universitdt|OLDENBURG

Software engineering and
Key aspect of the field

Dilshod Kuryazov, MSc.
Software Engineering Group

Department of Computing Science
Carl von Ossietzky University Oldenburg

August 10, 2012

© Dilshod Kuryazov 10.08.2012 Software-Engineering

OSSIETZJSY
universitdt|OLDENBURG

© Andreas Winter 12.10.12 Software Engineering Group

EESESHEETRZI

universitdt |OLDENBURG

Statistics

Students: 11325
o Female: 6354
o Male: 4971

Professors: 182
o Female: 57
o Male: 125
Researcher: 999

o Female: 436
o Male: 563

© Andreas Winter 12.10.12 Software Engineering Group

Software Engineering Group

Head
o Andreas Winter

Secretary
o Marion Bramkamp
PhD Students

o Jan Jelschen

o Maxat Kulmanov

o Dilshodbek Kuryazov
o Yvette Teiken (OFFIS)

Student Assistants

© Andreas Winter 12.10.12 Software Engineering Group

universitdt |OLDENBURG

Software Engineering Group
Topics in Research and Teaching
o Software-Engineering

o Modeling and Metamodeling

o Graph-Technology
* Graph based modeling and implementation

o Process-Models in Software Development
o Software Evolution

Mission
o Development and Application of Graph-

Technology
to improve Software Evolution

© Andreas Winter 12.10.12 Software Engineering Group

CARL

VON

OSSIETZ.ISY
universitdt|OLDENBURG

Software Engineering and
Software Evolution

© Andreas Winter 12.10.12

ngineering
()LI])

Software Engineering
Software Crisis

o Software development
in the sixties

- Increase of software o somcs coumi
complexity

* missing suitable SOFTWARE ENGINEERING
programming languages TECHNIQUES

* missing suitable methods
and techniques for b A a0 o
engineering
software systems e L

* NO mail, internet, Java, .net,
eclipse, Google, sourceforge,

twitter, facebook, ... [http://homepages.cs.ncl.ac.uk/brian.randell/NATO/]

© Andreas Winter 12.10.12 Software Engineering Group

Software Engineering

[F. L. Bauer]

o "[Software engineering is] the establish-
ment and use of sound engineering
principles in order to obtain economically
software that is reliable and works
efficiently on real machines."”

(Software Engineering, Garmisch, October 7-11, 1968)

[IEEE Std. 601.12-1990, 1993]

o Software Engineering:
(1) The application of a systematic,
disciplined, quantifiable approach to the development, operation,
and maintenance of software; that is, the application of
engineering to software.
(2) The study of approaches as in (1).

© Andreas Winter 12.10.12 Software Engineering Group

Software Engineering

Engineering
o follows established principles -
o applies methods and techniques purposefully //
o |ooks for technically and costly efficient solutions
o rejects blindly and imprudently ad hoc problem solving

Software Engineering
o elicits and clearly defined system requirements
o constructs (models) alternative solutions (software architecture)
o evaluates solutions
o realizes solutions (i.e. programming)

o reviews solutions according their requirements
Conclusion

o software enqgi neeri ng !

Or oqr anmnm no

© Andreas Winter 12.10.12 Software Engineering Group

yyyyyyy

http://www.solovatsoft.com/
waterfall-model-software-
development.html

T

analyse

rungsanalyse

System-

HW-Einheits-

Software Engineering

nnnnnn

Software development activities S & oﬁ%ﬁs’ Vi— -
o plan and organize projects 1 VO/(/I?@@ =
o elicit requirements R ", /s 00/7 o
o define software architecture 5“”:;’?.‘.’.:23.?";,.,9,.., /SS/;? orme
o construct software systems F g 7(/
o test software systems e) :mmm
° run software systems / 3 \ /
e o e M Rsske2000)

Today “s software development challenge
o improve software development methods and technologies
o keep existing software systems fulfilling user s needs

12.10.12

Software Engineering Group

© Andreas Winter

Software Evolution Life Cycle

Software Evolution

o covers all activities to keep an existing software system running in
its changing environment

complete and

extend software :)I:? :;ta 2:1all
system issues
iteratively
— PN N
initial
develop- Evolution Servicing Phase Out
ment
<
improving Software Quality missing missing
adapting to changed environment evolvability adaptablitiy

