The role of (reference)
ontologies in (view-based)
modeling

Joao Paulo A. Almeida

n e I I l D [l[palmeida@ieee.org])

ontology & conceptual Federal University of Espirito Santo

modeling research group http:/ /nemo.inf.ufes.br

NEMO is currently supported by CNPg, CAPES and FAPES.

mailto:jpalmeida@ieee.org
http://nemo.inf.ufes.br/

This talk in a nutshell JI’S

nemao

1. Our models and systems are intended to represent some
domain of interest (“domain”)

2. We must then, as best as possible, try to understand this
domain

3. This understanding can inform the modeling and system
building tasks (and that includes view-related tasks)

=TT TN r"!
(The System Jlb

~N
\
A . A nemo
/ J/ \\ \
\ _ -)
>— -] 7/ /
0N = -
\)\ _
\\—C\\—/ ~——] 7
—— \-_//

View 1
(a) Synthetic MVS
The System
v <" View 3
)/\/ l‘\\ /,\l
Viewl ™
ST View2 .
__________ ol 1 ‘.
(b) Projective MVS > __

(Atkinson et al, EDOC 2015)

Reference ontologies

nemao

e O-M-G the O word! &?

e An ontology is a model used to establish admissible states
of affairs in that domain (def. inspired in Guarino, 1998)

e Reference ontologies x lightweight ontologies

o «
Reference ontologies fr)

nemao

e Constructed with the objective of making the best possible
description of a certain domain of inquiry, capturing a
conceptualization of that domain;

e Characterize the states-of-affairs which are deemed
admissible by a conceptualization;

e Not focused on desirable computational properties

A tiny reference ontology

nemao

e Domain of inquiry: person’s biological heritage
e |n natural language:

@ Every person is either a man or a woman

@ Every person is the result of a single conception event
@ ... that involves the participation of a man and a woman

A tiny reference ontology — FOL 1/3

e Domain of inquiry: person’s biological heritage

e |n first-order logics:

@ Every person is either a man or a woman
Vx(man(x)—person(x))
Vx(woman(x)—person(x))

Vx(person(x)«<~>man(x)vwoman(x))
—dx(man(x)Awoman(x))

A tiny reference ontology — FOL 2/3

nemao

e Domain of inquiry: person’s biological heritage
e |n first-order logics:

(2) Every person is the result of a single conception event

Vx,y(resultedIn(x,y)—conception(x)Aperson(y))

Vx(person(x)—3dy(conception(y)Aresultedin(y,x)))
Vx,y,z(person(x)AresultedIn(y,x)AresultedIn(z,x)—y=z)

Vx(conception(x)—3dy(person(y)Aresultedin(x,y)))
Vx,y,z(conception(x)AresultedIn(x,y)Aresultedin(x,z)—y=2)

A tiny reference ontology — FOL 3/3

nemao

e Domain of inquiry: person’s biological heritage
e |n first-order logics:

@ ... that involves the participation of a man and a woman

Vx,y(participatedAsFatherIn(x,y)—man(x)Aconception(y))

Vx(conception(x)—3dy(man(y)AparticipatedAsFatherin(y,x)))

Vx,y,z(conception(x)A
participatedAsFatherin(y,x)AparticipatedAsFatherin(z,x)—y=2)

Vx,y(participatedAsMotherIn(x,y)>woman(x)Aconception(y))

Vx(conception(x)—3dy(woman(y)AparticipatedAsMotherin(y,x)))

Vx,y,z(conception(x)A
participatedAsMotherlIn(y,x)AparticipatedAsMotherin(z,x)—y=z)

A tiny reference ontology — UML

nemao
e Domain of inquiry: person’s biological heritage
* |In UML (assuming a suitable formal semantics):
1 Wresultedin 1 _
Person Conception
/\ 0._* 0..*
{disjoint, complete} -
P> participated in
Man Woman]
1 P> participated in

What makes a good reference ontology?

e Precision

<

Intended
situations

implied by the model
A

> | Ontology \

<

What makes a bad reference ontology? JI’:':

nemao

e Underconstraining! Ontology too permissive...

g

Intended
situations

implied by the model

A

> | Ontology \ > ﬂ\

What makes a bad reference ontology? JI’:':

nemao

e QOverconstraining! Ontology rules out admissible situations...

