
The role of (reference)
ontologies in (view-based)

modeling

João Paulo A. Almeida
(jpalmeida@ieee.org)

Federal University of Espírito Santo

http://nemo.inf.ufes.br

NEMO is currently supported by CNPq, CAPES and FAPES.

mailto:jpalmeida@ieee.org
http://nemo.inf.ufes.br/

This talk in a nutshell
1. Our models and systems are intended to represent some

domain of interest (“domain”)
2. We must then, as best as possible, try to understand this

domain
3. This understanding can inform the modeling and system

building tasks (and that includes view-related tasks)

The System

View 3

View 1

View 2

(a) Synthetic MVS

The System

View 3

View 1

View 2

(b) Projective MVS

Fig. 1. Synthetic versus Projective MVS.

MVS focused on software engineering [8]. Key examples are
TOGAF, Zachman, DoDAF [9] etc. However, there are also
”high level” software engineering-oriented MVS approaches
which are relaxed, such as the MDA [10]. Important examples
of rigorous MVSs are RM-ODP, Archimate and OSM [11]. In
the following subsections, and indeed, in the rest of the paper
we focus exclusively on rigorous MVS approaches.

B. Synthetic versus Projective Views

Probably the single most discussed realization dichotomy
in the literature on MVS environments is whether views should
be supported using a ”synthetic” or a ”projective” approach.
This terminology was introduced in the IEEE1471/ISO42010
standard for Systems and Software Engineering – Archi-
tecture Description [5], [6], but the distinction goes right
back to some of the early work on MVS approaches [8].
IEEE1471/ISO42010 defines the two approaches as follows:

“In the synthetic approach, an architect constructs views
of the system-of-interest and integrates these views within an
architecture description using model correspondences. In the
projective approach, an architect derives each view through
some routine, possibly mechanical, procedure of extraction
from an underlying repository.”

This difference is depicted schematically in Figure 1. The
top part of the figure, (a), shows the synthetic approach while
the bottom part, (b), shows the projective approach. In both
cases, of course, the views describe the system. The difference
is what is derived from what. In other words, what is the master
and what is the slave? In the synthetic case, the views are
regarded as the primary artifacts (which are explicitly modeled
and maintained over time) and the system is regarded as the
derived artifact whose properties are inferred from the views.
In the projective case, the situation is reversed and the views
are derived from the system. This is depicted in the figure by
the direction of the arrows and by whether the boundaries of
the symbols are solid or dashed.

The System

View 3

View 1 View 2

Model of the
System (SUM)

Fig. 2. SUM-based Projective MVS.

!"#$%&'#(

)*#+,

)*#+-
!

!

!

Fig. 3. Explicit versus Implicit Correspondences.

Part (b) of Figure 1 showing the projective approach is
potentially misleading because it could be taken to imply that
the views are derived only conceptually, but not physically,
from the system. However, this is not the case. As the definition
from the IEEE1471/ISO42010 explains, a key part of the
notion of a projective environment is that the views are derived,
”possible mechanically”, from an underlying repository.

A more accurate representation of the projective approach
is therefore shown in Figure 2. This makes explicit the fact that
there is some kind of repository that stores a representation (i.e.
a model) of the system. The views are derived from this, ideally
in a mechanical way. In the recent literature it has become
common to refer to this repository as a Single Underlying
Model (SUM) [12] since it is conceptually a model of the real
system.

The highest-profile contemporary MVS approach based on
the synthetic views is RM-ODP. Other synthetic approaches
are the work by Große-Rhode [13] and the VOSE framework
by Finkelstein [8]. The most vocal exponents of the projective
approach are the SUM-oriented approaches (OSM, Vitruvius
[14]). However, other EAM methods also support a projective
approach, such as Archimate, without claiming so explicitly.

C. Explicit versus Implicit Correspondences

Another fundamental dichotomy in MVS realization ap-
proaches is whether the relationships that exist between views
(to the extent that they portray common properties of the
system or the SUM) should be expressed explicitly, in the
form of dedicated inter-view ”correspondence” relationships,
or whether they should be represented implicitly using intra-
view pointers to the underlying properties that model elements
within views represent.

Figure 3 shows the difference between ”explicit cor-
respondences” versus ”implicit correspondences”. In this
scenario a given property of the system (shown as a black dot)
is shown in different views. In the explicit approach, the fact

41

(Atkinson et al, EDOC 2015)

Reference ontologies
• O-M-G the O word! 😱

• An ontology is a model used to establish admissible states
of affairs in that domain (def. inspired in Guarino, 1998)

• Reference ontologies x lightweight ontologies

Reference ontologies
• Constructed with the objective of making the best possible

description of a certain domain of inquiry, capturing a
conceptualization of that domain;

• Characterize the states-of-affairs which are deemed
admissible by a conceptualization;

• Not focused on desirable computational properties

A tiny reference ontology
• Domain of inquiry: person’s biological heritage

• In natural language:

① Every person is either a man or a woman
② Every person is the result of a single conception event
③ … that involves the participation of a man and a woman

A tiny reference ontology – FOL 1/3
• Domain of inquiry: person’s biological heritage

• In first-order logics:

