
© Andreas Winter 10.08.2012 Software-Engineering 1© Dilshod Kuryazov

Software engineering and 
Key aspect of the field



© Andreas Winter

Carl von  Ossietzky University

12.10.12 Software Engineering Group 2



© Andreas Winter

Statistics

Students: 11325
o Female: 6354
o Male: 4971

Professors: 182
o Female: 57
o Male: 125 

Researcher: 999
o Female: 436
o Male: 563

12.10.12 Software Engineering Group 3



© Andreas Winter

Software Engineering Group
Head
o Andreas Winter

Secretary
o Marion Bramkamp

PhD Students
o Jan Jelschen
o Maxat Kulmanov 
o Dilshodbek Kuryazov 
o Yvette Teiken (OFFIS) 

Student Assistants
o Marion Gottschalk
o Mirco Josefiok

12.10.12 Software Engineering Group 4



© Andreas Winter

Software Engineering Group
Topics in Research and Teaching
o Software-Engineering 
o Modeling and Metamodeling
o Graph-Technology

• Graph based modeling and implementation
o Process-Models in Software Development 
o Software Evolution

Mission 
o Development and Application of Graph-

Technology 
to improve Software Evolution

12.10.12 Software Engineering Group 5



© Andreas Winter

Software Engineering and 
Software Evolution

12.10.12 6 Software Engineering 
Group



© Andreas Winter

Software Engineering
Software Crisis 
o Software development 

in the sixties
• Increase of software 

complexity 
• missing suitable 

programming languages
• missing suitable methods 

and techniques for 
engineering 
software systems

• No mail, internet, Java, .net, 
eclipse, Google, sourceforge, 
twitter, facebook, ...

12.10.12 Software Engineering Group 7
[http://homepages.cs.ncl.ac.uk/brian.randell/NATO/]



© Andreas Winter

Software Engineering
[F. L. Bauer] 
o "[Software engineering is] the establish-

ment and use of sound engineering 
principles in order to obtain economically 
software that is reliable and works 
efficiently on real machines." 
(Software Engineering, Garmisch, October 7-11, 1968)

[IEEE Std. 601.12-1990, 1993]
o Software Engineering: 

(1) The application of a systematic, 
disciplined, quantifiable approach to the development, operation, 
and maintenance of software; that is, the application of 
engineering to software.
(2) The study of approaches as in (1).

12.10.12 Software Engineering Group 8



© Andreas Winter

Software Engineering
Engineering 
o follows established principles
o applies methods and techniques purposefully
o looks for technically and costly efficient solutions
o rejects blindly and imprudently ad hoc problem solving

Software Engineering
o elicits and clearly defined system requirements
o constructs (models) alternative solutions (software architecture) 
o evaluates solutions
o realizes solutions (i.e. programming)
o reviews solutions according their requirements 

Conclusion
o software engineering != programming

12.10.12 Software Engineering Group 9

http://www.mobileslead-just-needs-high-efficiency/



© Andreas Winter

Software Engineering 

Software development activities
o plan and organize projects
o elicit requirements
o define software architecture
o construct software systems
o test software systems
o run software systems

Today´s software development challenge
o improve software development methods and technologies
o keep existing software systems fulfilling user´s needs

12.10.12 Software Engineering Group 10

Produktinformationen

SE 7-SW
SW-Integration

SE 7.1-SW bis
SE 7.4-SW

SE 1
System-Anforderungs-

analyse
SE 1.1 bis SE 1.8

SE 3
SW-/HW-Anforde-

rungsanalyse
SE 3.1 bis SE 3.5

SE 4-SW
SW-Grobentwurf

SE 4.1-SW bis SE 4.3-SW

SE 5-SW
SW-Feinentwurf

SE 5.1-SW und SE 5.2-SW

SE 8
System-Integration

SE 8.1 bis SE 8.3

System-
Ebene

SE 2
System-Entwurf
SE 2.1 bis SE 2.6

HW-Einheit

Anwenderforderungen

SW-Architektur

Datenkatalog

Integrationsplan

Betriebsinformationen

Schnittstellenbeschreibung

SW-Einheits-/
HW-Einheits-

Ebene

Modul-/Datenbank-
Ebene

SW-Kompo-
nenten-

Ebene

Externe Vorgaben (AG)

Implementierungsdoku-
mente (SW-Komponente)

Datenbank

Rahmenbedingungen (für SE 1.7)

SWPÄ-Konzept

Betriebsinformationen

Betriebsinformationen

SW-Entwurf

SW-Modul

Implementierungsdokumente
(SW-Modul, Datenbank)

