
© Andreas Winter

Studying
Computer Science
in Oldenburg (Oldb.),
Germany

14.06.2012 1Software Engineering Group

© Andreas Winter

Воронеж - Oldenburg
Oldenburg (Oldb.)

14.06.2012 Software Engineering Group 3

© Andreas Winter

... some Impressions from Oldenburg

© Andreas Winter

Oldenburg Downtown

14.06.2012 Software Engineering Group 6

© Andreas Winter

Oldenburg
Waters

14.06.2012 Software Engineering Group 7

© Andreas Winter

Oldenburg Gardens

14.06.2012 Software Engineering Group 8

© Andreas Winter

Oldenburg Bikes

14.06.2012 Software Engineering Group 9

© Andreas Winter

Carl von Ossietzky University

14.06.2012 Software Engineering Group 12

© Andreas Winter

Statistics
Students: 11325

o Female: 6354
o Male: 4971

Professors: 182
o Female: 57
o Male: 125

Researcher: 999
o Female: 436
o Male: 563

14.06.2012 Software Engineering Group 13

© Andreas Winter

Faculties

I. School of Education
II. School of Computing Science, Business

Administration, Economics and Law
III. School of Linguistics and Cultural Studies
IV. School of Humanities and Social Sciences
V. Faculty of Mathematics and Science

14.06.2012 Software Engineering Group 14

16%
I

22%
III

16%
IV

25%
V

Business
Adminis-
tration,

Economics,
Law

(2747)
15%

Computer
Science
(990)

6%

21%
II

11.325 Students

© Andreas Winter

Department for
Computer Science

14.06.2012 15Software Engineering Group

© Andreas Winter

Statistics
Students 990

o Bachelor > 620
o Master > 180
o Diploma > 80
o PhD > 50

Professors 21
Researcher > 50

14.06.2012 Software Engineering Group 16

© Andreas Winter

Professors and Groups

14.06.2012 Software Engineering Group 17

Eike Best
Parallel

Systems

H.J. Appelrath
Information-

systems

Ira Diethelm
Didactics in

Computer Science

Werner Damm
Safety Critical

Embedded Systems

Annegret Habel
Formal

Languages

E.R. Olderog
Correct

Systems

Susanne Boll
Multimedia

Systems

Axel Hahn
Business

Informatics

Sergej Fatikow
Micro-Robotics &

Control Engineering

W. Kowalk
Computer
Networks

J. Marx Gomez
Business

Informatics (VLBA)

Martin Fränzle
Hybrid

Systems

Oliver Theel
Distributed

Systems

M.Sonnenschein
Environmental

Informatics

Andreas Hein
Integrated Systems

and Microsensors

Andreas Winter
Software

Engineering

Oliver Kramer
Computational

Inteligence

Wolfgang Nebel
Embedded

HW/SWSystems

Daniela Nicklas
Database & Inter-
net Technologies

S. Lehnhoff
Energy

Informatics

Achim Rettberg
Integrated

Embedded Systems

Theoretical CS Practical CS Applied CS Technical CS

© Andreas Winter

Teaching
Programs

o Bachelor
o Master

o PhD
• research

assistants
(CvO, OFFIS)

• PhD Grants
– e.g. Erasmus

Mundus, TARGET
• Post-Graduate

Program
– DFG SCARE

14.06.2012 Software Engineering Group 18

© Andreas Winter

Areas of Specializations
Bachelor

o Environmental Informatics
o Modeling and Analysis of Complex Systems
o Embedded Systems and Micro-Robotics
o System Software
o Information Systems and Software Engineering
o Computer Science in Education

Master
o Environmental Informatics
o Modeling and Analysis of Complex Systems
o Computer Science in Education
o IT in Power Industry
o IT in Health
o Complex Information and Software Systems
o Reliable Systems

14.06.2012 Software Engineering Group 19

© Andreas Winter

Curriculum: Bachelor Informatics

14.06.2012 Software Engineering Group 20

1. Algorithms and
Programming

Programming in
Java

Technical
Computer
Science 1

Discrete
Structures

Linear
Algebra

2. Algorithms and
Data Structures Soft Skills

Technical
Computer
Science 2

Theoretical
Computer
Science 1

Analysis

3. Information-
systems 1

Software
Engineering 1 Choice

Theoretical
Computer
Science 2

Specialization
in

Mathematics

4. Operating
Systems Project

and
Proseminar

Technical CS
Practical
Training.

