
KIT – The Research University in the Helmholtz Association

SOFTWARE DESIGN AND QUALITY GROUP

INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, KIT DEPARTMENT OF INFORMATICS

www.kit.edu

Commonalities for Preserving Consistency
of Multiple Models

Heiko Klare, Joshua Gleitze

VoSE Workshop @ MODELS 2019, 15.09.2019

Software Design and Quality Group

Institute for Program Structures and Data Organization

2 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

A Simple Consistency Scenario

UMLJava

Class

name

packageName

«maps to»
Component

name

A consistency-preserving

transformation:

relation Class2ADLComponent {
componentName : String;
domain java class : Class {

name = componentName + "Impl"
packageName = componentName

}
domain uml component : Component {

name = componentName
}

}

Class.name = Component.name + "Impl"

Class.packageName = Component.name

Software Design and Quality Group

Institute for Program Structures and Data Organization

3 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Multi-Model Consistency: Dense Graphs

Option 1: Define relations between all pairs of metamodels

UMLJava

Class

name

packageName

«maps to»
Component

name
Class.name = Component.name + "Impl"

Class.packageName = Component.name

ADL

Component

name

«maps to»

Component.name = Component.name

«maps to»

Class.name = Component.name

Class.packageName = Component.name

Bad compatibility

i.e. consistency relations/constraints

may be contradicting

[Klare2018, Gleitze2017]

Software Design and Quality Group

Institute for Program Structures and Data Organization

4 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Multi-Model Consistency: Trees

Option 2: Define relations between metamodels to form a tree

UMLJava

Class

name

packageName

«maps to»
Component

name
Class.name = Component.name + "Impl"

Class.packageName = Component.name

ADL

Component

name

«maps to»

Component.name = Component.name

Bad modularity

i.e. no arbitrary metamodel selection

without loosing consistency relations

[Klare2018, Gleitze2017]

Scenario:

Develop a system only

with the ADL and Java

Software Design and Quality Group

Institute for Program Structures and Data Organization

5 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Trade-off: Compatibility vs. Modularity

Dense Graph Tree

Network topologies

…

Compatibility
(Relations/transformations do not contradict each other)

Modularity
(Possibility to select arbitrary metamodel subset without loosing consistency relations)

Maximize: only one

path between each

metamodel pairMaximize: 𝜃 𝑛2

paths between each

metamodel pair

Metamodel

[Klare2018, Gleitze2017]

Transfor-

mation

Software Design and Quality Group

Institute for Program Structures and Data Organization

6 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Contributions and Expected Benefits

▪ Commonalities Approach

▪ Commonalities Language

▪ Proof of Concept

Contributions

Resolve the trade-off between compatibility and modularity for consistency of multiple

models by making common concepts of metamodels explicit.

Idea

▪ Improved comprehensibility

▪ Reduced specification effort

▪ Improved compatibility and modularity

Expected Benefits

Trade-off between compatibility and modularity in bidirectional transformation networks.

Problem

Software Design and Quality Group

Institute for Program Structures and Data Organization

7 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

From Relations to Explicit Common Concepts

«manifests» «manifests»

Java

Class

name

UML

Class

name

Object-oriented Design

Class

name

«maps to»

Implicit specification of

common concept in

consistency relation

Explicit specification of

common concept

Software Design and Quality Group

Institute for Program Structures and Data Organization

8 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

The Commonalities Approach

Encode commonalities in metaclasses of a conceptual metamodel

Represent common information in features of the conceptual metamodel

UMLJava

Class

name

Object-oriented Design

«manifests» «manifests»

Class

name

Class

name

Concept metamodel

Commonality

Concrete metamodel

“Java is a manifestation of

Object-oriented Design”

Bidirectional

transformation

Software Design and Quality Group

Institute for Program Structures and Data Organization

9 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Hierarchic Composition of Commonalities

Naïve: One monolithic concept metamodel

Better: Hierarchy of Commonalities

Goal: Tree of Commonalities (no cycles)

UML ADLJava

Class

packageName

name

Object-

oriented

Design

«manifests»