① Every person is either a man or a woman

∀x(𝗆𝖺𝗇(x)→𝗉𝖾𝗋𝗌𝗈𝗇(x))
∀x(𝗐𝗈𝗆𝖺𝗇(x)→𝗉𝖾𝗋𝗌𝗈𝗇(x))
∀x(𝗉𝖾𝗋𝗌𝗈𝗇(x)↔𝗆𝖺𝗇(x)∨𝗐𝗈𝗆𝖺𝗇(x))
¬∃x(𝗆𝖺𝗇(x)∧𝗐𝗈𝗆𝖺𝗇(x))

A tiny reference ontology – FOL 2/3
• Domain of inquiry: person’s biological heritage

• In first-order logics:

② Every person is the result of a single conception event

∀x,y(𝗋𝖾𝗌𝗎𝗅𝗍𝖾𝖽𝖨𝗇(x,y)→𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(x)∧𝗉𝖾𝗋𝗌𝗈𝗇(y))

∀x(𝗉𝖾𝗋𝗌𝗈𝗇(x)→∃y(𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(y)∧𝗋𝖾𝗌𝗎𝗅𝗍𝖾𝖽𝖨𝗇(y,x)))
∀x,y,z(𝗉𝖾𝗋𝗌𝗈𝗇(x)∧𝗋𝖾𝗌𝗎𝗅𝗍𝖾𝖽𝖨𝗇(y,x)∧𝗋𝖾𝗌𝗎𝗅𝗍𝖾𝖽𝖨𝗇(z,x)→y=z)

∀x(𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(x)→∃y(𝗉𝖾𝗋𝗌𝗈𝗇(y)∧𝗋𝖾𝗌𝗎𝗅𝗍𝖾𝖽𝖨𝗇(x,y)))
∀x,y,z(𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(x)∧𝗋𝖾𝗌𝗎𝗅𝗍𝖾𝖽𝖨𝗇(x,y)∧𝗋𝖾𝗌𝗎𝗅𝗍𝖾𝖽𝖨𝗇(x,z)→y=z)

A tiny reference ontology – FOL 3/3
• Domain of inquiry: person’s biological heritage

• In first-order logics:

③ … that involves the participation of a man and a woman

∀x,y(𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖥𝖺𝗍𝗁𝖾𝗋𝖨𝗇(x,y)→𝗆𝖺𝗇(x)∧𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(y))
∀x(𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(x)→∃y(𝗆𝖺𝗇(y)∧𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖥𝖺𝗍𝗁𝖾𝗋𝖨𝗇(y,x)))
∀x,y,z(𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(x)∧

𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖥𝖺𝗍𝗁𝖾𝗋𝖨𝗇(y,x)∧𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖥𝖺𝗍𝗁𝖾𝗋𝖨𝗇(z,x)→y=z)

∀x,y(𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖬𝗈𝗍𝗁𝖾𝗋𝖨𝗇(x,y)→𝗐𝗈𝗆𝖺𝗇(x)∧𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(y))
∀x(𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(x)→∃y(𝗐𝗈𝗆𝖺𝗇(y)∧𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖬𝗈𝗍𝗁𝖾𝗋𝖨𝗇(y,x)))
∀x,y,z(𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(x)∧

𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖬𝗈𝗍𝗁𝖾𝗋𝖨𝗇(y,x)∧𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖬𝗈𝗍𝗁𝖾𝗋𝖨𝗇(z,x)→y=z)

A tiny reference ontology – UML
• Domain of inquiry: person’s biological heritage

• In UML (assuming a suitable formal semantics):

What makes a good reference ontology?
• Precision

Intended
situations

Ontology

implied by the model

What makes a bad reference ontology?
• Underconstraining! Ontology too permissive…

Intended
situations

Ontology

implied by the model

What makes a bad reference ontology?
• Overconstraining! Ontology rules out admissible situations…

Ontology

implied by
model

Intended
situations

What makes a terrible reference ontology?
• Inconsistency…

Ontology

implied by
model

Intended
situations

We need all the help we can get
• Verification

– Check consistency (can we find situations that satisfy all the
axioms?)

– Check assertions

• Validation (with respect to intented conceptualization)
– Check underconstraining (do we rule out what we intend to)
– Check overconstraining (do we admit what we intend to)

• “Model finding” (exemplified with Alloy):
1. Ontology simulation
2. Projective visualization

3. Reuse of foundational ontology

Simulate our ontology
abstract sig Person { }
sig Man extends Person {

participatedAsFatherIn : set Conception
}
sig Woman extends Person {

participatedAsMotherIn : set Conception
}
sig Conception {

resultedIn : one Person
}
fact {

all p : Person | one resultedIn.p and
all c : Conception |

one participatedAsMotherIn.c and
one participatedAsFatherIn.c

}

run { }

Simulate our ontology

underconstrained…

Fix our ontology to improve precision
• Definition of fatherOf, motherOf, parentOf, ancestorOf

– “Derivations”
– ∀x,y(𝖿𝖺𝗍𝗁𝖾𝗋𝖮𝖿(x,y)↔∃z(𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(z)∧

𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖥𝖺𝗍𝗁𝖾𝗋𝖨𝗇(x,z)∧𝗋𝖾𝗌𝗎𝗅𝗍𝖾𝖽𝖨𝗇(z,y)))
– ∀x,y(𝗆𝗈𝗍𝗁𝖾𝗋𝖮𝖿(x,y)↔∃z(𝖼𝗈𝗇𝖼𝖾𝗉𝗍𝗂𝗈𝗇(z)∧