Computer
Networks Choice

Choice Choice Choice5. Computer Science
and Society

6. Bachelor Thesis Seminar Choice Choice

© Andreas Winter

Curriculum: Master Informatics - Specialization KISS

14.06.2012 Software Engineering Group 21

1.
Early

Phases
Information-

Systems Choice Choice Applications

2.

Project
(24 KP)

Seminar Choice non CS

3.
Applications Choice non CS

4. Master Thesis (30 KP)

Applications
o Mobile Systems, HCI, Health Care Information-Systems, Special Topics

Software Engineering, Special Topics Information Systems, Hybrid Systems,
Knowledge Management, Secure Communication, Intelligent Systems, ...

non CS
o law, data protection law, commercial law, legal informatics, ...

© Andreas Winter

SCARE (System Correctness under Adverse Conditions)

Objective
o SCARE addresses system correctness of hard- and software

systems to guarantee robustness of the system behavior under
adverse conditions. Correctness focusses on satisfying a given
specification of desired cooperation properties between
environment and systems

o System correctness under adverse conditions refers to
• limited knowledge
• unpredictable behavior
• changing system environment and system structure

Research Topics
o Modeling Techniques
o Verification and Analysis Techniques
o Constructive Techniques (combination of formal methods with

engineering approaches)
14.06.2012 Software Engineering Group 22

© Andreas Winter

Research Training Group SCARE
Application

o 15 Research Positions for PhD Candidates
• Five positions: 1 October 2012
• Five positions: 1 October 2013
• Five positions: 1 October 2014

o Funding:
• Three years by DFG, TV-L E13

o Prerequisite
• excellent Master’s degree (or equivalent) in Computer Science

o apply to (deadline 1st group: June 30, 2012)
• Prof. Dr. Ernst-Rüdiger Olderog, Department of Computing

Science, FK II, University of Oldenburg, 26111 Oldenburg,
Germany (scare@uni-oldenburg.de)

14.06.2012 Software Engineering Group 23

© Andreas Winter

Research
Research Foci

applied computer science in
strong cooperation with OFFIS

o Safety Critical Embedded Systems
o Energy Efficiency in Information Technologies

Research Perspective
exploring future research foci

o ExploIT Dynamics

14.06.2012 Software Engineering Group 24

© Andreas Winter

Objective
o aims at improving productivity and quality in developing digital,

embedded hard- and software-systems
• car driving safety technologies
• computerized control systems

in avionics

Center of Excellence
o AVACS (Automatic Verification

and Analysis of Complex Systems)
• automatic verification of hard-

and software systems used in
safety critical embedding e.g.
– Avionics
– Transportation by car
– Transportation by train

14.06.2012 Software Engineering Group 25

Safety Critical Embedded Systems

© Andreas Winter

Energy Efficiency in Information Technologies
Objective

o Acheiving climate protection goals requires a rethinking of
producing and using energy. Energy Efficiency in Information
Technologies aims at improving energy efficient behavior by
applying Information technologies

Topics
o Smart Grids

• ensuring future power supply environ-
mentally friendly and economically

o IT2Green
• ensuring energy efficiency of produc-

tion and transportations processes

o GreenIT
• ensuring energy efficiency of infor-

mation technologies (e.g. in data
centers; software applications)

14.06.2012 Software Engineering Group 26

© Andreas Winter

ExploIT Dynamics
Objective
o improve and maintain the quality

of systems in a changing world
o develop and apply (domain inde-

pendent) techniques to control
and make use of the dynamic
behavior of systems

Topics
o Software Evolution

• provide model-based techniques to statically and dynamically analyze
software systems and perform automatic reconfigurations (RQ, BI)

o Quality Monitoring
• provide techniques to constantly monitor and maintain systems quality

(e.g. during software migration and systems operation)
o Highly Reliable Data and Services

• provide replication and prediction techniques to improve efficient and
reliable data access or usage of services

14.06.2012 Software Engineering Group 27

observe observation
model

decide decision
model

analyze analysis
modelactivate activation

model

system

IT-system

system
environment

change

change

influences

observationnext iteration

resultsdecisions

observe observation
model

decide decision
model

analyze analysis
modelactivate activation

model

system

IT-system

system
environment

change

change

influences

observationnext iteration

resultsdecisions

© Andreas Winter

OFFIS
Institute for Information Technology

14.06.2012 28Software Engineering Group

© Andreas Winter

OFFIS
Oldenburg Research Institute on

Applied Computer Science
o founded in 1991
o affiliated to Department of Informatics of CvO
o more than 290 researcher
o research profile

