
Faculty of Computing Science,
Business Administration, Economics,
and Law

Department of Computer Science

Cloud computing for mobile devices:

Reducing energy consumption

Master’s Thesis

Submitted by

Veronika Strokova

Supervisor:

Prof. Dr. Andreas Winter

Oldenburg, March, 2014

2

3

Abstract

Being powered by the batteries that are limited in their capacity

is one of the main restrictions of the mobile devices. On the other hand,
further enhancement of their characteristics and mobile Internet
mounting speed incite the growth of user’s demands. We want the most
sophisticated applications to work rapidly and perfectly. Thus, we need
a solution to improve the mobile devices’ energy consumption.

This master’s thesis presents the approach which is able to
decrease the power consumption on mobile gadgets. The core idea lies
in porting the parts of the application’s functionality to the remote
server in order to relieve the CPU load. Consequently, we are going to
derive the benefit from cloud computing. For this purpose, the “heavy-
loaded” code blocks are extracted from mobile apps and built into the
server-side applications. Both mobile and “remote” versions of the apps
are run, their power consumption is measured and compared. It is
expected that energy spent on client-server communication is less than
power needed to execute the task on a phone or tablet. Moreover, the
performance change is estimated.

The experiments are conducted on three Android applications.
The paper provides a technique to move the functionality to the cloud
and to organize the communication between a client and a server. It is
explained when and how it is required to adjust the approach to
overcome the challenges that may occur. In addition, the restrictions
and recommendations are denoted and performance changes are
outlined. The applications are tested against various data volumes,
Internet connection speed and use different ways to transfer data.
Energy consumption for each case is measured and the results are
presented.

4

5

Content

Content .. 5

1. Introduction ... 7

2. Tools ... 11

2.1. Android .. 11

2.2. Dalvik ... 13

2.3. Power measurement tools .. 14

2.3.1. Little Eye .. 15

2.3.2. Android Debug Bridge ... 16

2.3.3. PowerTutor ... 16

2.3.4. Andromedar .. 17

2.3.5. Yocto-Amp ... 18

2.3.6. Which power measurement tool to choose? 18

2.4 Other tools .. 19

2.4.1. Vert.x ... 19

2.4.2 OpenShift ... 19

2.4.3. HTTP Communication .. 19

2.4.4. JCodec ... 19

2.4.5. Patterns .. 19

3. Approach ... 21

3.1. What to look for .. 21

3.2. How to port the app to the cloud ... 21

3.3. Client-server HTTP communication ... 23

3.4. Test cases for power measurement .. 32

4. Test applications .. 33

4.1. FiniteElementCalculator ... 34

4.1.1. Application architecture .. 34

4.1.2. Porting to the cloud .. 35

4.1.3. Power measurements ... 35

4.1.4. Result .. 39

4.2. AsciiCam Image .. 40

4.2.1. Application architecture .. 41

4.2.2. Porting to the cloud .. 41

4.2.3. Power measurements ... 44

4.2.4. Result .. 46

4.3. AsciiCam Video ... 48

6

4.3.1. Application architecture .. 48

4.3.2. Porting to the cloud ... 48

4.3.3. Power measurements ... 48

4.3.4. Result .. 51

5. Generalizing approach .. 52

6. Conclusion ... 54

7. References ... 56

Appendix .. 60

CD ... 60

7

1. Introduction

 The sphere of mobile devices is probably the most dynamic in the
IT world today [1]. It is hard to imagine our everyday life without the
technological tools on hand [2]. They are used not only for our private
needs, but also in business, education, healthcare, sport and many other
spheres. But the fact is, that the IT resources are confined [3] and it is
essential to find the means to extend, customize them and bring them
to a new level of energy consumption.

 This thesis addresses fast mobile battery discharging [4]. High
loading due to the complicated calculations and rich functionality
restricts a user in their operations. And it is not the useless battery
drain. Usually, we deal with well-written efficient code that we cannot
get rid of [5], but that,
nevertheless, consumes a lot of
power. Thus, we need a solution
that will be able to reduce the
utilization of the device
resources.

 The problem of high power
consumption is relevant to
modern mobile devices.
Improvement of characteristics
and capacities and mobile
Internet mounting speed incite
the growth of user’s demands.
We want the most sophisticated
applications to work rapidly and
perfectly [6]. At the same time,
we are unable to increase the
battery capacity [7].
Consequently, we are forced to
charge our phones and tablets
once or twice a day or refrain
from enjoying the favorite apps.
Android AppStorm – a web site
about Android applications
development – conducted the poll
with a question “How often do
you charge your phone?” [8]. The
results are on Figure 1.

 The applications with rich
functionality contain “heavy-
loaded” blocks of code that are responsible for the pivotal functions, but
at the same time, take most of the energy consumed by the app. They
may include some complicated objects transformation, calculations or
data processing. One approach to deal with them is to find this code,

Figure 1. Frequency of charging the
Android mobile devices (according
to the android.appstorm.net's poll).

8

extract it and move to the cloud. In such a way, when a user runs an
application, a part of it is executed on a remote server, providing the
occurrence of the Internet connection. This approach is elaborated in
this work. It is expected, that the energy needed for data transmission
from device to a server and receiving back a result can be less than the
energy consumed for executing the same functionality at a device. This
is the first hypothesis of the work.

 Another hypothesis is that in many more or less complicated
applications there exist some “heavy-loaded” blocks which can be
extracted without hurting an app and executed remotely leading to
more energy efficiency.

 The objective of this work is to define the value of delegating
parts of functionality from mobile devices to the cloud. Will it improve
the energy consumption?

 To complete the goal, it is needed to solve a number of tasks:

 First of all, it is required to find the code that is suited for
passing to the cloud, extract it without changing or crashing
business logic of the application and transfer this
functionality to the server. At this point, it is important to
determine the most resource consuming blocks of code as
we are not going to run the whole application in the cloud.
A technique to define such code is not produced in this work,
but in our experiments, we handle the methods which
contain cycles or a lot of mathematic calculations which
significantly load the CPU that, in its term, dominates the
power consumption along with the screen [9]. After
conducting the experiments, the deductions about how
these operations are worth migrating to the cloud will be
made. Everything is done on the basis of some case studies
in order to verify hypotheses of the work.

 Secondly, it is required to measure the power needed to
execute a function on a device and the energy consumed for
data transmission to a server and getting back the result
[10].

 Finally, these two values are compared and a conclusion
about the efficiency of the method is made.

 The developer tools used are described in the “Tools” chapter
later.

 In this work, two state-of-the-art concepts are combined: mobile
technologies and cloud computing [11]. None of them is brand new but
today they are on the peak of popularity [12] and the approach to use
this combination for achieving more energy efficiency is novel.

9

 To fulfil the tasks, we need Android [13] mobile applications with
open source code. It should be the Java applications with some “heavy”
functionality which can be harmlessly extracted. If we consider some
resource consuming calculations, the following apps seem to be
suitable:

 route building in navigation systems;

 building panoramic pictures;

 advanced engineering calculations;

 optical character recognition;

 graphical editors;

 specific systems (professional ones);

 speech recognition;

 music sequencers.

 By now there are some examples of software delegating a part of
their functionality to a remote server. For instance, the iOS Siri [14]
application for interpreting and recognizing speech both connects to
the cloud and evaluates data locally [15] [16] [17].

 If the idea succeeds, we will be able to manage the problems by
reducing power consumption, therefore providing more and more
complicated and highly functional applications with longer battery live
phase. In addition, it might be useful to evaluate the variation in
performance if there is any. Performance might decrease as we cannot
guarantee that a result from the server will be received rapidly. But
even if the performance goes down, it can be acceptable and preferable
for a user at the cost of battery live time increase. So, the performance
trend is the third question of this research.

 Globally, it will be possible to enjoy the favorite apps faster and
longer, charging the battery rarely and without realizing any technical
difference from what it was before. On the other hand, the software
proprietors attain more competitive and popular products [18].
Moreover, it is environmentally friendly as less energy is consumed and
less heat is produced that of significant concern.

 Hence, the objective of this work is to conduct a number of
experiments to verify three hypotheses:

 the energy needed for data transmission from device to a
server and receiving back a result can be less than the
energy consumed for executing the same functionality at a
device;

 there can exist some “heavy-loaded” code blocks which can
be extracted without hurting an application and executed
remotely;

10

 performance can change to the worse as well as to the
better.

 The master’s thesis is divided into several chapters. First of all, it
is necessary to find a suitable application, determine, extract and
delegate functionality to the cloud server and measure energy needed
to transfer data from a mobile device to the cloud. These experiments
will serve as a basis for defining power-hungry features. The power
consumption of the cloud is not measured. Secondly, it is necessary to
measure power and pay attention to CPU resources required to run the
applications on a mobile device considering the same application. After
that, the comparisons are made and the approach is generalized. Finally,
the conclusions about value and worthiness of the approach are derived.