[Rajlich/Bennett, 2000

© Andreas Winter 12.10.12 Software Engineering Group

A

Reverse
Engineering

supports
(if required)
et Software

‘.-""‘ corrective Correction
maintenance o

Software
Reengineering

'+, Maintenance

I
¥

L4
**s,, adaptivees, Software
L 4 i . .
~m.a.|ntenance Migration |

L 4
'Y _—

%
enhancive
maintenance
Software

Extension

Extracting a more
abstract system description

software ™ documentation

eliminating software errors
software — more (?) correct software

improving software quality
(not changing functionality)
software — better (?) software

transferring software to new
environment
(not changing functionality)

software — software in environment

extending software

software — software with new or
changed functionality

© Andreas Winter 12.10.12

Software Engineering Group

OSSIETZKY
universitat|OLDENBURG

Software Evolution

initial

development
25%

software extension

50% corrective
(includes perfective maintenance) maintenance

adaptive 12%
maintenance
13%

Conclusion
most work in software development [Lientz/Swanson, 1980,
has to deal with existing systems McKee, 1984, Nosek/Palvia, 1990]

© Andreas Winter 12.10.12 Software Engineering Group

1.1. What is a Model?

A model is
- a simplification of reality;

- a representation in a certain medium of something in the same
or other medium;

- a systematic description of an object or phenomenon that
shares important characteristics with the object or phenomenon.

© Dilshod Kuryazov 07.02.2012 Software-Engineering

1.1. What is a Model?

Characteristics of models:

a representation, on a smaller scale, of a device, structure, etc;
a standard to be imitated;

a representative form, style, or pattern;

a person who wears clothes to display them;

a design or style, designs of particular product;

a simplified representation or description of a system or complex
entity, designed to facilitate calculations and predictions;

- an interpretation of a formal system;

© Dilshod Kuryazov 07.02.2012 Software-Engineering

OSSIETZKY
universitat|OLDENBURG

What is a Model in computer science?

A model is a description of (part of) a system Abstraction
written in well-defined language.

eeeee

describes Rea I ity

M L I<swritten in ey

5 Modelling

A well-defined language is a language with well-defined
form (syntax), and meaning (semantics), which is suitable
for automated interpretation by a computer.

An abstraction helps system users to understand (part of)
a system and interaction of subsystems in it.

© Dilshod Kuryazov 07.02.2012 Software-Engineering

1.2. Why do we need models?

Models are to

visualize a system;

analyst to understand the functionality of the system;

communicate with customers;

document the decisions;

show external and internal prespective of a system's context;

© Dilshod Kuryazov 07.02.2012 Software-Engineering

1.3. What kind of models are in software
engineering?

Types of models in software engineering

RN

Dynamic models Static models

© Dilshod Kuryazov 07.02.2012 Software-Engineering

EESESHEETRZI

universitdt |OLDENBURG

1.3. What kind of models are in software
engineering?

Dynamic models - describe
dynamic aspects of a system do
change as a system runs

v NN

|24 |
Data flow models Process maturity models

Process models Behavioral models

A\
User interaction models

© Dilshod Kuryazov 07.02.2012 Software-Engineering

1.3. What kind of models are in software
engineering?

Static models - describe static
aspects of a system do not
change as a system runs

Structural models

/7 \

Architectural models

2

Data models \

Use case models

© Dilshod Kuryazov 07.02.2012 Software-Engineering

Modeling tools

4/ |

Modeling languages

Querying tools

Metalanguages &
Metamodels

Language

4. ORM - Object Role
Modeling

5. SOMF - Service -
Oriented Modeling
Framework

6. JML - Java Modeling
Language

Vv \% Vv
1. UML - Unified Modeling XMI - XML Metadata 1. MOF - Meta Object
language Interchage Facality
2. SysML - System JMI - Java Metadata 2. BNF - Backus Naur Form
Modeling Language Interface 3. CWM - Common
3. EEML - Extended IDL - Interactive Data Warehouse Metamodel
Enterprise Modeling Language 4. ODM - Ontology

definition Metamodel

07.02.2012

© Dilshod Kuryazov

Software-Engineering

CARL

VON

OSSIETZKY
universitat|OLDENBURG

2. UML overview

The UML is a language for

—— === e =1
g e == e
e . H — rzanss —
e = T s B B e
A =t e - . M T R '—._.'—: 4=k "_""I | "‘--a"_' n-.“;'__.'- E T 'f