𝗉𝖺𝗋𝗍𝗂𝖼𝗂𝗉𝖺𝗍𝖾𝖽𝖠𝗌𝖬𝗈𝗍𝗁𝖾𝗋𝖨𝗇(x,z)∧𝗋𝖾𝗌𝗎𝗅𝗍𝖾𝖽𝖨𝗇(z,y)))
– ∀x,y(𝗉𝖺𝗋𝖾𝗇𝗍𝖮𝖿(x,y)↔(𝗆𝗈𝗍𝗁𝖾𝗋𝖮𝖿(x,y)∨𝖿𝖺𝗍𝗁𝖾𝗋𝖮𝖿(x,y)))
– ancestorOf transitive closure of parentOf

• Axioms to rule out inadmissible states
– parentOf acyclic (and as theorems ancestorOf acyclic,

fatherOf, motherOf, parentOf irreflexive)

parentOf, fatherOf, motherOf hidden

parentOf, fatherOf, motherOf hidden

ontologically inadmissible situations
≠
deontically undesirable situations

ontologically
admissible

deontically
undesirable

ontologically
inadmissible

We need all the help we can get (2/3)
• Including projective view-based strategies
• (Not yet talking about designing view-based environments,

but using views in the design of the ontology)

“truthmaker view”

(left out all that can
be entailed:
fatherOf,
parentOf,
motherOf)

again…
deontically undesirable

“full materialization view”

We need all the help we can get (3/3)
domain-independent notions

ancestorOf is now acyclic as a consequence of events forming a partial order +
Objects have to be created first to participate in an event later

Ontology in a knowledge base
• Statements articulated using the ontology (A-box):

– motherOf(Poliana, João Paulo)
– fatherOf(João Paulo, Eduardo)
– Therefore, we can infer or entail (virtual A-box):

• man(João Paulo), person(João Paulo)
• woman(Poliana), person(Poliana)
• person(Eduardo)
• ancestorOf(Poliana, Eduardo)

+

inferred

explicitly stated

Ontologies and projective views

The System

View 3

View 1

View 2

(a) Synthetic MVS

The System

View 3

View 1

View 2

(b) Projective MVS

Fig. 1. Synthetic versus Projective MVS.

MVS focused on software engineering [8]. Key examples are
TOGAF, Zachman, DoDAF [9] etc. However, there are also
”high level” software engineering-oriented MVS approaches
which are relaxed, such as the MDA [10]. Important examples
of rigorous MVSs are RM-ODP, Archimate and OSM [11]. In
the following subsections, and indeed, in the rest of the paper
we focus exclusively on rigorous MVS approaches.

B. Synthetic versus Projective Views

Probably the single most discussed realization dichotomy
in the literature on MVS environments is whether views should
be supported using a ”synthetic” or a ”projective” approach.
This terminology was introduced in the IEEE1471/ISO42010
standard for Systems and Software Engineering – Archi-
tecture Description [5], [6], but the distinction goes right
back to some of the early work on MVS approaches [8].
IEEE1471/ISO42010 defines the two approaches as follows:

“In the synthetic approach, an architect constructs views
of the system-of-interest and integrates these views within an
architecture description using model correspondences. In the
projective approach, an architect derives each view through
some routine, possibly mechanical, procedure of extraction
from an underlying repository.”

This difference is depicted schematically in Figure 1. The
top part of the figure, (a), shows the synthetic approach while
the bottom part, (b), shows the projective approach. In both
cases, of course, the views describe the system. The difference
is what is derived from what. In other words, what is the master
and what is the slave? In the synthetic case, the views are
regarded as the primary artifacts (which are explicitly modeled
and maintained over time) and the system is regarded as the
derived artifact whose properties are inferred from the views.
In the projective case, the situation is reversed and the views
are derived from the system. This is depicted in the figure by
the direction of the arrows and by whether the boundaries of
the symbols are solid or dashed.

The System

View 3

View 1 View 2

Model of the
System (SUM)

Fig. 2. SUM-based Projective MVS.

!"#$%&'#(

)*#+,

)*#+-
!

!

!

Fig. 3. Explicit versus Implicit Correspondences.

Part (b) of Figure 1 showing the projective approach is
potentially misleading because it could be taken to imply that
the views are derived only conceptually, but not physically,
from the system. However, this is not the case. As the definition
from the IEEE1471/ISO42010 explains, a key part of the
notion of a projective environment is that the views are derived,
”possible mechanically”, from an underlying repository.

A more accurate representation of the projective approach
is therefore shown in Figure 2. This makes explicit the fact that
there is some kind of repository that stores a representation (i.e.
a model) of the system. The views are derived from this, ideally
in a mechanical way. In the recent literature it has become
common to refer to this repository as a Single Underlying
Model (SUM) [12] since it is conceptually a model of the real
system.

The highest-profile contemporary MVS approach based on
the synthetic views is RM-ODP. Other synthetic approaches
are the work by Große-Rhode [13] and the VOSE framework
by Finkelstein [8]. The most vocal exponents of the projective
approach are the SUM-oriented approaches (OSM, Vitruvius
[14]). However, other EAM methods also support a projective
approach, such as Archimate, without claiming so explicitly.

C. Explicit versus Implicit Correspondences

Another fundamental dichotomy in MVS realization ap-
proaches is whether the relationships that exist between views
(to the extent that they portray common properties of the
system or the SUM) should be expressed explicitly, in the
form of dedicated inter-view ”correspondence” relationships,
or whether they should be represented implicitly using intra-
view pointers to the underlying properties that model elements
within views represent.