11

2. Tools

 For this work, the following tools are used: Java [19] as a
programming language and application platform, the Android SDK,
Little Eye for measuring power consumption, OpenShift [20] - the open
cloud application platform by Red Hat as a server for the applications,
Vert.x [21] – an application platform for the JVM – to facilitate the
implementation of HTTP-communication between a client and a server,
Gson [22] Java library for processing JSON used for transferring data
between a client and a server. All of them and some alternatives are
described in this section.

 2.1. Android

 Android is the most popular mobile OS in the world [13]. Android
community provides the open source platform for free distribution,
modification and development.

 The Android system was developed considering the mobile
devices' restrictions, including that they are battery powered and
battery performance is not likely to get better [23] [24]. The Dalvik VM
contains a Just-In-Time (JIT) compiler. “The JIT is a software component
which takes application code, analyzes it, and actively translates it into
a form that runs faster, doing so while the application continues to
run. ... Code that is written to be rate-limited can get its work done
using less time and less of the CPU (using less battery)” [25].

 Android mainly uses Java as a platform for application
development. The code and other data are compiled with Android SDK
(software development kit) [26] and packaged in an .apk archive
file. .apk files are directly installed on Android devices. The code of each
application runs in isolation, that is, an application is a user as in Linux
systems (Android actually bases on Linux kernel), it is granted its
unique user ID when started, and it has no access to the data of other
applications or system. However, it is possible to give such permission
[27].

 It is also possible to use native-code languages such as C
managing them with Android NDK (native development kit). Sometimes,
it can be useful to reuse already existing C-libraries.

 By sight, a user can distinguish three layers of Android
application. Typically, a combination of top level and detail/edit views is
used. Top level presents core features and purpose of the application.
The detail/edit view allows a user to receive or post data. If the
navigation is supposed to be deep, category view is layed between top
level and detail/edit views [28].

 Programmatically, an Android application can contain four types
of components: activities, services, content providers and broadcast
receivers [27].

 An activity can be referred to as a single screen with UI. Each
activity, although working together, is independent of the others. Only

12

one activity can be run by the app at once. An activity is implemented
by extending the class Activity.

 Activity lifecycle is managed with the help of callback functions.
One of the most important is onCreate() which is called by the system
when activity is created. This function must be implemented. The user
interface is setup here with setContentView(). Other callback functions
regarding lifecycle are onStart(), onResume(), onPause(), onStop(),
onDestroy(). Each one is called in accordance with the new application
state [29].

 A service runs in the background and executes long-running
operations or supports remote processes. It is started or accessed by
other components. A user interface is not provided by a service. A
service is implemented by extending the class Service.

 A content provider manages application data. There are some
options to store data: the file system, a SQLite database, the web, etc.
Depending on the content provider settings, other applications can read
or modify the data. In addition to this, a developer can use content
provider to read and write data which will not be shared with other apps.
A content provider is implemented by extending the class
ContentProvider.

 A broadcast receiver listens to system-wide broadcast
announcements. It does not provide a user interface, but can generate
notifications to inform a user. A receiver often serves as a tool for other
components detecting that an event has happened. A broadcast
receiver is implemented by extending the BroadcastReceiver class and
receives broadcasts as Intent objects.

 Activities, services and broadcast receivers are activated by
intents. Google suggests to think about intents as “the messengers that
request an action from other components” [27], whether they belong to
your application or another.

 AndroidManifest.xml file informs the system about an application
activities and declares which components are used by the app, which
permissions are granted, API libraries the application needs,
application requirements, some hardware and software features, etc.

 When an application is launched, the system creates a thread for
it. It is the “main” thread which executes all the work including crucially
important interaction with a user, that is why it is often called UI thread.
For many applications, using one thread is enough, but there can be
some tasks such as network access or database queries which can block
the UI thread that it unacceptable from the standpoint of application
development guidelines. The UI thread should never be blocked [30].
Thus such long lasting processes are run on a separate thread. One
option to implement this approach is the AsyncTask class [31].
AsyncTask allows to run the code thread-safe on another thread and
publish result to the UI without managing threads or handlers manually.
The task in AsyncTask subclass goes through 4 steps:

13

 onPreExecute();

 doInBackground(Params...);

 onProgressUpdate(Progress...);

 onPostExecute(Result).

doInBackground() contains the functionality to run in a worker
thread. Three other methods are invoked on the UI thread. It is
guaranteed that the parameters passed from the UI thread will be used
in doInBackground(), whereas a result will fall into onPostExecute() on
the UI.

 2.2. Dalvik

 We can face the challenges while porting the Android application
functionality to the non-Android server. That is why it is important to
know how Dalvik virtual machine is different from JVM (Java virtual
machine), which opportunities it offers and which restrictions it has.
Only the features that can influence your code will be considered.

 First of all, there is an important difference in libraries, although
not very wide. Java AWT (Abstract Window Toolkit) and Swing user
interface libraries were replaced with Android-specific user interface
libraries. Android also adds few new features to standard Java while
supporting most of Java’s standard features. Android’s Java set of
libraries is closest to Java Standard Edition. In the application
framework layer, you will find numerous Java libraries specifically built
for Android [32].

 Another minor feature is that you use android.util.Log or other
libraries on Android instead of Java's System.out and System.err.

 Secondly, the “fast” interpreter on Dalvik can be created out of C
“stubs” if no assembly fragments are available for the current
architecture [33]. A stub looks like a complete method to the client but
actually just passes on the client request to the remote service. This is
Dalvik runtime-specific and is not managed automatically in Java
environment. The problem can be probably resolved by writing the
absent code manually, but it is going to be tedious and worthless.

 Thirdly, it is known that there are many other JVM languages
except for Java such as Python, Ruby, Groovy, Scala and others. Initially,
the Dalvik virtual machine did not support them. Then the Scripting
Layer for Android (SL4A) [34] was announced. It brought Python, Perl,
JRuby, Lua, BeanShell, JavaScript, Tcl, and shell to Android and it is
planned to add even more. Scala code can also be executed on Dalvik
[35].

 The reason why you cannot run the same bulk of languages on
JVM and Android is the difference between the executable files. JMV
runs .class files and Dalvik - .dex (Dalvik Executable). For the
compilation processes, see Figure 2. (JVM is on the left, Dalvik – on the
right).

14

 There are more considerable differences between two virtual
machines, but they refer mostly to the low-level implementation and are
not likely to directly affect your code. That is why they are not described
here.

 2.3. Power measurement tools

 We are going to talk about a number of power measurement tools
in this section. They are all quite different and have their own
peculiarities. Little Eye was chosen for this work, and the reasons are
mentioned below. After that, we will take a brief look at some
alternatives.

Figure 2. Java VM versus Dalvik [60].

15

It is admitted that the currently provided power profiles may not
be fully reliable. However, whatever tool we use for our measurements
we do not bother about that, since our goal is to compare the power
consumption before and after the employment of our approach, but not
to get the precise actual numbers.

 2.3.1. Little Eye
 Little Eye [36] is a desktop performance analysis tool by Little Eye
Labs for Android applications. It measures app's power consumption
(separating total amount, CPU, WiFi and display usage), network data
transfer and memory usage. Little Eye also shows the key events
happening while the application is going on, such as grabbing and
releasing the lock, display going on and off, the current app state, etc.
After the measurement is stopped, it is possible to return to any time
point and explore what was happening. The great feature is an option
of building graphic report which is divided into power, data and memory
sections.

 The user interface of Little Eye on the desktop looks like at Figure
3.

The central part of a window is occupied by the power
consumption diagram which is updated in real time (or any other
component usage diagram if you choose is in Trends on the left). Under
the Trends, the current numbers are displayed. You can see the events
in the bubbles under the diagram. If the cursor is pointed at the event
bubble, you can see the explanatory message about what has happened.
On the right, the screen is depicted. You can go back to any point of
time and see what was going on on your screen. This whole view can be
saved and opened again later if you need it.

Figure 3. Little Eye UI.

16

Little Eye Labs did their tests with the use of an actual power
monitor [37]. The power consumed by an app is a function of the
resources the app is using, like the amount of CPU being consumed,
number of bytes being sent over WiFi, and so on. Little Eye has carefully
built up power models that can calculate the milli-watts of power
consumed. Currently, the default model device is the Nexus One.

Little Eye was available for free 3-month trial. After the project
joined Facebook at the beginning of January, 2014, it is only available
for the existing customers until June 30, 2014 when a new version is
likely introduced.

 2.3.2. Android Debug Bridge
 Android Debug Bridge (adb) [38] is a command line tool which
allows to get the system data such as current voltage, current, workload
time, battery used, etc. needed for our research from a connected
Android-powered device. adb can be found in Android SDK Platform-
tools.