14.06.2012 Software Engineering Group 29

© Andreas Winter

About OFFIS
Mission:

o Support of innovation through technology transfer
o Strengthening of the IT location Oldenburg
o Advancement the Metropolitan Region Northwest

Members:
o State of Lower Saxony and University Oldenburg
o 28 Professors of IT and related studies of University Oldenburg and Jade University

Budget:
o Income in 2011: 13,09 million €
o Basic funding from the state of Lower Saxony approx. 26%
o Third party funding from international, national and regional projects approx. 74%

Performance:
o More than 400 cooperation partners regionally/nationally/internationally
o More than 300 R&D projects only since 2001 carried out
o European-wide interlinking science/economy/politics
o Scores of spin-offs, participation in development of international standards

14.06.2012

© Andreas Winter

Institute for Business Intelligence
Business Intelligence

o using all business information, available in various formats to
support strategic decision finding in business

o requires intensive research on data extracting and merging
uses

o data ware-houses
o static and dynamic

analysis techniques

Contact
o Jorge Marx Gomez

jorge.marx.gomez
@uni-oldenburg.de

14.06.2012 Software Engineering Group 34

© Andreas Winter

Summary
Oldenburg offers a wide

variety of chances
o to deepen your studies in

computer science
o to do research on computer

science foundations and
their applications

o to stay in a worth
living environment

14.06.2012 Software Engineering Group 35

observe observation
model

decide decision
model

analyze analysis
modelactivate activation

model

system

IT-system

system
environment

change

change

influences

observationnext iteration

resultsdecisions

observe observation
model

decide decision
model

analyze analysis
modelactivate activation

model

system

IT-system

system
environment

change

change

influences

observationnext iteration

resultsdecisions

© Andreas Winter

Using Graph-Technology
to Improve Software-Evolution

Andreas Winter
mailto:winter@se.uni-oldenburg.de

14.06.2012 36Software Engineering Group

© Andreas Winter

Oldenburg
Software Engineering Group

14.06.2012 37Software Engineering Group

© Andreas Winter

Software Engineering Group
Head

o Andreas Winter
Secretary

o Marion Bramkamp
PhD Students

o Jan Jelschen
o Maxat Kulmanov
o Dilshodbek Kuryazov
o Yvette Teiken (OFFIS)

Student Assistants
o Marion Gottschalk
o Mirco Josefiok

14.06.2012 Software Engineering Group 38

© Andreas Winter

Software Engineering Group
Topics in Research and Teaching

o Software-Engineering
o Modeling and Metamodeling
o Graph-Technology

• Graph based modeling and implementation
o Process-Models in Software Development
o Software Evolution

Mission
o Development and Application of Graph-Technology

to improve Software Evolution

14.06.2012 Software Engineering Group 40

© Andreas Winter

Outline
Foundations

o Software-Engineering
o Software-Evolution

Graph-Technology
o Graph-based Modeling
o Graph-Querying

Current Activities
o SOAMIG: Migrating Legacy Software to

Service-Oriented Architectures
o SES: Software-Evolution Services
o EEA: Removing Energy Code Smells with

Reengineering Services
o Modeling Deltas: Version Control for Software-Models

14.06.2012 Software Engineering Group 41

http://www.thereelbits.com/2011/02/22/the-way-back/

© Andreas Winter

Software Engineering and
Software Evolution

14.06.2012 42Software Engineering Group

© Andreas Winter

Software Engineering
Software Crisis

o Software development
in the sixties
• Increase of software

complexity
• missing suitable

programming languages
• missing suitable methods

and techniques for
engineering
software systems

• no
mail, internet, Java, .net,
eclipse, Google, sourceforge,
twitter, facebook, ...

14.06.2012 Software Engineering Group 43
[http://homepages.cs.ncl.ac.uk/brian.randell/NATO/]

© Andreas Winter

Software Engineering
[F. L. Bauer]

o "[Software engineering is] the establish-
ment and use of sound engineering
principles in order to obtain economically
software that is reliable and works
efficiently on real machines."
(Software Engineering, Garmisch, October 7-11, 1968)

[IEEE Std. 601.12-1990, 1993]
o Software Engineering:

(1) The application of a systematic,
disciplined, quantifiable approach to the development, operation,
and maintenance of software; that is, the application of
engineering to software.
(2) The study of approaches as in (1).