Figure 3 shows the difference between ”explicit cor-
respondences” versus ”implicit correspondences”. In this
scenario a given property of the system (shown as a black dot)
is shown in different views. In the explicit approach, the fact

41

(Atkinson et al, EDOC 2015)

The System

View 3

View 1

View 2

(a) Synthetic MVS

The System

View 3

View 1

View 2

(b) Projective MVS

Fig. 1. Synthetic versus Projective MVS.

MVS focused on software engineering [8]. Key examples are
TOGAF, Zachman, DoDAF [9] etc. However, there are also
”high level” software engineering-oriented MVS approaches
which are relaxed, such as the MDA [10]. Important examples
of rigorous MVSs are RM-ODP, Archimate and OSM [11]. In
the following subsections, and indeed, in the rest of the paper
we focus exclusively on rigorous MVS approaches.

B. Synthetic versus Projective Views

Probably the single most discussed realization dichotomy
in the literature on MVS environments is whether views should
be supported using a ”synthetic” or a ”projective” approach.
This terminology was introduced in the IEEE1471/ISO42010
standard for Systems and Software Engineering – Archi-
tecture Description [5], [6], but the distinction goes right
back to some of the early work on MVS approaches [8].
IEEE1471/ISO42010 defines the two approaches as follows:

“In the synthetic approach, an architect constructs views
of the system-of-interest and integrates these views within an
architecture description using model correspondences. In the
projective approach, an architect derives each view through
some routine, possibly mechanical, procedure of extraction
from an underlying repository.”

This difference is depicted schematically in Figure 1. The
top part of the figure, (a), shows the synthetic approach while
the bottom part, (b), shows the projective approach. In both
cases, of course, the views describe the system. The difference
is what is derived from what. In other words, what is the master
and what is the slave? In the synthetic case, the views are
regarded as the primary artifacts (which are explicitly modeled
and maintained over time) and the system is regarded as the
derived artifact whose properties are inferred from the views.
In the projective case, the situation is reversed and the views
are derived from the system. This is depicted in the figure by
the direction of the arrows and by whether the boundaries of
the symbols are solid or dashed.

The System

View 3

View 1 View 2

Model of the
System (SUM)

Fig. 2. SUM-based Projective MVS.

!"#$%&'#(

)*#+,

)*#+-
!

!

!

Fig. 3. Explicit versus Implicit Correspondences.

Part (b) of Figure 1 showing the projective approach is
potentially misleading because it could be taken to imply that
the views are derived only conceptually, but not physically,
from the system. However, this is not the case. As the definition
from the IEEE1471/ISO42010 explains, a key part of the
notion of a projective environment is that the views are derived,
”possible mechanically”, from an underlying repository.

A more accurate representation of the projective approach
is therefore shown in Figure 2. This makes explicit the fact that
there is some kind of repository that stores a representation (i.e.
a model) of the system. The views are derived from this, ideally
in a mechanical way. In the recent literature it has become
common to refer to this repository as a Single Underlying
Model (SUM) [12] since it is conceptually a model of the real
system.

The highest-profile contemporary MVS approach based on
the synthetic views is RM-ODP. Other synthetic approaches
are the work by Große-Rhode [13] and the VOSE framework
by Finkelstein [8]. The most vocal exponents of the projective
approach are the SUM-oriented approaches (OSM, Vitruvius
[14]). However, other EAM methods also support a projective
approach, such as Archimate, without claiming so explicitly.

C. Explicit versus Implicit Correspondences

Another fundamental dichotomy in MVS realization ap-
proaches is whether the relationships that exist between views
(to the extent that they portray common properties of the
system or the SUM) should be expressed explicitly, in the
form of dedicated inter-view ”correspondence” relationships,
or whether they should be represented implicitly using intra-
view pointers to the underlying properties that model elements
within views represent.

Figure 3 shows the difference between ”explicit cor-
respondences” versus ”implicit correspondences”. In this
scenario a given property of the system (shown as a black dot)
is shown in different views. In the explicit approach, the fact

41

Ontologies and projective views
• An Ontology-based SUM (a semantic SUM)

Constraint Maintenance and View Updating Techniques in deductive databases

(Atkinson et al, EDOC 2015)

Lightweight ontologies
• Typically specified in languages with limited expressiveness
• “Reasoning” (logical inferencing, entailment) becomes

tractable

• RDFS
• OWL 2 – DL (SROIQ)
• Datalog (deductive databases)

① Sacrifice precision for computational properties
② Even with the limited expressiveness, a general solution
for update maintenance under entailment is not there

① Sacrificing Precision for Computation
• Choice of constructs

– Subsumption (set containment)
– Complement, union, intersection
– Domain and range for binary relations
– Relations can be declared, symmetric/assymmetric, transitive,

reflexive/irreflexive, pairwise disjoint
– Composition and subsumption for relations

• Syntactic constraints to ensure decidability: regularity and
simplicity

Precision in OWL-DL SROIQ is hard
• Specified a reference ontology of events in FOL (UFO-B)
• Transformed into 185 axioms using constructs of OWL-DL

– Already loosing expressiveness in this process
• Checked all combinations which maximize precision while

respecting SROIQ constraints
– Defined a methodology for that
– 12,288 possible combinations!!!
– What do you want to lose from the ontology? Pick your

poison!

https://content.iospress.com/articles/applied-ontology/ao190214

Which poison to pick? Just 2 examples…
• allow the existence of an Event whose endPoint precedes

the beginPoint of another, but does not happen before the
second Event

• allow a ComplexEvent to have an Event as part without
mereologically overlapping it

…

12,288 of those

② Updates and entailment
• What does it mean if an implied fact is explicitly (re)inserted

(or deleted)?
• Which (if any) additional facts should be inserted (or resp.

deleted) upon updates?
• How to treat inconsistencies arising through updates?