When you got the figures for current voltage (V), battery used (%),
battery capacity (mAh), and workload duration (h), you are able to
calculate the power using the following formula:

𝑃𝑜𝑤𝑒𝑟 =
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑈𝑠𝑒𝑑 ∗ 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

 adb requires three components for its work: a client running on
the development machine, a server running in background on the
development machine and a daemon running in background on the
emulator or device. The server listens on the local TCP port to the
clients' commands. It establishes connection to the running emulators
and/or devices. Where an adb daemon is found, the server sets up a
connection to that port. As soon as the connection is set up, data from
these devices or emulators can be retrieved.

 2.3.3. PowerTutor
PowerTutor [39] measures the energy consumption by an

application and system component (CPU, network, display, GPS) (Figure
4). It can help the developers evaluate the power-efficiency of their
applications as well as the users can see what drains their battery. The
results are claimed to be within 5% of actual values. PowerTutor's
power model was built on HTC G1, HTC G2 and Nexus one with direct
measurements. As for the reports, the application stores the history and
generates text-files with detailed information.

17

 2.3.4. Andromedar
Andromedar power measurement application was programmed

as a diploma project by Marcel
Schröder in Carl von Ossietzky
Universität, Oldenburg, Germany
[40].

Figure 5 depicts its main
functionality. The first field is used to
set the interval in which the device
power measurements must be done.
The second field fixes the duration –
how low the measurements must run.
As the third step, a user can choose a
measurement method if it is clear
which one is better in a current
situation: based on Android
BatteryManager API, vendor’s power
profile from the device’s system or
any other power profile from an
external XML-file. By default, all
methods are included. Fourthly, an
export format for measurement

Figure 4. PowerTutor UI.

Figure 5. Andromedar UI.

18

results can be selected. When the measurements finish, a data file is
stored in the memory.

2.3.5. Yocto-Amp
It is also possible to measure energy with some hardware tools,

for example, Yocto-Amp [41].

This digital ammeter (Figure 6) makes
it possible to measure current automatically
and per component with high precision. You
just connect your mobile device to Yocto-Amp
with USB. It also provides a good API to
operate the data. In addition, the device can
be connected directly to an Ethernet or WiFi
network.

The modules provides immediate reading on USB, and can also
store measures on the device internal flash for later retrieval when
connected again by USB.

2.3.6. Which power measurement tool to choose?
Each tool has its own pros and cons. In this work, Little Eye is

used.

First of all, it has a rich functionality and all the needed statistics.
Moreover, it has a clear UI and you can run an app on a device and
observe the real time results on your desktop. It gives a great
opportunity to see when exactly the app eats most of power and how it
behavior alters. In addition, Little Eye provides a very convenient and
vivid form of presenting results.

So, Little Eye is the most convenient tool of all revised, which
suits our aims perfectly.

ADB gives just row data that needs to be analyzed
programmatically or manually. Besides, it does measurements for the
whole device, not per application, that is why, in case it is used, we lose
precision and have to do additional job to get results for an app.

PowerTutor and Andromedar run entirely on a device.
Consequently, a user cannot interact with a measured app and
investigate the resource consumption behavior change simultaneously
(that was a significant advantage of Little Eye). What is more, it is easier
to extract and save graphic representation with Little Eye that
PowerTutor, as it saves only text data. Andromedar has only excel
reports as well and measures the power usage for the device, not a
single application.

Hardware tools like Yocto-Amp give true results, not based on
power profiles or somebody’s power models. But it requires a lot of (in
context of this work) distracting work, such as having the ammeter itself,
writing some code or having a rooted device. For our purposes,
precision is not crucially important: the measures need to be compared.
That is why, the possible great opportunity to use hardware can be other
tasks, like writing your own power profile.

Figure 6. Yocto-Amp.

19

2.4 Other tools

 2.4.1. Vert.x
 Vert.x is an application platform for the JVM. It is used in this work
to facilitate the implementation of HTTP-communication between a
client and a server. Vert.x allows us to write an HTTP server simply,
handle requests and send responses and not to refrain from using
Gradle [42]. Vert.x is free and open source, licensed under the Apache
Software License 2.0.

 2.4.2 OpenShift
 OpenShift is an open hybrid cloud application platform (PaaS)
which allows to host your applications. It is used in this work to host
the server-side applications. While creating the application, it is
possible to choose from a number of frameworks and databases
available as well as a Do It Yourself cartridge to customize it for not pre-
installed tools such as Vert.x.

 2.4.3. HTTP Communication
 The server and client sides communicate via the hypertext
transfer protocol (HTTP). In our case, information is written to JSON
(JavaScript Object Notation) strings and put into the body of HTTP
requests and responses. For serializing and deserializing data, gson
Java library is used which makes transformations in one line of code
(methods toJson() and fromJson()). Thereby a REST architecture is built.

 2.4.4. JCodec
 Making a new video from separate images or changing an existing
one is not a trivial task. JCodec library [43] makes it simpler. It is an
open source Java implementation of video and audio codecs and formats.
In September 2013, the Android version was released. In this work, the
library is used for getting frames from a video (decoding) and encoding
a new mp4 file.

 As an alternative, we tried Xuggler by Xuggle [44], but this library
is very big – 44 times bigger than the whole application – and we refused
to use it.

 2.4.5. Patterns
 Two design patterns are used in this work: proxy pattern and
command pattern.

 Proxy pattern [45] [46] is applied to create a placeholder for the
class and control the access to the class. Initially, there were a number
of classes (ClassName) in the project. In order to vary the
implementation of these methods depending on the connection
presence, new classes were created (RemoteClassName). If checking
connection returns positive result, we instantiate an instance of the
RemoteClassName which in its turn does not have the full
implementation of the method, but calls it on a real remote class in the
cloud. Thus, a remote class is only created on demand.

 Command pattern [47] [48] allows to encapsulate a request as an
object and diversify the method call. For instance, two classes have the

20

method yourMethod(), and corresponding to some condition (in our
case, Internet connection presence), the variable obj is initialized with
the instance of one of these classes. When obj.yourMethod() is run, the
command specific for this class will be executed.

 The patterns are used in order to make the application
architecture clear and the code - reusable.

21

3. Approach

 This section addresses some strategies to apply in order to
implement our approach.

 First of all, you need to find suitable blocks of code to move to the
cloud. It is not the aim of this paper to define all the power-hungry
features to be extracted, but the number of them will be enumerated.
Some of them were initially obvious, others have come to light during
our work.

 Secondly, it will be discussed how to organize client-server
communication to exchange data. Two ways are going to be described.
Both of them were used in our experiments.

 After that, we will touch the test cases to measure the energy
consumption of the applications running solely on a mobile device -
“locally” - and while applying our approach – partly “remotely”.

 3.1. What to look for

 It looks sensible to find:

 the code containing complicated calculations which load the
CPU significantly and may take a lot of time;

 ideally, methods with a few lightweight parameters and
returned valued and lots of sophisticated functionality
inside. It appears to bring the highest efficiency. As we will
see later, you will not benefit from transferring a huge deal
of data over the network sometimes;

 already existing AsyncTasks. All long running operations, on
the one hand, should be implemented as asynchronous
tasks, on the other hand, it is beneficial to run them
remotely. HTTP communication should be done as an
AsyncTask in order not to block the app, as the connection
is unpredictable.

 These are the fragments that are the most convenient to extract
or can bring the largest benefit.

 3.2. How to port the app to the cloud

This section is devoted to a very important issue – porting an
application to the cloud. A general scheme (see Diagram 1) is going to
be described: what has to be done to run the parts of the mobile app’s
functionality remotely.

The first actions on the diagram: identify the code blocks, adapt
the code, setup client-server communication and port the code – refer
directly to the approach. Finally, the power consumed should be
measured to verify the effectiveness of the approach.

First of all, the code to transfer to the cloud should be found. The
way to use here is static program analysis: parsing the source code of

22

the application with an automated tool or just reading to find the most
power-hungry blocks (described in the previous section, see “What to
look for”).

Diagram 1. Porting application to the cloud.

After that, make sure the chosen functionality is fit for running
remotely. That means:

 it is a distinct method;

 it returns a result value;

 it does not use Android-specific resources, such as UI or
system services;

 it does not modify the external state of the application inside
without returning the modified values;

 most likely, it does not use platform-specific classes, stubs
or native code.

23

It can be useful to extract the chosen methods so as they will look
like on a remote server. Program new classes which implement the
required functionality, substitute the initial methods with new ones and
run the application on a device (locally). The “new” code will be the
same or almost the same as it was before – those methods that you have
chosen to port. At this point, if everything works as expected, the half
of the work is done.

The last two approach activities are executed in parallel: it is
necessary to implement client-server data exchange and move the
chosen functionality to the server-side application.