Implementierungsdokumente
(SW-Einheit)

SW-Komponente

Betriebsinformationen

System (installierbar)

Technische Anforderungen

Systemarchitektur

Technische Anforderungen

SE 6-SW
SW-Implementierung
SE 6.1-SW bis SE 6.3-SW

System
(installiert und in Betrieb)

SE 9
Überleitung

in die Nutzung
SE 9.1 bis 9.3

Betriebsinformationen

Legende:

Prüfaktivitäten
(siehe QS)

Schnittstellenübersicht

Schnittstellenbeschreibung

Kosten-/Nutzenanalyse

Angebotsbewertung

Schnittstellenübersicht

Nicht-IT-Anteile
SW-Einheit

Protokoll

[BWB IT, 1997]

[Kruchten, 2001]

[Beck, 2000]

http://www.solovatsoft.com/
waterfall-model-software-
development.html

Software 
Evolution is missing



© Andreas Winter

Software Evolution Life Cycle
Software Evolution
o covers all activities to keep an existing software system running in 

its changing environment

12.10.12 Software Engineering Group 11

improving Software Quality
adapting to changed environment

[Rajlich/Bennett, 2000]

repair and 
correct small 
issues

complete and 
extend software 
system 
iteratively

initial
develop-

ment

initial
develop-

ment
ServicingServicing Phase OutPhase OutEvolutionEvolution

missing 
evolvability

missing
adaptablitiy 



© Andreas Winter

Activities in Software Evolution

Software Engineering Group 12

extending software

eliminating software errors
software → more (?) correct software

improving software quality 
(not changing functionality)
software → better (?) software

transferring software to new 
environment
(not changing functionality)
software → software in environment

software → software with new or 
changed functionality

Software 
Evolution

Software
Correction

Software
Reengineering

Software
Extension

Software
Migration

corrective
maintenance

enhancive
maintenance

adaptive
maintenance

perfective
maintenance

Reverse
Engineering

supports
(if required)

Extracting a more 
abstract system description

software → documentation

12.10.12



© Andreas Winter

Software Evolution

12.10.12 Software Engineering Group 13

[Lientz/Swanson, 1980, 
McKee, 1984, Nosek/Palvia, 1990]

software extension 
50%

(includes perfective maintenance)

initial
development

25%

corrective
maintenance

12%    adaptive
maintenance
      13%

initial
development 

is decreasing

Conclusion
most work in software development 
has to deal with existing systems



© Andreas Winter 07.02.2012 Software-Engineering 14© Dilshod Kuryazov

1.1. What is a Model? 
A model is
 
- a simplification of reality;

- a representation in a certain medium of something in the same 
or other medium; 

- a systematic description of an object or phenomenon that 
shares important characteristics with the object or phenomenon.



© Andreas Winter 07.02.2012 Software-Engineering 15© Dilshod Kuryazov

1.1. What is a Model? 

Characteristics of models:  
- a representation, on a smaller scale, of a device,   structure, etc;
- a standard to be imitated;
- a representative form, style, or pattern;
- a person who wears clothes to display them;
- a design or style, designs of particular product;
- a simplified representation or description of a system or complex 
entity, designed to facilitate calculations and predictions;
- an interpretation of a formal system;



© Andreas Winter 07.02.2012 Software-Engineering 16© Dilshod Kuryazov

What is a Model in computer science? 

A model is a description of (part of ) a system 
written in well-defined language.

System

Abstraction

Modelling

RealityReality

ModelModel

MLML describesIs written in

A well-defined language is a language with well-defined 
form (syntax), and meaning (semantics), which is suitable 
for automated interpretation by a computer.

An abstraction helps system users to understand (part of ) 
a system and interaction of subsystems in it.



© Andreas Winter Software-Engineering 17

Models are to

- visualize a system;
- analyst to understand the functionality of the system; 
- communicate with customers;
- document the decisions;
- show external and internal prespective of a system‘s context;
    

1.2. Why do we need models? 

07.02.2012 Software-Engineering© Dilshod Kuryazov



© Andreas Winter 07.02.2012 Software-Engineering 18© Dilshod Kuryazov

Types of models in software engineering Types of models in software engineering 

Dynamic modelsDynamic models Static modelsStatic models

 1.3. What kind of models are in software 
engineering?



© Andreas Winter 07.02.2012 Software-Engineering 19© Dilshod Kuryazov

 1.3. What kind of models are in software 
engineering?

Dynamic models – describe 
dynamic aspects of a system do 

change as a system runs

Dynamic models – describe 
dynamic aspects of a system do 

change as a system runs

Process modelsProcess models

Data flow modelsData flow models

User interaction modelsUser interaction models

Process maturity modelsProcess maturity models

Behavioral modelsBehavioral models



© Andreas Winter 07.02.2012 Software-Engineering 20© Dilshod Kuryazov

 1.3. What kind of models are in software 
engineering?

Static models – describe static 
aspects of a system do not 
change as a system runs