• Two main techniques:
– Materialize inferences (“materialized RDF stores”)

• think non-essential SUM

– Compute answers at query runtime (“reduced RDF stores”)
• keep SUM essential, corresponding to “truthmaker view”
• compute at view projection time, possibly rewriting queries

Ahmeti, Calvanese, Polleres, ISWC 2014
https://link.springer.com/chapter/10.1007/978-3-319-11964-9_28

foreign key constraints), in the sense that we trigger additional deletions of causes/effects
in some of the proposed update semantics discussed herein.

9 Conclusions

We have presented possible semantics of SPARQL 1.1 Update in the context of RDFS. To
the best of our knowledge, this is the first work to discuss how to combine RDFS with the
new SPARQL 1.1 Update language. While we have been operating on a very restricted
setting (only capturing minimal RDFS entailments, restricting BGPs to disallow non-
standard use of the RDFS vocabulary), we could demonstrate that even in this setting
the definition of a SPARQL 1.1 Update semantics under entailments is a non-trivial task.
We proposed several possible semantics, neither of which might seem intuitive for all
possible use cases; this suggests that there is no “one-size-fits-all” update semantics.
Further, while ontologies should be “ready for evolution” [20], we believe that more
work into semantics for updates of ontologies alongside with data (TBox & ABox) is
still needed to ground research in Ontology Evolution into standards (SPARQL, RDF,
RDFS, OWL), particularly in the light of the emerging importance of RDF and SPARQL
in domains where data is continuously updated (dealing with dynamics in Linked Data,
querying sensor data, or stream reasoning). We have taken a first step in this paper.

Acknowledgments This work has been funded by WWTF (project ICT12-015), by the
Vienna PhD School of Informatics, and by EU Project Optique (grant n. FP7-318338).

References

1. Ahmeti, A., Calvanese, D., Polleres, A.: Updating RDFS ABoxes and TBoxes in SPARQL.
CoRR Tech. Rep. arXiv:1403.7248 (2014), http://arxiv.org/abs/1403.7248

2. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: RDF 1.1 Turtle – Terse RDF
Triple Language. W3C Rec. (Feb 2014)

3. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: A family
of scalable semantic repositories. Semantic Web J. 2(1), 33–42 (2011)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

5. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite knowledge
bases. In: Proc. of ISWC. pp. 112–128 (2010)

6. Ceri, S., Widom, J.: Deriving incremental production rules for deductive data. Information
Systems 19(6), 467–490 (1994)

7. Franconi, E., Gutierrez, C., Mosca, A., Pirrò, G., Rosati, R.: The logic of extensional RDFS.
In: Proc. of ISWC. LNCS, vol. 8218, pp. 101–116. Springer (Oct 2013)

8. Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update. W3C Rec. (Mar 2013)
9. Glimm, B., Ogbuji, C.: SPARQL 1.1 Entailment Regimes. W3C Rec. (Mar 2013)

10. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: Proc. of
ACM SIGMOD. pp. 157–166 (1993)

11. Gutierrez, C., Hurtado, C., Vaisman, A.: Updating RDFS: from theory to practice. In: Proc. of
ESWC (2011)

12. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Rec. (Mar 2013)

Updating RDFS ABoxes and TBoxes in SPARQL

Albin Ahmeti1, Diego Calvanese2, and Axel Polleres3

1 Vienna University of Technology, Favoritenstraße 9, 1040 Vienna, Austria
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

3 Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

Abstract. Updates in RDF stores have recently been standardised in the
SPARQL 1.1 Update specification. However, computing entailed answers by
ontologies is usually treated orthogonally to updates in triple stores. Even the
W3C SPARQL 1.1 Update and SPARQL 1.1 Entailment Regimes specifications
explicitly exclude a standard behaviour for entailment regimes other than simple
entailment in the context of updates. In this paper, we take a first step to close this
gap. We define a fragment of SPARQL basic graph patterns corresponding to (the
RDFS fragment of) DL-Lite and the corresponding SPARQL update language,
dealing with updates both of ABox and of TBox statements. We discuss possible
semantics along with potential strategies for implementing them. In particular, we
treat both, (i) materialised RDF stores, which store all entailed triples explicitly,
and (ii) reduced RDF Stores, that is, redundancy-free RDF stores that do not
store any RDF triples (corresponding to DL-Lite ABox statements) entailed by
others already. We have implemented all semantics prototypically on top of an
off-the-shelf triple store and present some indications on practical feasibility.

1 Introduction

The availability of SPARQL as a standard for accessing structured Data on the Web
may well be called one of the key factors to the success and increasing adoption of
RDF and the Semantic Web. Still, in its first iteration the SPARQL [24] specification
has neither defined how to treat ontological entailments with respect to RDF Schema
(RDFS) and OWL ontologies, nor provided means how to update dynamic RDF data.
Both these gaps have been addressed within the recent SPARQL 1.1 specification, which
provides both means to define query answers under ontological entailments (SPARQL 1.1
Entailment Regimes [9]), and an update language to update RDF data stored in a triple
store (SPARQL 1.1 Update [8]). Nonetheless, these specifications leave it open how
SPARQL endpoints should treat entailment regimes other than simple entailment in the
context of updates; the main issue here is how updates shall deal with implied statements:

– What does it mean if an implied triple is explicitly (re-)inserted (or deleted)?
– Which (if any) additional triples should be inserted, (or, resp., deleted) upon updates?