«manifests» «manifests» «manifests» «manifests»

Class

name

Component-based Design

Component

name

Class

name

Component

name

Component

name

Class.name = Component.name + “Impl”

Package.name = Component.name

Package

name

Package

name

classes

*

classes

*

«manifests»

Software Design and Quality Group

Institute for Program Structures and Data Organization

10 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Design Decisions

Artifact Generation
(transparent to user)

Concept metamodels as additional metamodels

Alternative: Derive direct transformations

between concrete metamodels

Benefits:

Easy to achieve

High expressiveness (n-ary relations)

Drawback:

Management of additional artifacts

Commonalities Specification
(visible to user)

Internal specification

Alternative: External specification

(Decomposition dimension: Transformations)

Benefits:

Easy to add Commonalities

Improved locality / conciseness

Drawback:

More difficult to add metamodels

Concept metamodel → Metamodel

Commonality → Metaclass

Manifestation specification → Transformation

Integrated definition of concept metamodels with

manifestations

Decomposition dimension: Commonalities

Software Design and Quality Group

Institute for Program Structures and Data Organization

11 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Commonalities Language

concept Components

commonality Component {
with UML:Component
with ObjectOrientation:(Class in Package)

has name {
= UML:Component.name
= ObjectOrientation:Package.name
= suffix(ObjectOrientation:Class.name, "Impl")

}

has subcomponent referencing Components:Component {
= UML:Component.packagedElement
= ObjectOrientation:Package.subpackages

}

}

Concept metamodel

Commonality

Manifestation (Concrete)

Manifestation (Concept)

Attribute Mapping

Reference Mapping

Software Design and Quality Group

Institute for Program Structures and Data Organization

12 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Proof of Concept

Case Study (schematic)

Feasibility

Test cases performing all possible types of model modifications

Correct propagation of all changes → indicator for functional correctness

Root

id

Inner

name

Concrete

Metamodels

Concept

Metamodel

Root

id

single

multi

Inner

name

Root

id

single

multi

Inner

name

Root

id

Inner

name

Root

id

number

list

Inner

name

Software Design and Quality Group

Institute for Program Structures and Data Organization

13 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Benefit: Comprehensibility

relation Class2ADLComponent {
componentName : String;
domain java class : Class {
name = componentName + "Impl";
packageName = componentName;

}
domain adl component : Component {

name = componentName;
}

}

concept Components

commonality Component {
with uml:Component
with adl:Component
with java:Class

has name {
= uml:Component.name
= adl:Component.name
= java:Class.packageName
= suffix(java:Class.name, "Impl")

}

}

relation Class2UMLComponent {
componentName : String;
domain java class : Class {
name = componentName + "Impl";
packageName = componentName;

}
domain uml component : Component {

name = componentName;
}

}

relation UMLComponent2ADLComponent {
componentName : String;
domain uml component : Component {
name = componentName;

}
domain adl component : Component {

name = componentName;
}

}

Java

Class

name

packageName

UML ADL

Component

name

Component

name

name = name
packageName = name

name = name + “Impl”

packageName = name

name = name + “Impl” Components

Component

name

Software Design and Quality Group

Institute for Program Structures and Data Organization

14 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

…

Benefit: Compatibility and Modularity

Dense Graph Tree

Compatibility
(Relations/transformations do not contradict each other)

Modularity
(Possibility to select arbitrary metamodel subset without loosing consistency relations)

Maximize: only one

path between each

metamodel pairMaximize: 𝜃 𝑛2

paths between each

metamodel pair

Concrete

metamodel

Concept

metamodel

[Klare2018, Gleitze2017]

With Commonalities:

High modularity because

inner nodes are concept

metamodels

Network topologies

Software Design and Quality Group

Institute for Program Structures and Data Organization

15 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Number of relations grows linearly with Commonalities but quadratically with transformations

Java

Class

name

packageName

UML

Class

name

classes*

Package

name

Benefit: Specification Effort

Object-oriented Design

«manifests»

CommonalitiesOrdinary Transformations

«manifests»

«trans-

forms»

C++

«transforms»
«transforms»

