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Example Overview: UML Class and Object Diagrams

● A single underlying UML 
model

● Two visual JavaFX1 views
○ Class diagram
○ Object diagram

● Changing either view 
changes the UML model
○ Which may also result in 

changes to the other view

2

1 JavaFX provides vectorial graphics support for Java programs
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Synchronization: With Incremental Projective Views

● Incremental transformations
○ Partially bidirectional

● For the example:
○ One ATOL1 transformation for class diagrams
○ One ATOL1 transformation for object diagrams

1 ATOL is a new ATL compiler supporting incremental transformations
3
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Example: Simplified UML Metamodel
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Example: Simplified Vectorial Drawing Metamodel 
(JavaFX)
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Example: Simplified Vectorial Drawing Metamodel 
(JavaFX)
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With some extensions
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● For each Class, generate
○ A Rectangle outline
○ A Text for its name
○ A Line as separator

● For each Property, 
generate
○ A Text for its name

● For both, generate Figures
○ That connect all created 

elements together in a tree 
structure

○ That make it possible to 
retrieve all target elements 
necessary to draw a given 
source element
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Example Projection Rule



VoSE 2019, Munich, 15 Sep 2019

● For each Class, generate
○ A Rectangle outline
○ A Text for its name
○ A Line as separator

● For each Property, 
generate
○ A Text for its name

● For both, generate Figures
○ That connect all created 

elements together in a tree 
structure

○ That make it possible to 
retrieve all target elements 
necessary to draw a given 
source element

8

Example Projection Rule
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Problem

● Some views contain information not 
found in their source models

● Such information may
○ Already exist somewhere and be 

given as an additional projection 
transformation input

○ Be unavailable, but follow 
some pattern
■ i.e., not all possible values are 

valid
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Example: What About Geometric Information?

● Geometric information
○ micro-layout

■ follows strict rules
○ macro-layout

■ may be user specified
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Approach: Intensional Target Model

11

Source Target

Model Set



VoSE 2019, Munich, 15 Sep 2019

Approach: Constraint-based Intensional Model Definition

● Recipe
○ Take a partially instantiated model

■ i.e., with model element properties having no specific 
values

○ Add constraints between these properties
○ Use a solver to give them valid values

● The solver’s capabilities delimit what applications are 
possible, for instance, it may
○ Be fast enough for live interactions, or not
○ Only support linear constraints, or more complex 

ones
12
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Connecting Models to Solvers

● Model element properties are bidirectionally bridged to 
solver decision variables
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Model Set Exploration
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Overview of Model Set Exploration
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Combining Incrementality & Intensionality
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Example: Class Constraints
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● Avoid moving rectangle and text
● Minimize rectangle size
● Prevent rectangle from going 

above or left of canvas
● Center text horizontally
● Stick text to rectangle top
● Make rectangle larger than text 

+ an horizontal margin
● Make the line

○ Go from left to right of rectangle
○ Be horizontal
○ Be just below the text
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Conclusion

● The presented approach makes it possible to
○ Declaratively define incremental (partially bidirectional) intensional 

views
○ Explore these intensional models

● It has been illustrated on a visual view example
○ But is applicable to other kinds of views (e.g., schedule)

● Can be used with multiple solvers at the same time
○ When there are no dependency cycles between bridge variables

● Perspectives:
○ Domain specific abstractions (e.g., geometric 

abstractions) 
○ Possible example extensions: macro-layout constraints
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