Two ways to transfer data are studied in this work: one is based
on serializing values into JSON strings and another uses sending files.
In both cases, HTTP communication is applied. For details, see the next
section, “Client-server HTTP communication”.

The client-side application has to contain all the methods that you
are going to call from the mobile app. If you have nevertheless included
the methods that use mobile platform specific code (native code,
platform dependent libraries, etc.), make sure you are able to run it on
the server. In addition, the server application needs a class(es) to parse
the HTTP-responses, obtain transferred data, call the appropriate
method, and send back results.

At the end, verify that the transition has improved energy
consumption. For this purpose, chose a suitable tool and conduct a
number of power measurements against various conditions and
restrictions. Pay attention to the connection speed, the amount of data
to be transferred via the net, time a user needs to execute the task, and
possible performance change.

3.3. Client-server HTTP communication

 HTTP communication between a client and a server is the main
integral part of our approach. In this section, two ways which we have
used are explained.

 One way to implement the connection between the Android
application and the remote server can be the following. A method under
consideration – that is, which we are going to run remotely – is usually
called from another more complicated method (the code here and later
is not the real apps' code, but the pseudocode, that resembles our
applications and helps to understand the core features of the approach):

1. class SomeClass {

2. …

3. someMethod() {

4. …

5. ClassName obj = new ClassName();

24

6. obj.yourMethod();

7. …

8. }

9. …

 10. }

1. class ClassName {

2. …

3. yourMethod() {

4. …

5. }

6. …

7. }

 Here the proxy and command patterns are used: there are usually
two classes – ClassName and RemoteClassName (which would rather
extend a common class and implement a common interface):

1. interface CommonInterface {

2. …

3. yourMethod();

4. …

5. }

1. class CommonClass {

2. … // parent class for ClassName and
 RemoteClassName

3. }

1. class ClassName extends CommonClass implements
 CommonInterface {

2. …

3. yourMethod() {

4. … // “local” implementation

5. }

6. …

25

7. }

1. class RemoteClassName extends CommonClass
 implements CommonInterface {

2. …

3. yourMethod() {

4. … // “remote” implementation

5. }

6. …

7. }

 If there is no Internet connection, the instance of ClassName is
created and the app executes as it did before modification, but if the
connection exists, RemoteClassName class is used (Figure 7).
SomeClass changes:

1. class SomeClass {

2. …

3. someMethod() {

4. …

5. CommonClass obj;

6. if (connected) {

7. obj = new RemoteClassName();

8. } else {

9. obj = new ClassName();

 10. }

 11. …

 12. }

 13. ...

 14. }

26

 Connection presence is checked with our ConnectionUtil class
with the help of Android ConnectivityManager.

Certainly, there are methods that cannot be extracted to the
server. Some reasons for that will be defined later in this thesis. Initially,
we have a pool which includes methods of an app. For each method, we
decide whether it can be executed remotely. If it can, we send its name,
name of a class (if needed), and input parameters to the cloud where
they are handled and a result is sent back. The result is the same as if
it was produced by this method on a mobile device.

Diagram 2 illustrates this scheme.

In the called method of the “remote” class, class name, method
name and parameters are packaged into the object of
PostRequestParams (another our auxiliary class written especially for
this purpose).

Figure 7. Decide where to execute a task.

27

Diagram 2. Run a method remotely or locally.

1. class RemoteClassName extends CommonClass
 implements CommonInterface {

2. …

3. yourMethod() {

4. …

5. PostRequestParams params = new
 PostRequestParams(className, methodName,
 otherValues);

6. receivedResult = new
 PostRequestTask().execute(params);

28

7. result = gson.fromGson(receivedResult,
 ResultClass.class);

8. …

9. }

 10. …

 11. }

After that, PostRequestTask().execute(params) (which is an
AsyncTask) is called. PostRequestTask writes params to JSON string
(Gson's toJson()), establishes connection to the remote server and
executes post request (org.apache.http.client.methods.HttpPost).
Method with passed parameters is run in the cloud. SomeTask class
gets a result back in the form of JSON from the response body
(org.apache.http.HttpResponse). Finally, the method returns the result
to where it was called from where it is read from JSON into ResultClass
or PostRequestResult (if the JSON string contains several classes or just
independent values).

1. class PostRequestTask extends
 AsyncTask<PostRequestParams, ProgressType,
 ResultType> {

2. doInBackground(PostRequestParams... params) {

3. ...

4. establishConnection();

5. postRequest.setEntity(params.toJson());

6. response =
 client.execute(postRequest).getEntity();

7. result = toString(response);

8. return result;

9. }

 10. …

 11. }

 Classes PostRequestParams and PostRequestResult are created
for two reasons: firstly, AsyncTask takes only one value type for
parameters and one for result, and secondly, it is simpler to work with
one class at once and to prevent mistakes. These classes consist of the
required fields to set all the values to be sent, setters and getters, plus
the fields for class and method names for PostRequestParams.

29

 On the server side, the incoming request
(org.vertx.java.core.http.HttpServerRequest) is caught. JSON from
request body is parsed, PostRequestParams object is derived which
allows to get the required method with the passed parameters. The
server application contains the versions of the Android classes with
fields, methods and inner classes which are supposed to be run remotely.
According to the extracted method name, the instance of the
corresponding class is instantiated and needed method is called. He
result is written to JSON and sent back to the Android application in
HTTP response body (org.vertx.java.core.http.HttpServerResponse).

1. class RequestHandler {

2. …

3. contentType = request.headers().get(“Content-
 Type”);

4. switch(contentType) {

5. case “application/json”:

6. …

7. PostRequestParams params =
 gson.fromJson(requestBodyString,
 PostRequestParams.class);

8. className = params.getClassName(); // if
 needed

9. methodName = params.getMethodName();

10. switch(mothodName) {

10. case...:

11. …

12. result =
 gson.toJson(resultValues);

13. …

14. }

15. …

16. }

17. response.headers().set(“Content-Type”,
 “application/json”);;

18. response.end(result);

19. case “application/octet-stream”:

20. …

21. …

30

22. }

 The method described above is implemented in first two examples:
FiniteElementCalculator and AsciiCam Image.

 The second approach is to simply exchange files when it is feasible.
For instance, it can be used to send music or video, as we do it in
AsciiCam Video.

 In this case, we do not need an intermediate class and implement
RemoteClassName as an AsycnTask child class. It will write the file into
a request body, execute the request and save result file when it comes
back.

1. class SomeClass {

2. …

3. if (connected) {

4. obj = new RemoteClassName();

5. obj.execute(filePath);

6. } else {

7. obj = new ClassName();

8. obj.yourMethod();

9. }

 10. …

 11. }

1. class RemoteClassName extends AsyncTask<String,
 ProgressType, ResultType> {

2. doInBackground(String... filePath) {

3. …

4. httpPost.setEntity(new FileEntity(file,
 “application/octet-stream”));

5. response = request.execute(httpPost);

6. getResultFileFromResponse(response);

7. …

8. }

9. }

 The server again gets the request, determines its content type,
reads the file from the request body, processes it as it is required by the
task and sends the output file back.

31

1. class RequestHandler {

2. …

3. contentType = request.headers().get(“Content-Type”);

4. switch(contentType) {

5. case “application/json”:

6. …

7. case “application/octet-stream”:

8. inFile = getIncomingFile();

9. outFile = processFile(inFile);

 10. response.headers().set(“Content-Type”,
 “application/octet-stream”);

 11. response.write(outFile);

 12. response.end();

 13. ...

 14. }

 15. ...

 16. }

 Thus, two way to exchange data are sketchy illustrated at Figure
8.

Figure 8. Sending input data and receiving method result.

32

 3.4. Test cases for power measurement

 So, we have three applications which can process data locally (on
a device) and remotely (in the cloud). They are going to be tested
against:

 various volume of data to be handled;

 various Internet connection speed.

 Thus, test cases imply that each application will be run in three
modes: on a device, using the cloud and fast Internet connection, and
using the cloud and slow Internet connection.

 In addition, they use diverse ways to transport information which
also can be compared.

33

4. Test applications

Three hypotheses of the work are:

 the energy needed for data transmission from device to a
server and receiving back a result can be less than the
energy consumed for executing the same functionality at a
device;

 there can exist some “heavy-loaded” code blocks which can
be extracted without hurting an application and executed
remotely;

 performance can change to the worse as well as to the
better.

To verify these hypotheses, three applications were chosen:
FiniteElementCalculator, AsciiCam Image, AsciiCam Video. This section
describes their functionality, architecture, transition to the cloud,
problems which were managed, and power measurement tests. It shows
how to implement our approach and what results to wait for.

Test applications are just the tools to reach our objectives. The
most interesting for a reader parts of this chapter should be those about
how we transformed the app to run it partly in the cloud, what app's
features are important for our approach and how efficient it can be.