Class

name

namepace

Java

Class

name

packageName

UML

Class

name

classes*

Package

name

C++

Class

name

namepace

Class

name

Package

name

«manifests»

classes

*

Software Design and Quality Group

Institute for Program Structures and Data Organization

16 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Comparison with the SUM(M) Approach

Concept

Metamodel

Concept metamodel is union of

pairwise intersections of concepts

SUM is union of concepts of

all metamodels

SUM

Commonalities Approach SUM(M) Approach

Concrete

Metamodel
Concrete

Metamodel

Concrete

Metamodel

Software Design and Quality Group

Institute for Program Structures and Data Organization

17 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Related Work

Practical approaches

▪ Sophisticated commonalities language [Gleitze2017]

▪ Role-oriented SUM [Werner2018]

▪ Domain-specific: DUALLy [Malavolta2010, Eramo2012]

Theoretic considerations

▪ Multiary Delta Lenses [Diskin2018]

▪ Commonalities for n-ary constraints [Stünkel2018]

Commonalities Approaches

▪ Dagstuhl Seminar [Cleve2019]

▪ Constraint decomposition problems [Stevens2017]

▪ Language-specific: QVT-R [Macedo2014], TGG [Trollmann2016]

Multidirectional Transformations and Networks of Bidirectional Transformations

Software Design and Quality Group

Institute for Program Structures and Data Organization

18 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Conclusion and Future Work

Commonalities Approach

▪ Concept metamodels of Commonalities

▪ Manifestation relations

▪ Hierarchic composition of Commonalities

Commonalities Language

▪ Design options

▪ Artifact generation

▪ Commonalities specification

▪ Proof of concept implementation

Contributions

▪ Extend language capabilities

▪ Evaluate benefits

▪ Applicability: case study

▪ Comprehensibility: experiment

▪ Validate practicality of hierarchic

composition

Future Work

Expected Benefits

General Comprehensibility ↑

Multi-model

case

Effort ↓

Errors ↓

Modularity ↑

Resolve the trade-off between compatibility

and modularity for multi-model consistency.

Goal

Software Design and Quality Group

Institute for Program Structures and Data Organization

19 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Bib: Commonalities

[Gleitze2017] J. Gleitze, “A Declarative Language for Preserving Consistency of Multiple Models,”

Bachelor’s Thesis, Karlsruhe Institute of Technology (KIT), 2017.

[Diskin2018] Z. Diskin, H. König, and M. Lawford, “Multiple Model Synchronization with Multiary Delta

Lenses,” in Fundamental Approaches to Software Engineering, Springer International

Publishing, 2018, pp. 21–37.

[Stünkel2018] P. Stünkel, H. König, Y. Lamo, and A. Rutle, “Multimodel Correspondence Through Inter-

model Constraints,” in Conference Companion of the 2Nd International Conference on

Art, Science, and Engineering of Programming, ser. Programming’18 Companion, ACM,

2018, pp. 9–17.

[Eramo2012] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio, “A model-driven

approach to automate the propagation of changes among Architecture Description

Languages”, Software and Systems Modeling, vol. 11, pp. 29–53, 1 2012.

[Malavolta2010] I. Malavolta, H. Muccini, P. Pelliccione, and D. A. Tamburri, “Providing Architectural

Languages and Tools Interoperability through Model Transformation Technologies”, IEEE

Transactions of Software Engineering, vol. 36, no. 1, pp. 119–140, 2010.

[Werner2018] C. Werner and U. Assmann, “Model Synchronization with the Role-oriented Single

Underlying Model,” in Proceedings of MODELS 2018 Workshops, co-Located with

ACM/IEEE 21st International Conference on Model Driven Engineering Languages,

CEUR-WS.org, 2018, pp. 62–71

Software Design and Quality Group

Institute for Program Structures and Data Organization

20 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Bib: Multidirectional Transformations/Networks

[Klare2018] H. Klare, “Multi-model Consistency Preservation,” in 21st ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems (MODELS):

Companion Proceedings, 2018, pp. 156–161.