14.06.2012 Software Engineering Group 44

© Andreas Winter

Software Engineering
Engineering

o follows established principles
o applies methods and techniques purposefully
o looks for technically and costly efficient solutions
o rejects blindly and imprudently ad hoc problem solving

Software Engineering
o elicits and clearly defined system requirements
o constructs (models) alternative solutions (software architecture)
o evaluates solutions
o realizes solutions (i.e. programming)
o reviews solutions according their requirements

Conclusion
o software engineering != programming

14.06.2012 Software Engineering Group 45

http://www.mobileslead-just-needs-high-efficiency/

© Andreas Winter

Software Engineering
Software development activities

o plan and organize projects
o elicit requirements
o define software architecture
o construct software systems
o test software systems
o run software systems

Today´s software development challenge
o improve software development methods and technologies
o keep existing software systems fulfilling user´s needs

14.06.2012 Software Engineering Group 46

Produktinformationen

SE 7-SW
SW-Integration

SE 7.1-SW bis
SE 7.4-SW

SE 1
System-Anforderungs-

analyse
SE 1.1 bis SE 1.8

SE 3
SW-/HW-Anforde-

rungsanalyse
SE 3.1 bis SE 3.5

SE 4-SW
SW-Grobentwurf

SE 4.1-SW bis SE 4.3-SW

SE 5-SW
SW-Feinentwurf

SE 5.1-SW und SE 5.2-SW

SE 8
System-Integration

SE 8.1 bis SE 8.3

System-
Ebene

SE 2
System-Entwurf
SE 2.1 bis SE 2.6

HW-Einheit

Anwenderforderungen

SW-Architektur

Datenkatalog

Integrationsplan

Betriebsinformationen

Schnittstellenbeschreibung

SW-Einheits-/
HW-Einheits-

Ebene

Modul-/Datenbank-
Ebene

SW-Kompo-
nenten-

Ebene

Externe Vorgaben (AG)

Implementierungsdoku-
mente (SW-Komponente)

Datenbank

Rahmenbedingungen (für SE 1.7)

SWPÄ-Konzept

Betriebsinformationen

Betriebsinformationen

SW-Entwurf

SW-Modul
Implementierungsdokumente

(SW-Modul, Datenbank)

Implementierungsdokumente
(SW-Einheit)

SW-Komponente

Betriebsinformationen
System (installierbar)

Technische Anforderungen

Systemarchitektur

Technische Anforderungen

SE 6-SW
SW-Implementierung
SE 6.1-SW bis SE 6.3-SW

System
(installiert und in Betrieb)

SE 9
Überleitung

in die Nutzung
SE 9.1 bis 9.3

Betriebsinformationen

Legende:

Prüfaktivitäten
(siehe QS)

Schnittstellenübersicht

Schnittstellenbeschreibung

Kosten-/Nutzenanalyse
Angebotsbewertung

Schnittstellenübersicht
Nicht-IT-Anteile

SW-Einheit

Protokoll

[BWB IT, 1997]

[Kruchten, 2001]

[Beck, 2000]

http://www.solovatsoft.com/
waterfall-model-software-
development.html

© Andreas Winter

Software Evolution Life Cycle
Software Evolution

o covers all activities to keep an existing software system running in
its changing environment

14.06.2012 Software Engineering Group 47

improving Software Quality
adapting to changed environment

[Rajlich/Bennett, 2000]

repair and
correct small
issues

complete and
extend software
system
iteratively

initial
develop-

ment
Servicing Phase OutEvolution

missing
evolvability

missing
adaptablitiy

© Andreas Winter

Activities in Software Evolution

Software Engineering Group 48

extending software

eliminating software errors
software → more (?) correct software

improving software quality
(not changing functionality)
software → better (?) software

transferring software to new
environment
(not changing functionality)
software → software in environment

software → software with new or
changed functionality

Software
Evolution

Software
Correction

Software
Reengineering

Software
Extension

Software
Migration

corrective
maintenance

enhancive
maintenance

adaptive
maintenance

perfective
maintenance

Reverse
Engineering

supports
(if required)