Intended
situations

<>
implied by,

model

A

=4 =
/m > | Ontology 1 > ﬂ\

What makes a terrible reference ontology? JIS

* |nconsistency...

Intended
situations

implied by 1
model

=4 =
/ﬂ > | Ontology 1 > ﬂ\

We need all the help we can get f

e Verification

— Check consistency (can we find situations that satisfy all the
axioms?)

— Check assertions

e Validation (with respect to intented conceptualization)
— Check underconstraining (do we rule out what we intend to)
— Check overconstraining (do we admit what we intend to)

e “Model finding” (exemplified with Alloy):
1. Ontology simulation

2. Projective visualization

3. Reuse of foundational ontology

Simulate our ontology

abstract sig Pexson 3§ }

sig Man extends Pexson 3
participatedAsFatherIn

£

sig Woman extends Pexson 3
participatedAsMotherIn

£

sig Conception 3

resultedIn : one Pexrson

{disjoint, complete} 0.,

Person

1 <resultedin 1

Conception

Man

P> participated in
1

Woman

| 1

P> participated in

set Conception

set Conception

§
fact 3§
all p : Person | one resultedIn.p and
all ¢ : Conception |
one participatedAsMotherIn.c and
one participatedAsFatherIn.c
§

run 3 %

nemao

Simulate our ontology ﬁg

nemao

participatedAsFatherln
resultedin

Conception2

partic/ipatedA Father

participatedAsFatherin
resultedin

nartiCipatedAsMotherln ~ |participatedAsMotherin

regultedin

Conception0 Conceptionl

underconstrained...

Fix our ontology to improve precision

nemao

e Definition of fatherOf, motherOf, parentOf, ancestorOf

— “Derivations”

— Vx,y(fatherOf(x,y)<>3z(conception(z)A
participatedAsFatherIn(x,z)Aresultedin(z,y)))

— Vx,y(motherOf(x,y)<3z(conception(z)A
participatedAsMotherIn(x,z)Aresultedin(z,y)))

— Vx,y(parentOf(x,y)<(motherOf(x,y)vfatherOf(x,y)))

— ancestorOf transitive closure of parentOf

e Axioms to rule out inadmissible states

— parentOf acyclic (and as theorems ancestorOf acyclic,
fatherOf, motherOf, parentOf irreflexive)

resultedin

&

participatedAsFatk

Conception4

resultedIn

resultedIn

rin
AsMotherln

ancestorOf
angestorOf

nemao

parentOf, fatherOf, motherOf hidden

\resultedIn [resultedIn

D

nemao

ontologically inadmissible situations
+
deontically undesirable situations

participate dAsFatherln

\

Conceptlon4

deontically
undesirable

ancestorOf
anéestorOf
|

ontologically

admissible
2 gtorOf

ontologically
inadmissible

parentOf, fatherOf, motherOf hidden

We need all the help we can get (2/3) f

e |ncluding projective view-based strategies

e (Not yet talking about designing view-based environments,
but using views in the design of the ontology)

“truthmaker view”

(left out all that can
be entailed:
fatherOf,

parentOf,
motherOf)

| resultedIn

[resultedIn

participatedAsMotherin
participatedAsFatherin
participatedAsFatherin

otherln
Conception4 Conceptionl
/resultedin \resultedIn

\
\

participatedAsFatherin
participatedAsMotherin

‘resultedln

nemao

again...
deontically undesirable

G

Conception3 Conception0

resultedin

.\’Aﬁv Vistherin

resultedIn

Conceptionl parentOf

resultedin

Conception2

“full materialization view”

erOf 'motherOf
otherOf

nemao

astorOf

ancestorOf

ancestorOf

ancestorOf

ancestorQOf
ancesta

We need all the help we can get (3/3)

domain-independent notions

0. dresulted in 1

nemao

P> participated in

1..*

Person

1 resultedin 1

0..*

JAN

Man

Woman

{disjoint, complete}

Conception

0.+ 0..*

P> participated in

P> participated in

1

ancestorOf is now acyclic as a consequence of events forming a partial order +
Objects have to be created first to participate in an event later

Ontology in a knowledge base i

e Statements articulated using the ontology (A-box):
— motherOf(Poliana, Jodao Paulo)
— fatherOf(Joao Paulo, Eduardo)

