Battery Tester .. 69

Figure 16. GPS Navigation Power Usage .. 90

Figure 17. Online Video Streaming Power Usage .. 91

file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139111
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139112
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139113
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139114
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139115
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139116
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139117
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139118
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139119
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139120
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139121
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139122
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139123
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139124
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139125
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139126
file:///D:/SkyDrive/Документы/Магистерская%20работа%20-%20Andrey%20Saksonov/ENG/Master%20Thesis%20-%20Energy%20Profiles%20for%20Android%20-%20New.docx%23_Toc380139127

114

Tables

 Tables

Table 1. Android Power Profile - ASUS Nexus 7 ... 25

Table 2. Benchmark Data - HTC Desire [Battery Capacity]........................ 70

Table 3. Android Power Profile - HTC Desire .. 71

Table 4. CPU Energy Profile – HTC Desire ... 77

Table 5. Android Power Profile - HTC Desire [CPU] 77

Table 6. Android Power Profile - HTC Desire [GPS] 79

Table 7. Android Power Profile – HTC Desire [Screen]81

Table 8. Android Power Profile – HTC Desire [Wi-Fi & Bluetooth] 87

Table 9. Comparsion of Power Profiles - HTC Desire 88

Appendix A – CD Contents

 \Measurements

Raw measurements data (Microsoft Excel files)

 \Models

Models of plastic battery adapters (OpenSCAD files)

 \PowerEichel

Source code of Android benchmark application (Gradle project)

 \Steps

Screenshots how to run Android benchmark application

 \YAmpy

Source code of measurement tool for Yoctopuce Yocto-Amp device

(SBT project)