Extracting a more
abstract system description
software → documentation

14.06.2012

© Andreas Winter

Graph Technology

14.06.2012 50Software Engineering Group

© Andreas Winter

Graph Technology
wanted:

o powerful means to represent
and analyze
• program code
• software models

TGraphs
o directed graphs with
o typed nodes and edges
o attributed notes and edges
o ordered node, edge, and incidence sets

TGraph-Classes
o grUML-Schemas providing

conceptual modeling of Graph
structures

14.06.2012 51Software Engineering Group

[Ebert, Jürgen; Riediger, Volker; Winter, Andreas:
Graph Technology in Reverse Engineering, The TGraph
Approach, In :10th Workshop Software Reengineering
(WSR 2008), LNI 126, pp. 67-81,2008]

© Andreas Winter

TGraphs

typed, attributed, ordered, directed graph
14.06.2012 52Software Engineering Group

© Andreas Winter

TGraph Schema

14.06.2012 53Software Engineering Group

grUML Schema
Classes:

node types
Associations:

edge types
attributes:

node and
edge attributes

Multiplicites:
degree restrictions

© Andreas Winter

Graph-Analysis
wanted

o efficient analysis of graph structures
GReQL graph queries

o metamodel based qurey language for Tgraphs, with
• regular path expressions
• transitive closure
• extendible library for

graph predicates
and functions

14.06.2012 54Software Engineering Group

from
declaration

with
predicate

report
result description

end

© Andreas Winter

Query Example
show all caller/callee-pairs

14.06.2012 55Software Engineering Group

from
caller,callee: V{Method}

with caller (
--> {isStatementIn}
[<-- {isReturnValueOf}]
<-- {isActualParameterOf}*
<-- {isCalleeOf}
)* callee

report
caller.name as "Caller"
callee.name as "Callee"

end

© Andreas Winter

Anfragebeispiel
show all caller/callee-pairs

14.06.2012 56Software Engineering Group

from
caller,callee: V{Method}

with caller (
--> {isStatementIn}
[<-- {isReturnValueOf}]
<-- {isActualParameterOf}*
<-- {isCalleeOf}
)* callee

report
caller.name as "Caller"
callee.name as "Callee"

end

© Andreas Winter

Tool Support (GUPRO)

14.06.2012 Software Engineering Group 57

© Andreas Winter

Software Evolution Projects

SOAMIG: Migrating Legacy Software to
Service-Oriented Architectures

SES: Software-Evolution Services
EEA: Removing Energy Code Smells with

Reengineering Services
Modeling Deltas: Version Control for Software-Models

14.06.2012 58Software Engineering Group

© Andreas Winter

Software Migration
o provides transferring software systems to a new

environment without changing its functionality
o enables reusing legacy assets in new environments
o preserves value of existing software systems during

software evolution
SOAMIG

o focuses on migrating software assets
• by transformation
• to service-oriented architectures (SOA)

o addresses architecture and language migration

60Software Engineering Group

Motivation

14.06.2012

© Andreas Winter

Project idea
o use of model-driven

techniques
• integrated meta-model

representing legacy and
target system on
– business process level
– architecture level
– code level

• meta-model based
reverse-engineering and
software-analysis by
– querying
– transforming

63Software Engineering Group14.06.2012

© Andreas Winter

SOAMIG Contribution
o adaptable, iterative process model
o phases for

• Preparation (incl. setting up a migration factory)
• conceptualization (incl. feasibility analysis and tool adaption)
• (core) migration (incl. migration disciplines)
• post-renovation (incl. reengineering activities)

68Software Engineering Group

SOAMIG Process Model

14.06.2012

© Andreas Winter

SOAMIG Contribution
o migration tool support integrated by a graph-based repository

• Parser/Unparser (JavaFE, CobolFE, DSL-Parser, JGen, JFormat)
• Repository based Analysis (FGM, JGraLab, Dynamic Analysis)
• Repository based Transformation (Cobol->Java-Translator, Datamodel

Generator, SOAMIG-Extractor)

71Software Engineering Group

SOAMIG Tool Chain

14.06.2012

© Andreas Winter

Case Study 1: RAIL
Migration Type

o architecture migration to SOA
Legacy System

o selling Deutsche Bahn products,
developed by Amadeus

o monolithic 229 228 LOC Java
rich client

Migration Objectives
o reducing deployment costs
o increasing reusability of

functional components
Migration in SOAMIG

o focuses on technical feasibility

73

Evaluation and Application
Case Study 2: LCOBOL
Migration Type

o code migration
Legacy System

o transaction system, maintained
by pro et con

o monolithic rich client
o 81 600 LOC MF-COBOL/SQL

Migration Objectives
o increasing reusability and

subsequent use in web service
based environment

Migration in SOAMIG
o focuses on full language

migration
Software Engineering Group14.06.2012

© Andreas Winter

Rail: Target GUI
Presentation Layer

(by re-implementation)