34

4.1. FiniteElementCalculator

 The FiniteElementClaculator Android application was written by
us on the basis of open source Java-code [49] for a desktop application
in order to conduct the power measurements within this work. It owns
a number of features described in previous sections: it performs
complex mathematical calculations based on significant but not very
large amount of data, loads CPU greatly and uses asynchronous tasks.
All these make it an ideal app for our experiments. The data to
manipulate is small enough to benefit to the fullest from bringing the
functionality to the cloud, but also large enough to be compared to the
amount of data that can be used in real useful applications.
FiniteElementClaculator itself can be hardly called useful, except for
our purposes.

 4.1.1. Application architecture
 The FiniteElementCalculator code implements the finite element
method [50] for solving the problem of solid plasticity. The app's logic
is following: 1. pass a matrix of points represented as an array of arrays
(contains integer and floating point values); 2. solve a system of
differential equations; 3. return a result as a two-dimensional array
(floating point values). Input values are read from files on a device.
There are 5 cases representing different files to read from. The files
vary in data volume.

 Thus, the application completes some sophisticated numerical
computations.

 The algorithm must have used a significant amount of data to
transfer to the cloud, so that it was comparable to the volume of data
being received and returned by the real applications. We could send
only a number of a case and obtain all the input values from files on a
server, but in this case we will gain even more benefit as a device will
not waist resources on reading files and transferring large information
via WiFi.

 The application has only two activities (Figure 9). The first is used
by a user to input the number of case and confirm it with a button and
the second one displays the time required for a task to be completed.

35

 4.1.2. Porting to the cloud
 Porting functionality to the cloud is not very complicated in this
case. Actually, we have the same code on both sites, but there are only
some classes (not all) with particular fields and methods on the server
– those which are called remotely.

 The device-cloud interaction is implemented as explained above
in the “Client-server HTTP communication” part of the “Approach”
chapter. For this purpose, HttpUtils and AsyncTask classes were added.

 Some minor refactoring of initial source code was made in order
to make it feasible to send and receive values via the net and use them
in AsyncTask methods.

 4.1.3. Power measurements
 Test cases presuppose that the application is run in three modes:
on a device, using the cloud and fast Internet connection, and using the
cloud and slow Internet connection. Battery drain, CPU load and time
spent are measured.

 Firstly, only one case is used. This means, the application reads
user input, takes values from a file and executes computations once.

Figure 9. FiniteElementCalculator UI.

36

When the Internet connection exists, the app sends and receives data
from the server again only one time. The test finishes.

 After that, the app gets 3 or 5 user's input cases (one by one) and
runs calculations 3 or 5 times, correspondingly. This means, it will
switch from a device to a server and back several times. This policy
resembles a real application to the greater extent than the previous one
in that way that real applications are likely to work on a device and
server in turn.

 The results of these test cases can be observed in the table below.
The volume of outcoming and incoming data is deliberately not
summarized in the second and third cases to differentiate between calls
to the server.

 The percentage of battery drain is a forecast of consumption for
an hour which is based on the amount of energy eaten during the test.

 According to the test results presented in the table, we can save
a lot of device's battery power if a part of functionality is delegated to
the remote server. It appears that the CPU load decreases dramatically.

 The following diagrams illustrate the energy consumption during
the first case.

Table 1. Power measurements for FiniteElementCalculator.

37

 The power consumption decrease is gained by CPU loading relief.
The figures below show how the behavior changes.

Figure 11. FiniteElementCalculator power consumption while
running on a mobile device.

Figure 10. FiniteElementCalculator power consumption while using
the cloud.

Figure 12. FiniteElementCalculator CPU load while running on a
mobile device.

38

The two following pie diagrams display how greatly power
consumption has altered. Test scenarios are the same in these cases.

Figure 13. FiniteElementCalculator CPU load while using the cloud.

Diagram 3. FiniteElementCalculator: power consumption by
component while running on a mobile device.

Diagram 4. FiniteElementCalculator: power consumption by
component while using the cloud.

39

 Moreover, it takes less time to execute the task remotely. That is
why, if we need to perform several operations we will save even more
power with a server.

4.1.4. Result
 The FiniteElementCalculator application is a good example of
how the power consumption on a mobile device can benefit from using
the cloud computing.

 The app migration to the cloud was easy due to the absence of
platform-specific code and existing asynchronous tasks. It was only
necessary to implement the HTTP-communication and build the server-
side application with needed classes.

 The energy consumption was decreased significantly owing to the
relatively small amount of data to be packed into JSON and transmitted
over the net. In that way, the CPU was not loaded with the heavy
calculations, and work with JSON hasn’t required much of its resources.

40

4.2. AsciiCam Image

 AsciiCam application is provided by Dozing Cat Software [51].
AsciiCam converts an image that Android camera is pointed at into an
ASCII picture in real time. In addition, a user can make an ASCII version
of the images already stored in the gallery. Black-and-white, primary
colors and full colors options are available. AsciiCam is completely free
and open source [52], contains code from the Android Open Source
Project licensed under the Apache License, Version 2.0 [53], copyright
by Brian Nenninger [54].

 Figure 14 shows the initial picture and an image made from it
with AsciiCam.

Figure 14. Original pictures and transformed with AsciiCam.

41

4.2.1. Application architecture
 The main computation method takes camera input data, number
of ASCII rows and columns to convert to, and the ASCII characters to
use, ordered by brightness. For each ASCII character in the output, it
determines the corresponding rectangle of pixels in the input image and
computes the average brightness and RGB components if using color. A
bitmap is built. Final images are can be saved in PNG and HTML
formats. For existing pictures, an ASCII image is built from an existing
bitmap. The application also creates thumbnails for showing pictures in
the gallery.

4.2.2. Porting to the cloud

Extracting functionality to run locally

 First of all, some permissions were added into
AndroidManifest.xml file in order to be able to connect to the Internet,
get internal network information and read the low-level system log files.

 The first part of the experiment was to extract methods which will
be later executed remotely and run the application locally, using these
extracted methods.

 The most attention was paid to the AsciiConverter class which
contains the core, most complicated methods: computeResultForRows()
and computeResultForBitmap().

 computeResultForRows() is the main computation method. It
takes camera input data, number of ASCII rows and columns to convert
to, and the ASCII characters to use ordered by brightness. For each
ASCII character in the output, it determines the corresponding
rectangle of pixels in the input image and computes the average
brightness and RGB components if using color.

 computeResultForBitmap() builds an ASCII image from an
existing bitmap and is used to convert the pictures already stored on a
device.

 All the permutations are done according to the processes
described in “Client-server HTTP communication” section of “Approach”
chapter. In order to extract the methods, Converter interface was
created and implemented by AsciiConverter and RemoteAsciiConverter
classes. computeResultForRows() initially returned nothing (void). As
we need to get any result from the server in the future so that the image
could be built or updated, the method was modified and now returns a
custom Converter.Result type value which is used to make a picture.
Probably, this will not work remotely, since the image will not then be
produced in real time, a long delay is expected.

 The method computeResultForCameraData() of the same class
uses toPixelCharArray() which is not so complicated but runs a long for-
cycle and can also be extracted. The Pixel interface is created and
implemented by PixelUtil and RemotePixelUtil. The method is also used
in AsciiConverter.computeResultForBitmap(), but in this case the whole

42

method is already extracted so it does not requires a separate call for
remote toPixelCharArray() execution.

 In AsciiRenderer class, createBitmap() was extracted (is used in
CreateBitmap() and createThumbnailBitmap()) - connection is checked
and if it exists, the method is run remotely (RemoteBitmap class).

 The whole methods of AsciiRenderer class cannot be extracted as
they directly interact with Android components such as Canvas or
threads.

 For all the modifications above, proxy and command patterns
were applied as explained earlier in Patterns paragraph of the Tools
chapter. Actually, the RemoteClassName classes are the copies of the
initial classes, but contain only the needed components.

 Other application methods are not suitable because they are not
too complicated, or directly interact with Android resources (R), Canvas,
etc., or have side effects (ex. Bitmap.compress() in AsciiImageWriter
methods that instantaneously modifies the passed bitmap), or deal with
threads (ex. AsciiConverter.computeResultForCameraData()).

 At the end, application runs successfully with new classes, no
errors, the functionality is fully saved.

Moving to the cloud

 In order to port code to the cloud, three things must be
implemented: firstly, a server application which will receive, process
requests and execute methods, secondly, a PostRequestTask class which
will contain all the HTTP connection stuff and result processing, and
thirdly, RemoteClassName classes must be rewritten so that they
contain only the PostRequestTask execution call but not the whole
implementation of the methods.

 Again, all the transformations comply with those explained in a
“Client-server HTTP communication” part of the “Approach” chapter.