For the sake of this paper, we address such questions with the focus on a deliberately
minimal ontology language, namely the minimal RDFS fragment of [19].4 As it turns out,

4 We ignore issues like axiomatic triples [13], blank nodes [17], or, in the context of OWL,
inconsistencies arising through updates [5]. Neither do we consider named graphs in SPARQL,
which is why we talk about “triple stores” as opposed to “graph stores” [8].

Table 1. DL-LiteRDFS assertions vs. RDF(S), where A, AÕ denote concept (or, class) names, P , P Õ

denote role (or, property) names, ≈ is a set of constants, and x, y œ ≈ . For RDF(S) vocabulary,
we make use of similar abbreviations (sc, sp, dom, rng, a) introduced in [19].

TBox RDFS

1 AÕ ı A AÕ sc A.
2 P Õ ı P P Õ sp P .

TBox RDFS

3 ÷P ı A P dom A.
4 ÷P ≠ ı A P rng A.

ABox RDFS

5 A(x) x a A.
6 P (x, y) x P y.

even in this confined setting, updates as defined in the SPARQL 1.1 Update specification
impose non-trivial challenges; in particular, specific issues arise through the interplay of
INSERT, DELETE, and WHERE clauses within a single SPARQL update operation, which
—to the best of our knowledge— have not yet been considered in this combination in
previous literature on updates under entailment (such as for instance [5, 11]).

Example 1. As a running example, we assume a triple store G with RDF (ABox) data and
an RDFS ontology (TBox) Ofam about family relationships (in Turtle syntax [2]), where
:hasP, :hasM, and :hasF, resp., denote the parent, mother, and father relations.

ABox: :joe :hasP :jack. :joe :hasM :jane.

TBox: :Father sc :Parent. :Mother sc :Parent.

:hasF sp :hasP. :hasM sp :hasP.

:hasF rng :Father; dom :Child. :hasM rng :Mother; dom :Child.

:hasP rng :Parent; dom :Child.

The following query should return :jack and :jane as (RDFS entailed) answers:
SELECT ?Y WHERE { :joe :hasP ?Y. }

SPARQL engines supporting simple entailment would only return :jack, though.

The intended behaviour for the query in Ex. 1 is typically achieved by either (i) query
rewriting techniques computing entailed answers at query run-time, or (ii) by materialis-
ing all implied triples in the store, normally at loading time. That is, on the one hand,
borrowing from query rewriting techniques from DL-Lite (such as, e.g., PerfectRef [4]5)
one can reformulate such a query to return also implied answers. While the rewritten
query is worst case exponential wrt. the length of the original query (and polynomial in
the size of the TBox), for moderate size TBoxes and queries rewriting is quite feasible.

Example 2 (cont’d). The rewriting of the query in Ex. 1 according to PerfectRef [4]
with respect to Ofam as a DL TBox in SPARQL yields

SELECT ?Y WHERE { {:joe :hasP ?Y}
UNION {:joe :hasF ?Y} UNION {:joe :hasM ?Y}}

Indeed, this query returns both :jane and :jack.

On the other hand, an alternative6 is to materialise all inferences in the triple store,
such that the original query can be used ’as is’, for instance using the minimalistic
inference rules for RDFS from [19]7 shown in Fig. 1.

5 Alg. 1 in the Appendix shows a version of PerfectRef reduced to the essentials of RDFS.
6 This alternative is viable for RDFS, but not necessarily for more expressive DLs.
7 These rules correspond to rules 2), 3), 4) of [19]; they suffice since we ignore blank nodes.

ISWC 2014 https://link.springer.com/chapter/10.1007/978-3-319-11964-9_28

Updating RDFS ABoxes and TBoxes in SPARQL

Albin Ahmeti1, Diego Calvanese2, and Axel Polleres3

1 Vienna University of Technology, Favoritenstraße 9, 1040 Vienna, Austria
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

3 Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

Abstract. Updates in RDF stores have recently been standardised in the
SPARQL 1.1 Update specification. However, computing entailed answers by
ontologies is usually treated orthogonally to updates in triple stores. Even the
W3C SPARQL 1.1 Update and SPARQL 1.1 Entailment Regimes specifications
explicitly exclude a standard behaviour for entailment regimes other than simple
entailment in the context of updates. In this paper, we take a first step to close this
gap. We define a fragment of SPARQL basic graph patterns corresponding to (the
RDFS fragment of) DL-Lite and the corresponding SPARQL update language,
dealing with updates both of ABox and of TBox statements. We discuss possible
semantics along with potential strategies for implementing them. In particular, we
treat both, (i) materialised RDF stores, which store all entailed triples explicitly,
and (ii) reduced RDF Stores, that is, redundancy-free RDF stores that do not
store any RDF triples (corresponding to DL-Lite ABox statements) entailed by
others already. We have implemented all semantics prototypically on top of an
off-the-shelf triple store and present some indications on practical feasibility.

