
VoSE 2019, Munich, 15 Sep 2019

Intensional View Definition with 
Constrained Incremental Transformation 

Rules

Théo Le Calvar1,2, Frédéric Jouault2, Fabien Chhel2, 
Frédéric Saubion1, Mickael Clavreul2

1 LERIA, University of Angers, Angers, France
{firstname.lastname}@univ-angers.fr

2 ERIS Team, Groupe ESEO, Angers, France
{firstname.lastname}@eseo.fr

1



VoSE 2019, Munich, 15 Sep 2019

Example Overview: UML Class and Object Diagrams

● A single underlying UML 
model

● Two visual JavaFX1 views
○ Class diagram
○ Object diagram

● Changing either view 
changes the UML model
○ Which may also result in 

changes to the other view

2

1 JavaFX provides vectorial graphics support for Java programs



VoSE 2019, Munich, 15 Sep 2019

Synchronization: With Incremental Projective Views

● Incremental transformations
○ Partially bidirectional

● For the example:
○ One ATOL1 transformation for class diagrams
○ One ATOL1 transformation for object diagrams

1 ATOL is a new ATL compiler supporting incremental transformations
3

SUM

View 1 View 2

UML

JavaFX
Class

Diagram

JavaFX
Object 

Diagram



VoSE 2019, Munich, 15 Sep 2019

Example: Simplified UML Metamodel

4



VoSE 2019, Munich, 15 Sep 2019

Example: Simplified Vectorial Drawing Metamodel 
(JavaFX)

5



VoSE 2019, Munich, 15 Sep 2019

Example: Simplified Vectorial Drawing Metamodel 
(JavaFX)

6

With some extensions



VoSE 2019, Munich, 15 Sep 2019

● For each Class, generate
○ A Rectangle outline
○ A Text for its name
○ A Line as separator

● For each Property, 
generate
○ A Text for its name

● For both, generate Figures
○ That connect all created 

elements together in a tree 
structure

○ That make it possible to 
retrieve all target elements 
necessary to draw a given 
source element

7

Example Projection Rule



VoSE 2019, Munich, 15 Sep 2019

● For each Class, generate
○ A Rectangle outline
○ A Text for its name
○ A Line as separator

● For each Property, 
generate
○ A Text for its name

● For both, generate Figures
○ That connect all created 

elements together in a tree 
structure

○ That make it possible to 
retrieve all target elements 
necessary to draw a given 
source element

8

Example Projection Rule



VoSE 2019, Munich, 15 Sep 2019

Problem

● Some views contain information not 
found in their source models

● Such information may
○ Already exist somewhere and be 

given as an additional projection 
transformation input

○ Be unavailable, but follow 
some pattern
■ i.e., not all possible values are 

valid

9

Source

View

Other?

Projection



VoSE 2019, Munich, 15 Sep 2019

Example: What About Geometric Information?

● Geometric information
○ micro-layout

■ follows strict rules
○ macro-layout

■ may be user specified

10

UML

JavaFX

Geometry

Projection



VoSE 2019, Munich, 15 Sep 2019

Approach: Intensional Target Model

11

Source Target

Model Set



VoSE 2019, Munich, 15 Sep 2019

Approach: Constraint-based Intensional Model Definition

● Recipe
○ Take a partially instantiated model

■ i.e., with model element properties having no specific 
values

○ Add constraints between these properties
○ Use a solver to give them valid values

● The solver’s capabilities delimit what applications are 
possible, for instance, it may
○ Be fast enough for live interactions, or not
○ Only support linear constraints, or more complex 

ones
12



VoSE 2019, Munich, 15 Sep 2019

Connecting Models to Solvers

● Model element properties are bidirectionally bridged to 
solver decision variables

13



VoSE 2019, Munich, 15 Sep 2019

Model Set Exploration

14

User change
Reparation by tool



VoSE 2019, Munich, 15 Sep 2019

Overview of Model Set Exploration

15



VoSE 2019, Munich, 15 Sep 2019

Combining Incrementality & Intensionality

16



VoSE 2019, Munich, 15 Sep 2019

Example: Class Constraints

17

● Avoid moving rectangle and text
● Minimize rectangle size
● Prevent rectangle from going 

above or left of canvas
● Center text horizontally
● Stick text to rectangle top
● Make rectangle larger than text 

+ an horizontal margin
● Make the line

○ Go from left to right of rectangle
○ Be horizontal
○ Be just below the text



VoSE 2019, Munich, 15 Sep 2019

Example: Class Constraints

18

● Avoid moving rectangle and text
● Minimize rectangle size
● Prevent rectangle from going 

above or left of canvas
● Center text horizontally
● Stick text to rectangle top
● Make rectangle larger than text 

+ an horizontal margin
● Make the line

○ Go from left to right of rectangle
○ Be horizontal
○ Be just below the text



VoSE 2019, Munich, 15 Sep 2019

Conclusion

● The presented approach makes it possible to
○ Declaratively define incremental (partially bidirectional) intensional 

views
○ Explore these intensional models

● It has been illustrated on a visual view example
○ But is applicable to other kinds of views (e.g., schedule)

● Can be used with multiple solvers at the same time
○ When there are no dependency cycles between bridge variables

● Perspectives:
○ Domain specific abstractions (e.g., geometric 

abstractions) 
○ Possible example extensions: macro-layout constraints

19