 Server application consists of a class that receives requests and
writes responses, the classes which were earlier created in Android
application in respect to proxy pattern (RemoteClassName classes; now
they are just ClassName classes as those in the mobile application) and
some other classes that ClassName classes require. The class that
processes requests acts as described in a “Client-server HTTP
communication” paragraph in “Approach” chapter.

 PostRequestTask class in Android application extends AsyncTask.
It receives the parameters of PostRequestParams type and produces a
String as a result. Parameters contain the class name, the method name
which is going to be called, and the parameters to this method. The
HTTP client is created and parameters are send to the server in the
POST-request body in JSON format. PostRequestTask.execute() is called
from the RemoteClassName class' method. After getting response from

43

the server, PostRequestTask returns its entity as a JSON-string to the
method which called it.

 As it was mentioned above, RemoteClassName calls
PostRequestTask.execute(). Method parameters are packed into
PostRequestParams' child class in accordance to this particular method.
Besides, at the beginning, it can initialize some variables and even do
some operations in case not the whole method is ported to the server.
At the end, method gets a string from PostRequestTask and deserializes
JSON to the result value.

 Lessons learned, or why the mobile application will not work
on another platform

 Eventually, we have a client-server application which
communicates via HTTP. Android application sends some information to
the cloud where it is handled and receives back a result.

 Everything would be perfect, if not for some crucial details that
break the system.

 android.graphics.Bitmap is not going to work on the server
without Android. It's a platform specific library, and calling its
constructor (that is used in computeResultForBitmap()) causes Stub!
error (see “Dalvik” section in “Tools” for more information about stubs).
This indicates the existence of some interface which is accessible only
from Android but not for our server. The problem in this case was solved
by tearing up the bitmaps and using the java.awt.image.BufferedImage
on the server. It was feasible as these two classes have the similar
methods, but the same solution cannot be guaranteed for all other cases
since it may happen that you will not find a resembling Java class.

 computeResultForRows() - the main computation method that
produces result image that we see in real time on the screen - if run in
the cloud, seems not to be efficient. HTTP communication succeeds, but
there are only 2-3 requests each 15-20 seconds. The result is, at first,
we see the image if through the ordinary camera (without any changes)
for some seconds and then the screen goes black. That is why we can
conclude that probably such a client-server solution is not fully suitable
for the apps, where the result is supposed to be displayed
instantaneously. And for this reason, we transform the pictures from the
gallery later in out test cases, not directly from the camera. In addition,
sometimes OutOfMemory error occurs while processing JSON on the
device. It is important and can be evidence of data amount restrictions
for handling on a device and, consequently, exchanging with the server.

Based on this experience, these are some deductions about which
code should not or cannot be extracted:

 that modifies the external state of the application without
returning the new value;

44

 that uses mobile platform-specific resources, such as UI or system
services;

 that uses mobile platform-specific classes and stubs;

 that uses native code (or it needs to be recompiled for your
server).

 As for the native code, applications using Android NDK “will be
more complicated, have reduced compatibility, have no access to
framework APIs, and be harder to debug” [55]. Using native code does
not necessarily result in performance improvement [56] and it may be
sensible to refrain from using it.

 Acquiring data from the system services such as getting a GPS
signal or processing sensor updates is very power hungry [57] [58], but
we cannot manage it in the cloud without the device's hardware.
However, it is claimed that the new sensors introduces with Android 4.4
KitKat are more reserved concerning energy consumption [59].

 4.2.3. Power measurements
 As well as the other applications, we test AsciiCam in three modes:
on a device, using the cloud and fast Internet connection, and using the
cloud and slow Internet connection. Battery drain, CPU load and time
spent are measured.

 In addition, the tests are divided into three groups depending on
the image size. Image size means resolution in this case, since the whole
picture is never sent to the cloud, but only an array of its pixels.

 Table 2 presents the results. The percentage of battery drain is a
forecast of consumption for an hour which is based on the amount of
energy eaten during the test.

 In case of a large image combined with slow connection, the
picture was not even received by a server in reasonable time, that is
why the test falls out.

Table 2. AsciiCam Image power consumption.

45

 The case with medium resolution picture and slow connection also
does not seem to be any beneficial as the performance (time) drops
dramatically. For this reason, it was carried out only once.

 Figure 15 and Figure 16 reveal the changing behavior of the app
when running locally and remotely.

 Taking the measurement outcomes into consideration, AsciiCam
Image appears to be the application that most of the time will not
benefit from the way it is now implemented. We do not say “will not
benefit from our approach” for the following reasons:

 success (saving energy) depends on the amount of data that the
app need to send and receive. Consequently, if the picture is small
we could benefit;

 high battery drain in cases that use the cloud is caused by intense
CPU load. The reason is writing and reading JSON with gson. This

Figure 15. AsciiCam Image power consumption while running on a
mobile device.

Figure 16. AsciiCam power consumption while using the cloud.

46

means, we should adjust the way to transport data to its size. If
there is a lot of what to send, it is useful to divide the data and
transfer only those parts which are really processed (probably,
some refactoring will be required) or send files (of course, if your
method deals with them). Otherwise, it could be reasonable not
to use a server for such tasks;

 the app just requires fast Internet connection. Otherwise, the
performance (time) goes down significantly. If the connection is
very slow, there is no point in performing the task remotely.

 Figure 17 and Figure 18 display the CPU load in different modes.

4.2.4. Result
The AsciiCam Image example has revealed some restrictions on

the approach.
First of all, working with JSON may load the CPU greatly if the

data to be transferred is big, for example, a very large array of values.
Thereby, it is not possible to reach the key condition for reducing energy
consumption – reducing CPU load. Consequently, the power was not

Figure 17. AsciiCam CPU load while running on a mobile device.

Figure 18. AsciiCam CPU load while using the cloud.

47

saved.
Moreover, a developer can face the issues that hamper the app

transition to the cloud such as platform-specific libraries. In our case,
it was android.graphics and its Bitmap class. The problem was solved
by using a resembling Java class which can be managed on the server.
But you can probably not find such for your case and then you have to
write it by yourself or refrain from porting that piece of code. Another
option which suits for native code issues is to find the source code,
recompile it for your platform and then use, but it is sensible to consider
the worthiness.

Last but not least, pay attention to the connection speed. If it is
too slow, the performance may be unacceptably deteriorated. To
prevent your application from such an unpleasant experience, provide
a timeout for the remote task so that if it is not completed in some
seconds run it locally.

48

4.3. AsciiCam Video

 The AsciiCam Video application is a modification of AsciiCam
Image written by us and makes the same but with video files, not images.
Our goal while constructing this application was to make the device
work harder and longer in comparison to AsciiCam Image.

 4.3.1. Application architecture
 To be able to work with video, it was necessary to give the app the
access to the video files in the gallery.

 When an mp4 file is picked, it is divided into frames. A frame is
processed as a picture – that means, exactly as it was in AsciiCam Image.
Direct after the transformation, a picture is written into a new mp4 file,
which is going to be the output video.

 Since the mobile devices are relatively strongly restricted in
recourses, it is important not to keep intermediate values in memory.
For example, we could firstly divide the whole video into frames putting
them into an array and, after that, work them up. But in this way, we
will get OutOfMemory error and no chance to finish the operation.

 To decode and encode video, JCodec library is used.

 4.3.2. Porting to the cloud
In contrast to the two previous examples, we do not use JSON in

AsciiCam Video: a client and a server exchange video files (the second
communication way described in a “Client-server HTTP communication”
section in “Approach”). The rest on the communication method remains
the same.

On the server, the type of the response body is defined and,
according to it, a decision about that methods to execute is made.

This time, we faced the same problem as with AsciiCam Image
before. AsciiCam works with the instances of Bitmap class on a device
and with BufferedImage on the server. Because of that, we need to solve
the problem with colors. Furthermore, we have to accommodate the
frame's width and height and direction (vertical/horizontal). It was
important to get the video of approximately the same size as a resulting
video made on a device has.

It is not important for this thesis, how the problems were solved.
But it is significant that they occur. So you should be ready that porting
your application to the cloud can also appear to be a bit problematic.

 4.3.3. Power measurements
As well as the other test applications, AsciiCam Video is tested

locally, with slow Internet connection and with fast Internet connection.
Video processing takes a lot of time even if the video is very short, which
directly depends on the length of the video and its resolution. For this
reason – and since we have already tried various data volumes – we use
only a short video in our test cases.

The results of the tests are presented in Table 3.

49

According to these values, our approach is beneficial for this
application. Both battery drain and time demand were improved.

When a device computes the results, its power consumption
behavior looks like at Figure 19.

It is obvious, that the CPU is responsible for the most of energy
consumed. When the cloud is used, the CPU is not so active, and WiFi
module which also requires energy is not so power-hungry (Figure 20,
Diagram 5, Diagram 6).

Table 3. AsciiCam Video power measurement.

Figure 19. AsciiCam Video power consumption while running on a
mobile device.