14.06.2012 Software Engineering Group 76

after migration

legacy
system

© Andreas Winter

Removing Energy Code Smells
with Reengineering Services

14.06.2012 94Software Engineering Group

© Andreas Winter

Motivation
Consumption:

o over 10 % of Germany’s overall electrical energy
consumption due to ICT by 2007

Environment:
o CO2 emissions higher than entire German aviation

sector

Mobility:
o ubiquitous and powerful mobile devices, batteries

cannot keep up

Research:
o focused on hardware and low-level software

optimizations

Our Focus:
o application level with feedback to OS, mobile

computing
14.06.2012 Software Engineering Group 95

© Andreas Winter

RepositoryCode Abstractionidentification

restructuring

Metamodel

3

conforms to

parse

unparse

1

4
2

Refactoring = Identification + Restructuring

Energy Code Smells
 Energy code smells are energy-inefficient patterns in code
 Platform dependent as well as platform independent

energy code smells exit
Process
① Preparation: parse source

to TGraphs
② Identification: identify code patterns

by graph queries (GReQL)
③ Restructuring: improve code

through graph transformations
④ Post processing: unparse

TGraphs to source

14.06.2012 Software Engineering Group 98

© Andreas Winter

Meta Model for Graph Representation
Representation of Java Code

 According to SOAMIG Java Meta Model
 Originally contains 86 node types and 67 edge types

14.06.2012 Software Engineering Group 99

extract [FWE+12]

© Andreas Winter

Example: GPSPrint Android Application
GPSPrint is a simple Android

App showing actual GPS
information like signal
strength, count of satellites
etc.

14.06.2012 Software Engineering Group 100

© Andreas Winter

Example: Resource Utilization in Android
code smell

o claiming and releasing resources in onCreate() and onDestroy()

14.06.2012 Software Engineering Group 101
cmp. Android Developers: “Activities”, 2012. http://developer.android.com/guide/topics/fundamentals/activities.html

© Andreas Winter

Example: Resource Utilization in Android

14.06.2012 Software Engineering Group 102

© Andreas Winter

Detecting Energy Code
Smells via GReQL

14.06.2012 Software Engineering Group 103

© Andreas Winter

Code Restructuring

14.06.2012 Software Engineering Group 104

© Andreas Winter

Classes of Energy Code Smells
Loop Bug
 A program behaviour wherein an application is repeating the same activity

Dead Code
 Source code which is never used, but needs to be loaded into memory

In-line method
 Replacing a method call with the actual body of the called method

Moving too much data
 Unnecessary communication between processor and memory

Immortality Bug
 Describes applications respawning after explicitly being killed by the user

Redundant storage of data
 Different methods of an application store the same data in memory

Using expensive resources
 Swap energy-expensive resources against “cheaper” alternatives

14.06.2012 Software Engineering Group 105

© Andreas Winter

Infrastructure for Measurement and Management

Layered Structure on
Mobile Devices

o Hardware which runs the
operating system

o application environment
(sometimes; e.g. Dalvik VM)

o Application layer interacts
with the user

Energy Abstraction Layer
o between hardware and applications
o OS and hardware independent
o Abstract specification for

measurement and management of
energy

14.06.2012 Software Engineering Group 107

Operating System

Hardware Model

Hardware
Simulation

Energy Abstraction Layer
Management

Software Evolution Services

Refactoring

Static Code
Analysis

Dynamic Analysis

Applications

Measurment

C
ertification

Tools

Emp
Eval

Hardware
Hardware
Interface

© Andreas Winter

Summary
Foundations

o Software-Engineering
o Software-Evolution

Graph-Technology
o Graph-based Modeling
o Graph-Querying

Current Activities
o SOAMIG: Migrating Legacy Software to

Service-Oriented Architectures
o SES: Software-Evolution Services
o EEA: Removing Energy Code Smells with

Reengineering Services
o Modeling Deltas: Version Control for Software-Models

14.06.2012 Software Engineering Group 119

http://www.kleinezeitung.at/freizeit/aktivwellness/touren/623790/index.do