Static models – describe static 
aspects of a system do not 
change as a system runs

Structural modelsStructural models

Data modelsData models
Use case modelsUse case models

Architectural modelsArchitectural models



© Andreas Winter 21Software-Engineering07.02.2012© Dilshod Kuryazov

Modeling languagesModeling languages

1. UML – Unified Modeling    
            language

2. SysML – System 
Modeling Language

3. EEML – Extended 
Enterprise Modeling 
Language

4. ORM – Object Role 
Modeling

5. SOMF – Service – 
Oriented Modeling 
Framework

6. JML – Java Modeling 
Language

1. UML – Unified Modeling    
            language

2. SysML – System 
Modeling Language

3. EEML – Extended 
Enterprise Modeling 
Language

4. ORM – Object Role 
Modeling

5. SOMF – Service – 
Oriented Modeling 
Framework

6. JML – Java Modeling 
Language

Modeling toolsModeling tools

Metalanguages & 
Metamodels

Metalanguages & 
MetamodelsQuerying toolsQuerying tools

1. MOF – Meta Object 
Facality

2. BNF - Backus Naur Form
3. CWM – Common 

Warehouse Metamodel
4. ODM – Ontology 

definition Metamodel

1. MOF – Meta Object 
Facality

2. BNF - Backus Naur Form
3. CWM – Common 

Warehouse Metamodel
4. ODM – Ontology 

definition Metamodel

1. XMI – XML Metadata 
Interchage

2. JMI – Java Metadata 
Interface

3. IDL – Interactive Data 
Language

1. XMI – XML Metadata 
Interchage

2. JMI – Java Metadata 
Interface

3. IDL – Interactive Data 
Language



© Andreas Winter

2. UML overview

The UML is a language for

• Visualizing 
• Specifying 
• Constructing 
• Documenting

22Software-Engineering07.02.2012© Dilshod Kuryazov



© Andreas Winter 07.02.2012 Software-Engineering 23

2.1. Understanding concepts of UML.
 The complete UML 2.0 package

© Dilshod Kuryazov

SuperstructureSuperstructure

Object constraint language 
(OCL)

Object constraint language 
(OCL)

Diagram interchangeDiagram interchange

InfrastuctureInfrastucture

Defines user constructs for the 
modeling of structure and 
performance of systems 

(e.g. class diagrams)

Defines user constructs for the 
modeling of structure and 
performance of systems 

(e.g. class diagrams)

Defines the exchange of UML 
models, including diagram 

presentation

Defines the exchange of UML 
models, including diagram 

presentation

Defines basic constructs for 
the definition and adaptation 

of UML (e.g. profile for 
business modeling)

Defines basic constructs for 
the definition and adaptation 

of UML (e.g. profile for 
business modeling)

Defines language for the 
specification of restrictions
Defines language for the 

specification of restrictions



© Andreas Winter 07.02.2012 Software-Engineering 24© Dilshod Kuryazov

2.2. Building blocks of the UML2.2. Building blocks of the UML

ElementsElements RelationshipsRelationships DiagramsDiagrams

1. Structural

2. Behavioral 

3. Grouping

4. Annotational

1. Structural

2. Behavioral 

3. Grouping

4. Annotational

1. Dependency

2. Association 

3. Generalization

4. Realization

1. Dependency

2. Association 

3. Generalization

4. Realization

1. Class

2. Object 

3. Use case 

4. Sequence

5. Collaboration 

6. Statechart

7. Activity

8. Component

9. Deployment

1. Class

2. Object 

3. Use case 

4. Sequence

5. Collaboration 

6. Statechart

7. Activity

8. Component

9. Deployment



© Andreas Winter 07.02.2012 Software-Engineering 25© Dilshod Kuryazov

Elements in the UMLElements in the UML

Behavioral elements 
are the dynamic parts of 
UML models. These are 
the verbs of a model, 
representing behavior 
over time and space.

Behavioral elements 
are the dynamic parts of 
UML models. These are 
the verbs of a model, 
representing behavior 
over time and space.

Structural elements are 
the nouns of UML models. 