— Therefore, we can infer or entail (virtual A-box):
* man(Jodo Paulo), person(Jodo Paulo)
e woman(Poliana), person(Poliana)

A
N\ / explicitly stated
+
N
}\ inferred

e

e person(Eduardo)
e ancestorOf(Poliana, Eduardo)

Ontologies and projective views i

nemao

The System
, View3
P B " "
-)\ \‘. ‘\ /l
————— h \\\\ ,’,/
T XD e o-- -
K View 1 y
I A
. A , View 2 \
S - - II !
\\ ,I
(b) Projective MVS ™~ __

(Atkinson et al, EDOC 2015)

Ontologies and projective views i

nemao

* An Ontology-based SUM (a semantic SUM)

——————
- ~

, View 3
\
4 \
I 1
\
\ m /l
\\\\ K /,/
_________ ~ o -
” \\ i —
e - e
7’ .
g View 1 Y
\
e T RS
\ ,' =" =2
\ / - .
R 7~ , View 2 .

(b) Projective MVS -)

~ -
~~~~~~~~~

Constraint Maintenance and View Updating Techniques in deductive databases

(Atkinson et al, EDOC 2015)



Lightweight ontologies i

nemao

e Typically specified in languages with limited expressiveness

e “Reasoning” (logical inferencing, entailment) becomes
tractable

e RDFS
e OWL2-DL (SROIQ)

e Datalog (deductive databases)

@ Sacrifice precision for computational properties

(2) Even with the limited expressiveness, a general solution
for update maintenance under entailment is not there



@) Sacrificing Precision for Computation i

e Choice of constructs
— Subsumption (set containment)
— Complement, union, intersection
— Domain and range for binary relations

— Relations can be declared, symmetric/assymmetric, transitive,
reflexive/irreflexive, pairwise disjoint

— Composition and subsumption for relations

e Syntactic constraints to ensure decidability: regularity and
simplicity



Precision in OWL-DL SROIQ is hard

nemao
e Specified a reference ontology of events in FOL (UFO-B)
e Transformed into 185 axioms using constructs of OWL-DL
— Already loosing expressiveness in this process

e Checked all combinations which maximize precision while
respecting SROIQ constraints

— Defined a methodology for that
— 12,288 possible combinations!!!

— What do you want to lose from the ontology? Pick your
poison!

https://content.iospress.com/articles/applied-ontology/ao190214



Which poison to pick? Just 2 examples... f

nemao

e allow the existence of an Event whose endPoint precedes

the beginPoint of another, but does not happen before the
second Event

e allow a ComplexEvent to have an Event as part without
mereologically overlapping it

L

2 B B B8

12,288 of those



(2 Updates and entailment [

nemao

e What does it mean if an implied fact is explicitly (re)inserted
(or deleted)?

e Which (if any) additional facts should be inserted (or resp.
deleted) upon updates?

e How to treat inconsistencies arising through updates?

e Two main techniques:

— Materialize inferences (“materialized RDF stores”)
e think non-essential SUM

— Compute answers at query runtime (“reduced RDF stores”)
e keep SUM essential, corresponding to “truthmaker view”
e compute at view projection time, possibly rewriting queries

Ahmeti, Calvanese, Polleres, ISWC 2014
https://link.springer.com/chapter/10.1007/978-3-319-11964-9 28



Updating RDFS ABoxes and TBoxes in SPARQL

Albin Ahmeti', Diego Calvanese?, and Axel Polleres?

For the sake of this paper, we address such questions with the focus on a deliberately
minimal ontology language, namely the minimal RDFS fragment of [19].* As it turns out,

* We ignore issues like axiomatic triples [13], blank nodes [17], or, in the context of OWL,
inconsistencies arising through updates [5]. Neither do we consider named graphs in SPARQL,
which is why we talk about “triple stores” as opposed to “graph stores” [8].

even in this confined setting, updates as defined in the SPARQL 1.1 Update specification
impose non-trivial challenges; in particular, specific issues arise through the interplay of
INSERT, DELETE, and WHERE clauses within a single SPARQL update operation, which

9 Conclusions

We have presented possible semantics of SPARQL 1.1 Update in the context of RDFS. To
the best of our knowledge, this is the first work to discuss how to combine RDFS with the
new SPARQL 1.1 Update language. While we have been operating on a very restricted