1 Introduction

The availability of SPARQL as a standard for accessing structured Data on the Web
may well be called one of the key factors to the success and increasing adoption of
RDF and the Semantic Web. Still, in its first iteration the SPARQL [24] specification
has neither defined how to treat ontological entailments with respect to RDF Schema
(RDFS) and OWL ontologies, nor provided means how to update dynamic RDF data.
Both these gaps have been addressed within the recent SPARQL 1.1 specification, which
provides both means to define query answers under ontological entailments (SPARQL 1.1
Entailment Regimes [9]), and an update language to update RDF data stored in a triple
store (SPARQL 1.1 Update [8]). Nonetheless, these specifications leave it open how
SPARQL endpoints should treat entailment regimes other than simple entailment in the
context of updates; the main issue here is how updates shall deal with implied statements:

– What does it mean if an implied triple is explicitly (re-)inserted (or deleted)?
– Which (if any) additional triples should be inserted, (or, resp., deleted) upon updates?

For the sake of this paper, we address such questions with the focus on a deliberately
minimal ontology language, namely the minimal RDFS fragment of [19].4 As it turns out,

4 We ignore issues like axiomatic triples [13], blank nodes [17], or, in the context of OWL,
inconsistencies arising through updates [5]. Neither do we consider named graphs in SPARQL,
which is why we talk about “triple stores” as opposed to “graph stores” [8].

Updating RDFS ABoxes and TBoxes in SPARQL

Albin Ahmeti1, Diego Calvanese2, and Axel Polleres3

1 Vienna University of Technology, Favoritenstraße 9, 1040 Vienna, Austria
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

3 Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

Abstract. Updates in RDF stores have recently been standardised in the
SPARQL 1.1 Update specification. However, computing entailed answers by
ontologies is usually treated orthogonally to updates in triple stores. Even the
W3C SPARQL 1.1 Update and SPARQL 1.1 Entailment Regimes specifications
explicitly exclude a standard behaviour for entailment regimes other than simple
entailment in the context of updates. In this paper, we take a first step to close this
gap. We define a fragment of SPARQL basic graph patterns corresponding to (the
RDFS fragment of) DL-Lite and the corresponding SPARQL update language,
dealing with updates both of ABox and of TBox statements. We discuss possible
semantics along with potential strategies for implementing them. In particular, we
treat both, (i) materialised RDF stores, which store all entailed triples explicitly,
and (ii) reduced RDF Stores, that is, redundancy-free RDF stores that do not
store any RDF triples (corresponding to DL-Lite ABox statements) entailed by
others already. We have implemented all semantics prototypically on top of an
off-the-shelf triple store and present some indications on practical feasibility.

1 Introduction

The availability of SPARQL as a standard for accessing structured Data on the Web
may well be called one of the key factors to the success and increasing adoption of
RDF and the Semantic Web. Still, in its first iteration the SPARQL [24] specification
has neither defined how to treat ontological entailments with respect to RDF Schema
(RDFS) and OWL ontologies, nor provided means how to update dynamic RDF data.
Both these gaps have been addressed within the recent SPARQL 1.1 specification, which
provides both means to define query answers under ontological entailments (SPARQL 1.1
Entailment Regimes [9]), and an update language to update RDF data stored in a triple
store (SPARQL 1.1 Update [8]). Nonetheless, these specifications leave it open how
SPARQL endpoints should treat entailment regimes other than simple entailment in the
context of updates; the main issue here is how updates shall deal with implied statements:

– What does it mean if an implied triple is explicitly (re-)inserted (or deleted)?
– Which (if any) additional triples should be inserted, (or, resp., deleted) upon updates?

For the sake of this paper, we address such questions with the focus on a deliberately
minimal ontology language, namely the minimal RDFS fragment of [19].4 As it turns out,

4 We ignore issues like axiomatic triples [13], blank nodes [17], or, in the context of OWL,
inconsistencies arising through updates [5]. Neither do we consider named graphs in SPARQL,
which is why we talk about “triple stores” as opposed to “graph stores” [8].

One size does not fit all
• Design “syntactic” SUM informed by reference ontology

• Metamodel design informed by reference ontology as a
semantic background
– Semantically-motivated syntactic constraints for a language

arise from axioms
– Semantically-motivated views arise from axioms
– Model updates informed by reference ontology

• What is the difference between an ontology and a
metamodel?
– Confusion arises from similar languages used for their

definition

Two kinds of tasks
• Language and Tool Engineering

– Models are used to define abstract syntax of languages
• Ontology Engineering (some people call this Conceptual

Modeling)
– Models used to capture meaning postulates, specify domain

conceptualization
– May serve to establish articulate the semantics of a language

• Different purposes (complementary!)
• But similar (same?) object-oriented representation scheme

– Types and instances
– Classes and objects
– Universals and particulars

Syntax, Semantics and All that Stuff1

Theory of the (abstract) syntax Theory of the subject domain

Explicitly represented in a
language metamodel /

grammar (mixed)

Explicitly represented in a
reference ontology (or

ontology-based
conceptual model)

Concerned with
admissible/possible entities

in a subject domain
Concerned with

syntactically valid models

1 This is a reference to the title of a paper by David Harel and Bernhard Rumpe: Modeling Languages: Syntax, Semantics and All That Stuff, 2000.