° Visualizing e s

e Constru Cting |]\f = g

e Documenting K j"f"f"i

© Dilshod Kuryazov 07.02.2012 Software-Engineering

2.1. Understanding concepts of UML.
The complete UML 2.0 package

4 N 4)
Superstructure Diagram interchange
Defines user constructs for the
modeling of structure and
performance of systems
(e.g. class diagrams)

Defines the exchange of UML
models, including diagram
presentation

L[~
() Object constraint language
| Infrastucture J | (OCL) J
Defines basic constructs for
the definition and adaptation Defines language for the
of UML (e.g. profile for specification of restrictions
business modeling) | |
[~ [~

© Dilshod Kuryazov 07.02.2012 Software-Engineering

2.2. Building blocks of the UML

\\

3. Grouping

4. Annotational

4. Realization

O 00 N O U1 A W N B

Elements Relationships Diaérams
l l l
1. Structural 1. Dependency SClacs
. Object
2. Behavioral 2. Association Uea @rae
3. Generalization . Sequence

. Collaboration
. Statechart

. Activity

. Component

. Deployment

© Dilshod Kuryazov

07.02.2012

Software-Engineering

EESESHEETRZI

universitdt |OLDENBURG

&

Elements in the UML

v

\"4

N\

Structural elements are
the nouns of UML models.
These are the mostly
static parts of a model,
representing elements
that are either conceptual

Behavioral elements

are the dynamic parts of
UML models. These are
the verbs of a model,
representing behavior

Grouping elements are
the organizational parts
of UML models. These
are the boxes into which
a model can be

Annotational elements
are the explanatory parts
of UML models. These are
the comments you may
apply to describe,
illuminate, and remark

2. Interface

3. Collaboration
4. Use case

5. Active class
6. Component
7. Node

2. State machine

or bhvsical over time and space. decomposed. about any element in a
prysical. model.

{ Y { Y
1. Class 1. Interaction 1. Packages 1. Note

© Dilshod Kuryazov

07.02.2012

Software-Engineering

universitdt |OLDENBURG

EESESHEETRZI

Relationships in the UML

v

\"4

N
A realization is a semantic

£

A dependency is a
semantic relationship
between two things in
which a change to one
thing (the independent
thing) may affect the
semantics of the other

An association is a
structural relationship
that describes a set of

links, a link being a
connection among
objects. Aggregation is a
special kind of
association, representing
a structural relationship

A generalization is a
specialization/generaliza
tion relationship in which

objects of the
specialized element (the
child) are substitutable
for objects of the
generalized element (the
parent). In this way, the
child shares the

relationship between
classifiers, wherein one
classifier specifies a
contract that another
classifier guarantees to
carry out. In two places:
between interfaces and the
classes or components that
realize them, and between
use cases and the

thing. between a whole and its
structure and the . .
parts. behavior of the parent collaborations that realize
P) them.
A\ Vv A\ v
Cl: Cl; [
Cla L—
I - L -
| . 'i:l':l‘r" -1_'3& . F
2 A W
et S & A
D_E‘P?.—- - 13"_'. -

© Dilshod Kuryazov

07.02.2012

Software-Engineering

A7

Diagram

i

© Dilshod Kuryazov

07.02.2012

Structure Behaviour
Diagram Diagram
Ful Fil
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Esﬂmpc%site Deployment | Package Interactio MStEﬁPE
Diagram Dig%ﬂra“nﬁe Diagram Diagram Diagram Di%%rgrﬁ
i
Sequence| | Communicatior | INTEraction| Timing
Notation: ur%q Diagram Diagram %"'i"ggﬁ'aen“: Diagram

Software-Engineering

EESESHEETRZI

universitdt |OLDENBURG

2.3. UML Metamodeling

A metamodel

is at a higher level of abstraction than a model;

is called “a model of a model“;

is the rules/grammar for the modelling language (ML) itself;

describes the rules and constraints of metatypes and metarelationships;

is a description of a modelling language;

- defines all the concepts that can be used within a language.