standard use of the RDFS vocabulary), we could demonstrate that even in this setting

the definition of a SPARQL 1.1 Update semantics under entailments is a non-trivial task.

We proposed several possible semantics, neither of which might seem intuitive for all

possible use cases; this suggests that there is no “one-size-fits-all” update semantics.

nemao

ISWC 2014 https://link.springer.com/chapter/10.1007/978-3-319-11964-9 28



One size does not fit all

nemao

Design “syntactic” SUM informed by reference ontology

Metamodel design informed by reference ontology as a
semantic background

— Semantically-motivated syntactic constraints for a language
arise from axioms

— Semantically-motivated views arise from axioms
— Model updates informed by reference ontology

What is the difference between an ontology and a
metamodel?

— Confusion arises from similar languages used for their
definition



Two kinds of tasks JI’E

Language and Tool Engineering

— Models are used to define abstract syntax of languages

Ontology Engineering (some people call this Conceptual
Modeling)

— Models used to capture meaning postulates, specify domain
conceptualization

— May serve to establish articulate the semantics of a language

Different purposes (complementary!)

But similar (same?) object-oriented representation scheme
— Types and instances
— Classes and objects

— Universals and particulars



Syntax, Semantics and All that Stuff! f

nemao

Theory of the (abstract) syntax Theory of the subject domain

Concerned with
admissible/possible entities
in a subject domain

Concerned with
syntactically valid models

Explicitly represented in a
language metamodel /
grammar (mixed)

(or
ontology-based
conceptual model)

1 This is a reference to the title of a paper by David Harel and Bernhard Rumpe: Modeling Languages: Syntax, Semantics and All That Stuff, 2000.



Syntax, Semantics and All that Stuff f

nemao
Theory of the syntax Theory of the subject domain
Person
* __|name: string :
father Z> mother
0..1 \V \/ 0..1
Man Woman
Language metamodel Reference ontology

about the “recorded” world “real” world



Syntax, Semantics and All that Stuff

Person

Theory of the syntax

q
f

nemao

Theory of the subject domain

0. dresulted in 1

name : string
Object P> participated in Event
father Z> mother 1..% 0..*
0..1 \ \/ 0..1 % %
Man Woman 1 <resultedin 1 :
Person Conception
. 0..* 0.
{disjoint, complete}
I I
P> participated in
Man Woman

Language metamodel
about the “recorded” world

P> participated in

1

Reference ontology

“real” world



Syntax, Semantics and All that Stuff

Theory of the syntax

Person

name : string

father

A

0..1 \\V/4

mother

/ 0..1

Man

Woman

semantically-motivated
syntactic constraints:
no ancestor cycles

no syntactic constraint to enforce

ancestorOf transitive!

Theory of the subject domain

0. dresulted in 1

q
f

nemao

Object P> participated in Event
% 1..% 0..* %
1 dresultedin 1 _
Person Conception
0..* 0.

Zﬁ {disjoint, complete}

Man

P> participated in

Woman

1

Language metamodel
about the “recorded” world

P> participated in

ancestorOf acyclic, transitive

Reference ontology

“real” world



Vision

nemao

Design of a language’s semantics should be approachin a
systematic way

Including modeling of the language’s domain on discourse
— Not an arbitrary mathematical semantic domain

— But one that can be used for meaning negotiation

— As a formal artifact in our social game

— Can be reused, integrated

Exemplified for DSL but also applicable to general-purpose
language



Syntax, Semantics and All that Stuff f

nemao

Theory of the syntax Theory of the subject domain

EModelElement

JAN

ENamedElement
name : string

JAN
EClass superTypes
_~
S

*

Language metamodel Reference ontology



Syntax, Semantics and All that Stuff f

nemao
Theory of the syntax Theory of the subject domain
EModelElement
Entity
A Zﬁ {disjoint, complete}
ENamedElement 1..* instance of *
name : string Type Object
A *
P> specializes
EClass superTypes
< . .
= Settle semantic questions:

What is the meaning of specialization?

Can objects change type?
Can objects have more than one type
with no common supertype?