Syntax, Semantics and All that Stuff

Theory of the syntax Theory of the subject domain

Language metamodel Reference ontology
about the “recorded” world “real” world

Syntax, Semantics and All that Stuff

Theory of the syntax Theory of the subject domain

Language metamodel Reference ontology
about the “recorded” world “real” world

domain-independent notions

Syntax, Semantics and All that Stuff

Theory of the syntax Theory of the subject domain

Language metamodel Reference ontology
about the “recorded” world “real” world

semantically-motivated
syntactic constraints:
no ancestor cycles

domain-independent notions

ancestorOf acyclic, transitive
no syntactic constraint to enforce
ancestorOf transitive!

Vision
• Design of a language’s semantics should be approach in a

systematic way
• Including modeling of the language’s domain on discourse

– Not an arbitrary mathematical semantic domain
– But one that can be used for meaning negotiation
– As a formal artifact in our social game
– Can be reused, integrated

• Exemplified for DSL but also applicable to general-purpose
language

Syntax, Semantics and All that Stuff

Theory of the syntax Theory of the subject domain

Language metamodel Reference ontology

Syntax, Semantics and All that Stuff

Theory of the syntax Theory of the subject domain

Language metamodel Reference ontology

Settle semantic questions:
What is the meaning of specialization?
Can objects change type?
Can objects have more than one type
with no common supertype?

Syntax, Semantics and All that Stuff

Theory of the subject domain

Reference ontology

specializes is acyclic
in virtue of its definition

syntactic constraint to enforce
specializes acyclic!

Theory of the syntax

Language metamodel

Syntax, Semantics and All that Stuff

Theory of the subject domain

Reference ontology

specializes is transitive
in virtue of its definition

no syntactic constraint to enforce
specializes transitive!

Theory of the syntax

Language metamodel

View informed by semantics

SUM
Metamodel

SUM

view

syntactic constraint to
enforce no cycles

View informed by semantics

SUM

view 1

view 2

SUM update informed by semantics

SUM
Metamodel

SUM

syntactic constraint to
enforce no cycles

user wants
update

View update informed by semantics

SUM
Metamodel

SUM

view

syntactic constraint to
enforce no cycles

multiple deletes possible
In SUM

Essential SUM metamodel?

SUM
Metamodel

SUM

syntactic constraint to
enforce no cycles

user wants
update

Essential SUM
• Entailment required to keep the SUM essential
• “Essential SUM” not “Essential SUM metamodel”
• Redundancy arises out of semantic notions not syntactic

redundancy!

Support for Cardelli’s powertype

ORGANISM TYPE. Finally, the specialization between SPECIES and ORGANISM TYPE
can be inferred automatically, since all types that partition a base type specialize that
type’s unique ⌧powertype�. This corresponds to our intuition that every SPECIES is an
ORGANISM TYPE.

1 *
⌧instantiation�

⌧instantiation�
1..*

*

⌧powertype�
Organism Type

Species OrganismJ

J

Lion

Male Lion Lionness

{disjoint, complete}
Hiena

{disjoint, incomplete}:Species

Figure 8. Cardelli’s powertype in the MLT profile

6. Concluding Remarks
In this paper, we have briefly described the MLT Multi-Level Theory and discussed two
of its applications. Other applications of MLT thus far include: (i) a combination with
the Unified Foundational Ontology (UFO) to equip it with means to deal with second-
order types in ontology-driven conceptual modeling [Carvalho et al. 2017]; (ii) the design
of a core ontology for organizational structure modeling [Carvalho and Almeida 2015];
and (iii) the design of an OWL vocabulary to support the representation of multi-level
vocabularies in the Semantic Web [Brasileiro et al. 2016a].

MLT differs from a number of related works in multi-level conceptual modeling
given its focus on conceptual modeling (rather than language engineering) and further
given the use of formal tools in its conception. A contribution of MLT to the literature
on multi-level modeling concerns the study and harmonization of different notions of
powertype in the literature, as well as a formal harmonization of powertype and clabject-
based approaches.

Recently, we have extended MLT in order to account for types that do not fit
a particular order and thereby defy a strict stratification scheme [Almeida et al. 2017].
This was necessary as this scheme rules out abstract and general types such as ENTITY
and TYPE (which are instances of themselves). We have observed that these types corre-
spond to general notions that are ubiquitous in comprehensive conceptualizations, see e.g.,
(foundation) ontologies such as UFO [Guizzardi 2015], Cyc [Foxvog 2005], DOLCE and
BFO with their notions of ENTITY or THING, Telos [Mylopoulos 1992] with the notion

specialization
inferred

no generalization set for «powertype»

Conclusions
• We use symbols to represent phenomena
• We should care about the phenomena they represent

• There is no “non ontology”, there is “bad ontology”
• Not doing “semantics” explicitly just means it gets ad hoc

treatment

• Lightweight ontologies cannot do the trick by themselves
– Very hard to know what is lost in the implementation
– Need what is lost to drive (view-based) modeling

• Reference ontologies can help
– But design of a language/view system/knowledge base is a

different task

Conclusions
• We need all the help we can get!

– Ontology validation (e.g. simulation, anti-pattern detection)
– Ontology verification
– Ontology visualization
– Reuse (e.g., of foundational ontology)

• Not a general-purpose reasoner, but designed (view-based)
strategy:
– Metamodels with semantically-motivated constraints
– Semantically-motivated projective views
– SUM and view update semantics informed by ontology

Work inspired by this vision
• Ontology-driven conceptual modeling

• Foundational ontology
– Unified Foundational Ontology (UFO)

with Giancarlo Guizzardi and other NEMO members

• Multi-level modeling

• Enterprise (architecture) modeling

UML powertypes

Wikidata

ArchiMate

ARIS