These are the mostly 
static parts of a model, 
representing elements 

that are either conceptual 
or physical.

Structural elements are 
the nouns of UML models. 

These are the mostly 
static parts of a model, 
representing elements 

that are either conceptual 
or physical.

Grouping elements are 
the organizational parts 
of UML models. These 

are the boxes into which 
a model can be 
decomposed..

Grouping elements are 
the organizational parts 
of UML models. These 

are the boxes into which 
a model can be 
decomposed..

Annotational elements 
are the explanatory parts 
of UML models. These are 
the comments you may 

apply to describe, 
illuminate, and remark 
about any element in a 

model.

Annotational elements 
are the explanatory parts 
of UML models. These are 
the comments you may 

apply to describe, 
illuminate, and remark 
about any element in a 

model.

1. Class

2. Interface

3. Collaboration

4. Use case

5. Active class

6. Component

7. Node

1. Class

2. Interface

3. Collaboration

4. Use case

5. Active class

6. Component

7. Node

1. Interaction

2. State machine

1. Interaction

2. State machine
1. Packages1. Packages 1. Note1. Note



© Andreas Winter 07.02.2012 Software-Engineering 26© Dilshod Kuryazov

Relationships in the UMLRelationships in the UML

An association is a 
structural relationship 
that describes a set of 

links, a link being a 
connection among 

objects. Aggregation is a 
special kind of 

association, representing 
a structural relationship 
between a whole and its 

parts. 

An association is a 
structural relationship 
that describes a set of 

links, a link being a 
connection among 

objects. Aggregation is a 
special kind of 

association, representing 
a structural relationship 
between a whole and its 

parts. 

A dependency is a 
semantic relationship 
between two things in 
which a change to one 
thing (the independent 
thing) may affect the 
semantics of the other 

thing.

A dependency is a 
semantic relationship 
between two things in 
which a change to one 
thing (the independent 
thing) may affect the 
semantics of the other 

thing.

A generalization is a 
specialization/generaliza
tion relationship in which 

objects of the 
specialized element (the 
child) are substitutable 

for objects of the 
generalized element (the 
parent). In this way, the 

child shares the 
structure and the 

behavior of the parent.

A generalization is a 
specialization/generaliza
tion relationship in which 

objects of the 
specialized element (the 
child) are substitutable 

for objects of the 
generalized element (the 
parent). In this way, the 

child shares the 
structure and the 

behavior of the parent.

A realization is a semantic 
relationship between 

classifiers, wherein one 
classifier specifies a 

contract that another 
classifier guarantees to 

carry out. In two places: 
between interfaces and the 
classes or components that 
realize them, and between 

use cases and the 
collaborations that realize 

them.

A realization is a semantic 
relationship between 

classifiers, wherein one 
classifier specifies a 

contract that another 
classifier guarantees to 

carry out. In two places: 
between interfaces and the 
classes or components that 
realize them, and between 

use cases and the 
collaborations that realize 

them.



© Andreas Winter 07.02.2012 Software-Engineering 27© Dilshod Kuryazov



© Andreas Winter 07.02.2012 Software-Engineering 28© Dilshod Kuryazov

 2.3. UML Metamodeling

A metamodel 

- is at a higher level of abstraction than a model; 

- is called “a model of a model“; 

- is the rules/grammar for the modelling language (ML) itself;

- describes the rules and constraints of metatypes and metarelationships;

- is a description of a modelling language;

- defines all the concepts that can be used within a language.

ModelModel

Modeling 
language
Modeling 
language

MetaModelMetaModel

MetalanguageMetalanguage

is 
written 

in 

is 
defined

by

is 
written 

in 



© Andreas Winter 07.02.2012 Software-Engineering 29© Dilshod Kuryazov

Architecture of metamodel layers

Layer Description

M3
The infrastructure for a 
metamodeling architecture. 
Defines the language for 
specifying metamodels.

M2
An instance of a meta-
metamodel. Defines the 
language for specifying a 
model

M1
An instance of a metamodel. 
Defines a language to 
describe an information 
domain.

M0
An instance of a model. 
Defines a specific 
information domain.



© Andreas Winter

Metamodeling layers

07.02.2012 Software-Engineering 30© Dilshod Kuryazov



© Andreas Winter

What is Meta Object Facility (MOF)?