Figure 20. AsciiCam Video power consumption while using the
cloud.

50

The Diagram 5 and Diagram 6 are evidence of how the energy

consumption changes – decreases – when we use the remote server to
execute some parts of our code. Scenarios were the same for these two
tests.

Diagram 5. AsciiCam Video: power
consumption by component for 4 minutes 19
seconds while running on a mobile device.

Diagram 6. AsciiCam Video: power
consumption by component for 3 minutes 19
seconds while using the cloud.

51

4.3.4. Result
In contrast to AsciiCam Image, both energy consumption and

performance are improved when processing video files. What is the
difference between these cases?

The reason is that writing and reading JSON is not used, but
video files are sent to the server as they are. This does not load the CPU
significantly, and consequently, although the amount of data is bigger
than in the case with pictures, the power is saved.

Another tip for saving energy can be switching off the screen
then the operation is in progress. This is not suitable for all the apps,
but if a user knows that the task will anyway take long time and they
can access the result later (as in our case with AsciiCam Video, where
the operation itself is important), turning off the screen will save even
more energy.

52

5. Generalizing approach

 This section generalizes the approach to porting the parts of the
functionality of a mobile application to the cloud in order to reduce the
energy consumption. The steps are enumerated, the tips and challenges
are summarized.

 To run the mobile app partly remotely the next activities have to
be completed:

 identifying suitable code blocks;

 adapting code;

 setting up client-server HTTP communication;

 porting code to the cloud.

Step 1: find suitable blocks of code. These should be the most
power-hungry functionality such as:

 the code containing complicated calculations which load the
CPU significantly and may take a lot of time;

 methods with a few lightweight parameters and returned
valued and lots of sophisticated functionality inside;

 already existing AsyncTasks.

The way to find this code is static analysis. For more information,
check chapter 3.1 “What to look for”.

Open issues: How to optimize the search for these code blocks?
Is there any way to automate it, maybe develop a special tool or use an
existing one effectively?

Step 2: adapting code. Make sure the chosen functionality is fit
for running remotely:

 it is a distinct method;

 it returns a result value;

 it does not use Android-specific resources, such as UI or
system services;

 it does not modify the external state of the application inside
without returning the modified values;

 most likely, it does not use platform-specific classes, stubs
or native code.

Try to extract the chosen methods so as they will look like on a
remote server and run the app using these “new” methods. After that,
what remains is HTTP communication.

Open issues: Probably, it is possible to extract the found code into
separate methods automatically, like IDEs are able to extract and insert
code. Then how to avoid mistakes and make sure we get what we want?

53

Step 3: implementing client-server HTTP communication. Two
ways of exchanging data can be applied: JSON and files. For detailed
information, check section 3.3 “Client-server HTTP communication”.

Open issues: Is it feasible to make the templates for such a
communication, auto-generate or adjust them? Are there more efficient
approaches to data exchange?

Step 4: porting code to the cloud. It means wring a server-side
application using the code you have chosen at step 1. In addition, it has
to include a class or classes to receive the HTTP requests, analyze them,
call the required method and send back the result. If you need, you have
to implement or make run native or some other helper code.

Basing on the experiments of this work, these are some
deductions about which code should not or cannot be extracted:

 that modifies the external state of the application;

 that uses Android-specific resources, such as UI or system
services;

 that uses platform specific classes and stubs;

 that uses native code (or it needs to be recompiled for your
server).

Open issues: How to build templates for helper classes? How to
construct a server-side application (partially) automatically? Is it
possible and worth writing a framework for such server-side apps that
will run the functionality of a mobile device?

You should also be careful with serializing and deserializing big
amounts of data to and from JSON that can load the CPU significantly
and lead to even more energy drain. When it is possible, send files as
they are to the server. This means, you should adjust the way to
transport data to its size.

Do not forget about the Internet connection speed. In case it is
too slow, you risk to damage performance (e.g. increase time).

In conclusion, the main factor to improve energy consumption is
to decrease CPU loading. That is why, find methods to achieve this goal.

54

6. Conclusion

This section reviews the results and deductions of the work.

At the beginning, in “Introduction” chapter, three hypotheses for
the thesis were stated. They are:

 the energy needed for data transmission from device to a
server and receiving back a result can be less than the
energy consumed for executing the same functionality at a
device;

 there can exist some “heavy-loaded” code blocks which can
be extracted without hurting an application and executed
remotely;

 performance can change to the worse as well as to the
better.

Thereby, the key idea of this work is that running the parts of a
mobile application functionality in the cloud can save mobile device
energy.

Three applications were chosen to verify these hypotheses. They
were adjusted to be able to execute the parts of their functionality
remotely, according to the approach explained in section 3 “Approach”
and summarized in chapter 5 “Generalizing approach”. A number of
experiments and measurements were conducted which gave results to
verify the statements above.

 Applying the approach presented in this work and based on
delegating the parts of mobile app’s functionality to the cloud makes
it possible to save battery power on a mobile device.

Firstly, applying approach saves energy in many cases. This is
achieved by reducing the CPU load, as a device now does not have to
compute all the results by itself, but this function is delegated to the
cloud. The amount of energy required to send data to and receive it
from the server is usually less than the power needed to execute these
methods on a device itself. But there can be exceptions. For example, if
you have very big data to write to JSON strings and read it from them,
then you are probably going to increase the device’s CPU use and
therefore, energy will not be saved. Thus, you should consider adjusting
the way to transfer data to its amount and type.

Secondly, each application accomplishes some functionality. It can
be represented by the code which requires a lot of resources. These
blocks of code can be extracted and ported to the cloud to be executed
there. This process is not very difficult and can be divided into some
particular steps (described in chapters 3 and 5), but a number of
challenges can be faced while doing this. Some code could be closely

55

coupled with the mobile platform, so it may occur to be troublesome to
run it on another one.

Thirdly, the performance (time) of the app can change. In the
example applications, it was obvious that the task can be executed both
faster and slower. It depends on its complexity, the amount of data to
be exchanged between the device and the server, and the speed of
internet connection. That is why you should test your application in
order to decide whether the performance variations are acceptable for
a user. It may be sensible to provide a timeout to run a task locally if
there is no answer from the cloud.

To evolve the approach, the following issues can be can be solved:

 is it possible to automate:

o the detection of heavy-loaded code blocks?

o server-side application composition?

 is it feasible and beneficial to run the same platform in the
cloud?

o for example, use Android both on a device and on a
server;

 how to provide lacking classes (those used on a mobile
platform, but inaccessible from a server) with minimal costs
and efforts?

 are there other ways to exchange data? Do they save more
power?

In such a way, the approach described in this work lets improve
energy consumption of mobile devices and add more complicated
functionality to mobile applications.

56

7. References

[1] S. Taylor, "The New Mobile World Order: Perspectives on the Future of the

Mobile Industry," September 2012. [Online]. Available:

http://www.cisco.com/web/about/ac79/docs/sp/New-Mobile-World-Order.pdf.

[Accessed 13 November 2013].

[2] S. Taylor, A. Young, N. Kumar and J. Macaulay, "Mobile Consumers Reach for the

Clouds," July 2011. [Online]. Available:

http://www.cisco.com/web/about/ac79/docs/sp/Mobile-

Cloud_Consumer_IBSG.pdf. [Accessed 13 November 2013].

[3] J. Hruska, "The death of CPU scaling: From one core to many — and why we’re

still stuck," 1 February 2012. [Online]. Available:

http://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-

one-core-to-many-and-why-were-still-stuck/1. [Accessed 13 November 2013].

[4] A. Abdelmotalib and Z. Wu, "Power Consumption in Smartphones (Hardware

Behaviourism)," May 2012. [Online]. Available: http://ijcsi.org/papers/IJCSI-9-3-

3-161-164.pdf. [Accessed 13 November 2013].

[5] A. P. Miettinen and J. K. Nurminen, "Energy efficiency of mobile clients in cloud

computing," 2010. [Online]. Available:

https://www.usenix.org/legacy/event/hotcloud10/tech/full_papers/Miettinen.pdf..

[Accessed 13 November 2013].

[6] S. Taylor, A. Young and A. Noronha, "What Do Consumers Want from Wi-Fi?

Insights from Cisco IBSG Consumer Research," May 2012. [Online]. Available:

http://www.cisco.com/web/about/ac79/docs/sp/SP_Wi-Fi_Consumers.pdf.

[Accessed 13 November 2013].

[7] J. Hruska, "The future of CPU scaling: Exploring options on the cutting edge," 28

February 2012. [Online]. Available: http://www.extremetech.com/extreme/120353-

the-future-of-cpu-scaling-exploring-options-on-the-cutting-edge/1. [Accessed 13

November 2013].

[8] A. AppStorm, "Weekly Poll: How Often Do You Charge Your Phone?," [Online].