Model is is MetaModel is
W r[tte n) defined (o T T ritten
I n M 0 d e I I n g by | nama: String | iy namd: String | b name: Striny i n
> — e | ———s| Metalanguage
language e
EnmyR;ferem

nam: tring
tablany: boalsan

© Dilshod Kuryazov 07.02.2012 Software-Engineering

OSSIETZKY
universitat|OLDENBURG

Architecture of metamodel layers

Dafines

Meta - '

matamodel

Description

Meta-metamodel

The infrastructure for a

M3 metamodeling architecture.
Defines the language for

specifying metamodels.

Defines

Metamodels

An instance of a meta-
M2 metamodel. Defines the
language for specifying a

model Models

An instance of a metamodel.
M1 Defines a language to
describe an information ——— — e wl — — —_—

domain. {r Represent {r Real-world

things

An instance of a model. -
MQO | Defines a specific »
information domain. -

© Dilshod Kuryazov 07.02.2012 Software-Engineering

EESESHEETRZI

universitdt |OLDENBURG

Metamodeling layers

I Class Attribute
M3 Layer Meta Object name | ram =
_ . type - - -
kA eta-ketamodel FECl'lt'_',.-" “"-."1 DF:I . VR :
\ has-instance]
v 1
| | Class Attribute i
M2 Layer LImAL Jaw g nam e name <-1--
Metarnodel package | type
Metamodel MWMetamodel abstract incexed
Symptom |
—I I name <q{---
M1 Layer de=cription
UL Class Java ; -
M oclel D s , evid ence-for Disease
|Aqgrarms fgsses] name
: CureE
¥ v
—I —I rash: Symptom |rneasl&s: D isease
name = "Razsh" name = "Meases"
MO Layer LIMAL Java description = "after cure = Antipyretics
[nfarmation b approx. 3 days, &
ects Instances -~ ¥E
J red hlotchy rash Evdence-for

start= on the face "

© Dilshod Kuryazov

07.02.2012

Software-Engineering

What is Meta Object Facility (MOF)?

» Metadata management framework and set of metadata
services;

» Enable development and interoperability of model and metadata
driven systems;

» MOF is used in most MDA-related technologies (UML, XMI, UML
profiles, JMI);

» MOF has improved interoperability and productivity (all
metamodels are based on the same metametamodel);

» MOF 2.0 Model is a framework for metamodelling and metadata
representation and management;

» MOF 2.0 IDL and MOF 2.0 Java are the mappings from MOF 2.0
to IDL and Java respectively;

» MOF 2.0 Query/View/Transformation is a framework to define
transformations based on MOF metamodels.

© Dilshod Kuryazov 07.02.2012 Software-Engineering

UML Modeling

1. Requirements

2. Architecture

3. Design

4. Implementation

5. Deployment

3. UML in Action

M

O 00 N O U1 A W N

UML Diagrams
. Use case

. Class

. Object

. Sequence

. State

. Component

. Collaboration

. Activity

. Deployment

© Dilshod Kuryazov

07.02.2012

Software-Engineering

Understanding modeling deltas (As)

<Model driven software development

Software evolution >
Version 1. Version II.
Requirements ———E > Requirements
<
\% = \%
Design > Design
—d
\"4 Ll \%
Code > Code
(@]
t0 tl

© Dilshod Kuryazov

07.02.2012 Software-Engineering

3.1. Modeling deltas

Before changes After changes

Person Person

Professor

© Dilshod Kuryazov 07.02.2012 Software-Engineering

EESESHEETRZI

universitdt |OLDENBURG

3.1. Modeling deltas

(presentation, merging, storing, adapting)

Designer 1

Source model 4 Final model

A C L | A

—

Designer 2

© Dilshod Kuryazov 07.02.2012 Software-Engineering

AM

Difference Algorithms

DM

H ReeDSedS requirements driven
software development system
AM (MOLA tools), SIDIFF (CDDiff,