07.02.2012 Software-Engineering 31© Dilshod Kuryazov

 Metadata management framework and set of metadata 
services;

 Enable development and interoperability of model and metadata 
driven systems;

 MOF is used in most MDA-related technologies (UML, XMI, UML 
profiles, JMI);

 MOF has improved interoperability and productivity (all 
metamodels are based on the same metametamodel);

 MOF 2.0 Model is a framework for metamodelling and metadata 
representation and management;

 MOF 2.0 IDL and MOF 2.0 Java are the mappings from MOF 2.0 
to IDL and Java respectively;

 MOF 2.0 Query/View/Transformation is a framework to define 
transformations based on MOF metamodels.



© Andreas Winter Software-Engineering07.02.2012© Dilshod Kuryazov

 3. UML in Action

UML Modeling 

1. Requirements 

2. Architecture

3. Design

4. Implementation

5. Deployment

UML Diagrams 

1. Use case 

2. Class

3. Object

4. Sequence

5. State

6. Component

7. Collaboration

8. Activity

9. Deployment



© Andreas Winter 07.02.2012 Software-Engineering 33© Dilshod Kuryazov

Understanding modeling deltas (Δs)   

Version I.

t0

Version I.

t0

Version II.

t1

Version II.

t1

CodeCode

RequirementsRequirements

DesignDesign

CodeCode

DesignDesign

RequirementsRequirements

Software evolutionSoftware evolution



© Andreas Winter

3.1. Modeling deltas

07.02.2012 Software-Engineering 34© Dilshod Kuryazov

Person
Age : int 
Get_age() : int

Student
id : int 
Get_GPA() : Float

Professor
Age : int 
Get_age() : int

Person
Age : int 
Get_age() : int

Student
id : int 
Get_GPA() : Float
Subject_id : int

Professor
Age : int 
Get_age() : int
Subject_id : int

1.. 1.. 1.. 1..

Before changes After changes

Subject
id : int 
Get_name(id:int) : string

1..

1.. 1..

1..



© Andreas Winter

3.1. Modeling deltas
(presentation, merging, storing, adapting)

07.02.2012 Software-Engineering 35© Dilshod Kuryazov

Source model

AA CC

BB
Designer 2

Designer 1

AA CC

AA CC

BB DD

AA CC

DD

Final model



© Andreas Winter 07.02.2012 Software-Engineering 36© Dilshod Kuryazov

I

t0

I

t0

II

t1

II

t1CMCM

AMAM

DMDM

CMCM

DMDM

AMAM

A text based versioning tools RCS, 
CVS, SCCS and subversion, 
ReeDSedS.

SIDIFF (CDDiff, ADDiff), ReeDSedS

ReeDSedS requirements driven 
software development system 
(MOLA tools), SIDIFF (CDDiff, 
ADDiff).

Difference Algorithms



© Andreas Winter 25.05.2012 Software-Engineering 37© Dilshod Kuryazov

 

Collaborative 
modeling

Merging 
(models with)
differences 

Representing 
differences

Visualizing 
differences 

Calculating 
differences

Model 
repository

A group of tools

  Software 
System

(version. i) 

Software 
System

(version. i+1)

Motivation 

Analyzing 
differences



© Andreas Winter

State of the Art 

25.05.2012 Software-Engineering 38© Dilshod Kuryazov

●  There is need for more sophisticated approach which        
addressed to represent model differences

●   Integrability of an approach brings huge amount of 
possiblities

●   Tool support is still in its infancy

●   Mixture of design and code levels. Recently, round-trip 
engineering raises the challenge of synchronizing models and 
code 



© Andreas Winter Software-Engineering 39

Proposed approach 

25.05.2012 Software-Engineering© Dilshod Kuryazov



© Andreas Winter Software-Engineering 40

Rule representation of operations 

25.05.2012 Software-Engineering© Dilshod Kuryazov

Δ=[let a3: OSV1->addActivity(“pay invoice”);
      OSV1->cf1.changeTo(a3);

 let cf4: OSV1->addControlFlow(a3, a2);]

Mapping

Conforms to Conforms to

mm_OSV1, mm_OSV2



© Andreas Winter Software-Engineering 41

Meta-model for UML Activity diagram 

25.05.2012 Software-Engineering© Dilshod Kuryazov



© Andreas Winter Software-Engineering 42

 

 helps to make decision

 focus on the problem with polymetric view

 structural and behavioural representation

 detect and resolve of conflicts

 share model artefacts among the team members

 speeds up development process, and traces evolution process

 store differences instead of complete models

  

Benefits 

25.05.2012 Software-Engineering© Dilshod Kuryazov



© Andreas Winter 07.02.2012 Software-Engineering 43

Thank you for 
attention!

© Dilshod Kuryazov


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