Available: http://android.appstorm.net/general/weekly-poll/weekly-poll-how-

often-do-you-charge-your-phone/. [Accessed 26 December 2013].

[9] A. Shye, B. Scholbrock and G. Memik, "Into the Wild: Studying Real User

Activity Patterns to Guide Power Optimizations for Mobile Architectures," 2009.

[Online]. Available: http://users.eecs.northwestern.edu/~bas667/papers/micro09-

jamlogger.pdf. [Accessed 11 December 2013].

[10] T. H. Bui, "Android* Power Measurement Techniques," 6 January 2012. [Online].

Available: http://software.intel.com/en-us/articles/android-power-measurement-

techniques. [Accessed 13 November 2013].

[11] S. Taylor, A. Young, N. Kumar and J. Macaulay, "A “Marriage Made in Heaven”:

Mobile Devices Meet the Mobile Cloud," October 2011. [Online]. Available:

http://www.cisco.com/web/about/ac79/docs/sp/Mobile_Cloud_Device.pdf.

[Accessed 13 November 2013].

[12] M. Hamdaqa and L. Tahvildari, "Cloud Computing Uncovered: A Research

Landscape," 2012. [Online]. Available:

http://www.stargroup.uwaterloo.ca/~mhamdaqa/publications/Cloud_Computing_U

ncovered.pdf. [Accessed 13 November 2013].

57

[13] Google Inc., "Android, the world's most popular mobile platform," [Online].

Available: http://developer.android.com/about/index.html. [Accessed 13 November

2013].

[14] Apple Inc., "Siri," [Online]. Available: http://www.apple.com/ios/siri/. [Accessed

15 November 2013].

[15] A. Nusca, "How Apple's Siri really works," 3 November 2011. [Online]. Available:

http://www.zdnet.com/blog/btl/how-apples-siri-really-works/62461. [Accessed 15

November 2013].

[16] D. Rawat, "iPhone 4S - How Does Siri Work?," 27 February 2012. [Online].

Available: http://www.webteacher.ws/2012/02/27/iphone-4s-how-does-siri-work/.

[Accessed 15 November 2013].

[17] B. Johnson, "How Siri Works," January 2013. [Online]. Available:

http://electronics.howstuffworks.com/gadgets/high-tech-gadgets/siri.htm.

[Accessed 15 November 2013].

[18] W. Gerhardt, R. Medcalf, S. Taylor and A. Toouli, "Profiting from the Rise of Wi-

Fi New, Innovative Business Models for Service Providers," March 2012.

[Online]. Available: http://www.cisco.com/web/about/ac79/docs/sp/SP_Wi-

Fi_PoV.pdf. [Accessed 13 November 2013].

[19] Oracle Java, [Online]. Available: http://www.java.com/en/.

[20] Red Hat, "OpenShift," [Online]. Available: https://www.openshift.com/.

[21] Vert.x. [Online]. Available: http://vertx.io/.

[22] Google-gson. [Online]. Available: https://code.google.com/p/google-gson/.

[23] D. Bornstein, "Google I/O 2008 - Dalvik Virtual Machine Internals," [Online].

Available: http://www.youtube.com/watch?v=ptjedOZEXPM. [Accessed 26

December 2013].

[24] M. Gargenta, "Learning Android," O'Reilly, 2011, p. 2.

[25] D. Bornstein, "Dalvik JIT," [Online]. Available: http://android-

developers.blogspot.de/2010/05/dalvik-jit.html. [Accessed 25 December 2013].

[26] Google Inc., "Get the Android SDK," [Online]. Available:

http://developer.android.com/sdk/index.html.

[27] Google Inc., "Application fundamentals," [Online]. Available:

http://developer.android.com/guide/components/fundamentals.html. [Accessed 13

November 2013].

[28] Google Inc., "App structure," [Online]. Available:

http://developer.android.com/design/patterns/app-structure.html. [Accessed 28

November 2013].

[29] Google Inc., "Activities," [Online]. Available:

http://developer.android.com/guide/components/activities.html. [Accessed 28

November 2013].

[30] Google Inc., "Processes and Threads," [Online]. Available:

http://developer.android.com/guide/components/processes-and-threads.html.

[Accessed 29 November 2013].

[31] Google Inc., "AsyncTask," [Online]. Available:

http://developer.android.com/reference/android/os/AsyncTask.html. [Accessed 29

November 2013].

[32] M. Gargenta, "Learning Android," O'Reilly, 2011, p. 11.

58

[33] The Android Open Source Project, "Dalvik Porting Guide," [Online]. Available:

https://android.googlesource.com/platform/dalvik/+/master/docs/porting-

guide.html. [Accessed 25 December 2013].

[34] Android-scripting. [Online]. Available: https://code.google.com/p/android-

scripting/. [Accessed 25 December 2013].

[35] C. Neukirchen, "Programming for Android with Scala," 14 April 2009. [Online].

Available: http://chneukirchen.org/blog/archive/2009/04/programming-for-

android-with-scala.html. [Accessed 26 Deccember 2013].

[36] Little Eye Labs, "Little Eye," [Online]. Available: http://www.littleeye.co.

[37] Little Eye Labs, "How Little Eye Measures Power Consumption," [Online].

Available: http://www.littleeye.co/blog/2013/07/30/how-little-eye-measures-

power-consumption/. [Accessed 22 January 2014].

[38] Google Inc., "Android Debug Bridge," [Online]. Available:

http://developer.android.com/tools/help/adb.html.

[39] PowerTutor, [Online]. Available:

http://ziyang.eecs.umich.edu/projects/powertutor/.

[40] M. Schröder, "Erfassung des Energieverbrauchs von Android Apps," Oldenburg,

Germany, 2013.

[41] Yoctopuce, "Yocto-Amp," [Online]. Available:

http://www.yoctopuce.com/EN/products/usb-sensors/yocto-amp. [Accessed 7

February 2013].

[42] Gradleware Inc., "Gradle," [Online]. Available: http://www.gradle.org/.

[43] JCodec, [Online]. Available: http://jcodec.org/.

[44] Xuggler, [Online]. Available: http://www.xuggle.com/xuggler.

[45] E. Gamma, R. Helm, E. R. Johnson and J. Vlissides, "Design Patterns. Elements of

Reusable Object-Oriented Software," Pearson Education, 1994, pp. 233-245.

[46] SourceMaking, "Proxy Design Pattern," [Online]. Available:

http://sourcemaking.com/design_patterns/proxy. [Accessed 5 December 2013].

[47] E. Gamma, R. Helm, E. R. Johnson and J. Vlissides, "Design Patterns. Elements of

Reusable Object-Oriented Software," Pearson Education, 1994, pp. 263-273.

[48] SourceMaking, "Command Design Pattern," [Online]. Available:

http://sourcemaking.com/design_patterns/command. [Accessed 5 December 2013].

[49] I. Ivanov, A. Saksonov, E. Malutin and F. Atyakshin, "finite-element-technique,"

[Online]. Available: https://code.google.com/p/finite-element-technique/.

[Accessed 9 December 2013].

[50] "Finite element method," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Finite_element_method. [Accessed 16 January 2014].

[51] "Dozing Cat Software [Accessed 27 November 2013," [Online]. Available:

http://www.dozingcatsoftware.com/. [Accessed 27 November 2013].

[52] Google Play, "AsciiCam," [Online]. Available:

https://play.google.com/store/apps/details?id=com.dozingcatsoftware.asciicam.

[Accessed 27 November 2013].

[53] "Apache License, Version 2.0," [Online]. Available:

http://www.apache.org/licenses/LICENSE-2.0.html. [Accessed 27 November

2013].

59

[54] Nenninger, Brian, bnenning@gmail.com, [Online]. [Accessed 27 November

2013].

[55] D. Turner, "Introducing Android 1.5 NDK, Release 1," [Online]. Available:

http://android-developers.blogspot.de/2009/06/introducing-android-15-ndk-

release-1.html. [Accessed 7 December 2013].

[56] Google Inc., "Android NDK," [Online]. Available:

http://developer.android.com/tools/sdk/ndk/index.html. [Accessed 08 December

2013].

[57] M. Gargenta, "Learning Android," O'Reilly, 2011, p. 190.

[58] "SensorManager," [Online]. Available:

http://developer.android.com/reference/android/hardware/SensorManager.html.

[Accessed 12 January 2014].

[59] Android Developers, "Android 4.4 KitKat and Updated Developer Tools,"

[Online]. Available: http://android-developers.blogspot.de/2013/10/android-44-

kitkat-and-updated-developer.html. [Accessed 13 January 2014].

[60] M. Gargenta, "Learning Android," O'Reilly, 2011, p. 10.

60

Appendix

CD

A CD provided with this master’s thesis contains the following
data:

 PDF version of the thesis;

 FiniteElementCalculator source code;

 AsciiCam source code;

 screenshots, diagrams, tables.