Language metamodel Reference ontology



Syntax, Semantics and All that Stuff f

nemao
Theory of the syntax Theory of the subject domain
EModelElement
Entity
A Zﬁ {disjoint, complete}
ENamedElement 1..*» «instance of *
name : string Type Object

/\ -

P> specializes

EClass superTypes
/
S
*
*
syntactic constraint to enforce specializes is acyclic

specializes acyclic! in virtue of its definition

Language metamodel Reference ontology



Syntax, Semantics and All that Stuff f

nemao
Theory of the syntax Theory of the subject domain
EModelElement
Entity
A Zﬁ {disjoint, complete}
ENamedElement 1..*» «instance of *
name : string Type Object

/\ -

P> specializes

EClass superTypes

-
™~
%

specializes is transitive

no syntactic constraint to enforce SPE : et
in virtue of its definition

specializes transitive!
Language metamodel Reference ontology



View informed by semantics

SUM
Metamodel

EModelElement

i

ENamedElement

name : string

i

nemao

EClass superTypes
=

RS
*

syntactic constraint to
enforce no cycles

SUM

Device

T

Computer

T

\

Device

Notebook Computer

ZT view

Notebook Computer




View informed by semantics ﬁg

nemao
SU M Device
weight : double
Computer Device

% view 1

Notebook Computer

Notebook Computer

Device
weight : double @ Class Specification
Z% General E Operations v
Computer Name Classifier Visibility Type Initial Value
ﬁx = weight Device Unspecified  double VIEW 2
.
a )
+ Notebook ComputeLE
A =
L w i
Show inherited Open Specification... Add... Remove

Reset OK Cancel Apply Help



SUM update informed by semantics

SUM
Metamodel

EModelElement

i

ENamedElement

name : string

i

EClass superTypes
<=

RS
*

nemao

syntactic constraint to
enforce no cycles

SUM

Device

T

Computer

T

Notebook Computer

user wants
update

Device

T

Computer

uzanozﬁ
Noteb @ puter

Gene

-




View update informed by semantics f

SUM
Metamodel

EModelElement

i

ENamedElement

name : string

i

nemao

EClass superTypes
<=

RS
*

syntactic constraint to
enforce no cycles

SUM

Device

T

Computer

T

multiple deletes possible
In SUM

\

Device

Notebook Computer

X view

Notebook Computer




Essential SUM metamodel?

SUM
Metamodel

EModelElement

i

ENamedElement

name : string

i

EClass superTypes
_~
RS

nemao

syntactic constraint to
enforce no cycles

SUM

Device

T

Computer

T

Notebook Computer

user wants
update

Device

T__1T

Computer

T

Notebook Computer




Essential SUM

e Entailment required to keep the SUM essential
e “Essential SUM” not “Essential SUM metamodel”

e Redundancy arises out of semantic notions not syntactic
redundancy!



Support for Cardelli’s powertype i

nemao

< powertype=> “MM’; e
Organism Type | < instantitation=>>
A
%k
. 4 :
Species i - instantiations - Organism

:Species ‘f {disjoint, incomplete }

Lion Hiena

‘f {disjoint, complete }

Male Lion Lionness




Conclusions

nemao

e We use symbols to represent phenomena
e We should care about the phenomena they represent

e There is no “non ontology”, there is “bad ontology”

e Not doing “semantics” explicitly just means it gets ad hoc
treatment

e Lightweight ontologies cannot do the trick by themselves
— Very hard to know what is lost in the implementation
— Need what is lost to drive (view-based) modeling

e Reference ontologies can help

— But design of a language/view system/knowledge base is a
different task



. q
Conclusions kLo

e We need all the help we can get!
— Ontology validation (e.g. simulation, anti-pattern detection)
— Ontology verification
— Ontology visualization
— Reuse (e.g., of foundational ontology)

e Not a general-purpose reasoner, but designed (view-based)
strategy:

— Metamodels with semantically-motivated constraints
— Semantically-motivated projective views

— SUM and view update semantics informed by ontology



Work inspired by this vision
e Ontology-driven conceptual modeling n

U

e Foundational ontology ONTOUML

— Unified Foundational Ontology (UFO)
with Giancarlo Guizzardi and other NEMO members

e Multi-level modeling

<MLT"™ <ML

MULTI-LEVEL MULTI-LEVEL
MODELING THEORY MODELING LANGUAGE

e Enterprise (architecture) modeling

nemao