‘ ‘ ADDIff).
\"4 \"4

CM

DM SIDIFF (CDDiff, ADDiff), ReeDSedS

CVS, SCCS and subversion,
CM ReeDSedS.

v‘ v‘ A text based versioning tools RCS,

© Dilshod Kuryazov

07.02.2012

Software-Engineering

OSSIETZKY
universitat|OLDENBURG

Motivation

Software Software
System System
(version. i) (version. i+1)

A group of tools

I

Collaborative

// modfling \\

Merging
(models with)
differences

Calculating Representing Visualizing
differences differences differences

Analyzing
differences

© Dilshod Kuryazov 25.05.2012 Software-Engineering

State of the Art

e There is need for more sophisticated approach which
addressed to represent model differences

e Integrability of an approach brings huge amount of
possiblities

e Tool support is still in its infancy
e Mixture of design and code levels. Recently, round-trip

engineering raises the challenge of synchronizing models and
code

© Dilshod Kuryazov 25.05.2012 Software-Engineering

OSSIETZKY
universitat|OLDENBURG

Proposed approach

Evolution process

Software
Model (AD)
Version i

Operational
differences

MAPPING

_— =

Software
Model (AD)
Version i+1

ATL rules

© Dilshod Kuryazov 25.05.2012

Software-Engineering

OSSIETZKY
universitat|OLDENBURG

~,

l'f-;}r-l::l:a:r!".',.-'st-errl"l.l"_'l

[: process order :)

—

(receive payment

. iy

Rule representation of operations

mm_OSV1, mm_OSV2

target
— 1
Activity * controlFlow
name : string
]_ £
source

'\Conforms to

f:Drd&rSYSFEHﬂFE

A=[let a3: OSV1->addActivity(“pay invoice”);
OSV1->cf1.changeTo(a3);
let cf4: OSV1->addControlFlow(a3, a2);]

(: process order :)

NG

[pay invoice [

Mapping
"::::II;\\\\\\\v””,,,;iii:::”

(receive payment j

. iy

module inZout;

uses string, integer;
rule addActivity(name :
to

String){

b mm_0SV2!Activity(
b.name <- name

3

create OUT:OrderSystemVZ from IN:OrderSystemVl;

rule changeTarget{target
from a : mm_05%V1!controlFlow
to b : mm_05VZ2!'controlFlow(
b.source =- a.source,
b.target <- target

1 String){

rule addControlFlow(source, target : String}{

to b : mm_05VZ!controlFlow(
b.source <- source,
b.target <- target

© Dilshod Kuryazov 25.05.2012

Software-Engineering

OSSIETZKY
universitat|OLDENBURG

Meta-model for UML Activity diagram

SOUrce |
MNode Flow
[P S e e 1=
: target i :::l-__}
| N |
| Control :
: Initial Activity s
:_‘[:" name : string "::]'__‘I :
: : Object :
i Final Decision : :
1 — =] =<} — — 1 1
| | |
| I |
| | I
: Object Fork i :
s = <} — — 1 1
| | I
| | |
: : versioned Objects :
| Merge Join : Add(parameters) e ____
1= -} - — - — Deletelparameters)
1 Changeiparameters)
|
! |
: FlowFinal I
1= > !
: i
___ 1
MNode Flow
DELTA
Activity Control Object
& Y| Start End | Decision | Object | Fork | Merge | Join | FlowFinal
(name) source | tmrget | source | target
Add | I
Change I
Delete

© Dilshod Kuryazov 25.05.2012 Software-Engineering

OSSIETZKY
universitat|OLDENBURG

Benefits

> helps to make decision

> focus on the problem with polymetric view

» structural and behavioural representation

> detect and resolve of conflicts

> share model artefacts among the team members

> speeds up development process, and traces evolution process

> store differences instead of complete models

© Dilshod Kuryazov 25.05.2012 Software-Engineering

OSSIETZ.ISY
universitdt|OLDENBURG

Thank you for
attention!

© Dilshod Kuryazov 07.02.2012 Software-Engineering

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