[Cleve2019] A. Cleve, E. Kindler, P. Stevens, and V. Zaytsev, “Multidirectional Transformations and

Synchronisations (Dagstuhl Seminar 18491),” Dagstuhl Reports, vol. 8, no. 12, pp. 1–48,

2019.

[Macedo2014] N. Macedo, A. Cunha, and H. Pacheco, “Towards a frame- work for multi-directional

model transformations,” in 3rd International Workshop on Bidirectional Transformations -

BX, vol. 1133, CEUR-WS.org, 2014.

[Stevens2017] P. Stevens, “Bidirectional Transformations in the Large,” in 2017 ACM/IEEE 20th

International Conference on Model Driven Engineering Languages and Systems (MOD-

ELS), 2017, pp. 1–11.

[Trollmann2016] F. Trollmann and S. Albayrak, “Extending Model Synchronization Results from Triple

Graph Grammars to Multiple Models,” in Theory and Practice of Model Transformations,

Springer International Publishing, 2016, pp. 91–106.

Software Design and Quality Group

Institute for Program Structures and Data Organization

21 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Bib: Other Related Topics

[Lúcio2013] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss, “FTG+PM: An Integrated

Framework for Investigating Model Transformation Chains,” in SDL 2013: Model-Driven

Dependability Engineering, Springer Berlin Heidelberg, 2013, pp. 182–202.

[Eramo2008] R. Eramo, A. Pierantonio, J. R. Romero, and A. Valle- cillo, “Change Management in

Multi-Viewpoint System Using ASP,” in Enterprise Distributed Object Computing

Conference Workshops, 2008, pp. 433–440.

[Atkinson 2010] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Orthographic Software Modeling: A

Practical Approach to View-Based Development”. In: Proceedings of the 3rd and 4th

International Conferences on Evaluation of Novel Approaches to Software Engineering

(ENASE 2008/2009). Vol. 69. Communications in Computer and Information Science.

Berlin, Heidelberg: Springer-Verlag, 2010, pp. 206 – 219

Software Design and Quality Group

Institute for Program Structures and Data Organization

22 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Bib: Vitruvius Approach

[Kramer 2013] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-centric Engineering with

Synchronized Heterogeneous Models”. In: Proceedings of the 1st Workshop on View-

Based, Aspect-Oriented and Orthographic Software Modelling (VAO 2013). New York,

NY, USA: ACM, 2013, 5:1–5:6.

[Kramer 2015] Max E. Kramer et al. Realizing Change-Driven Consistency for Component Code,

Architectural Models, and Contracts in Vitruvius. Tech. rep. Karlsruhe: Karlsruhe Institute

of Technology, Department of Informatics, 2015.

Software Design and Quality Group

Institute for Program Structures and Data Organization

23 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Design Decision: Artifact Generation

Artifact generation is transparent to user

Concept metamodels as additional

metamodels

Benefits:

Easy to achieve

High expressiveness (n-ary relations)

Transformations between concrete

metamodels

Benefits:

No management of additional artifacts

Easier to understand direct relations

Concept metamodel → Metamodel

Commonality → Metaclass

Relation specification → Transformation

Indirect relations across concept

metamodels → Transformations between

pairs of concrete metamodels

Software Design and Quality Group

Institute for Program Structures and Data Organization

24 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Design Decision: Commonalities Specification

Commonalities specification is visible to user

External specification

Benefits:

Easy to add concrete metamodels

Reuse existing tooling

Internal specification

Benefits:

Easy to add Commonalities

Improved locality / conciseness

Independent definition of concept

metamodels and transformations

Decomposition dimension: Transformations

Integrated definition of concept metamodels

with manifestations

Decomposition dimension: Commonalities

Software Design and Quality Group

Institute for Program Structures and Data Organization

25 15.09.2019 Heiko Klare, Joshua Gleitze
Commonalities for Preserving Consistency of Multiple Models

Operators in the Commonalities Language

The Commonalities language can be extended by operators that allow

bidirectional propagation of information, e.g. in and suffix

To have well-defined bidirectional transformations, operators must be

Correct

Hippocratic

Undoable

