
The SOAMIG Process Model in Industrial Applications

C. Zillmann, A.Winter
OFFIS

Institute for Information Technology
{zillmann, winter}@offis.de

A. Fuhr, T. Horn, V. Riediger
University of Koblenz

{afuhr, horn, riediger}@uni-koblenz.de

A. Herget, W. Teppe, M. Theurer
Amadeus Germany

{aherget, wteppe, mtheurer}@de.amadeus.com

U. Erdmenger, U. Kaiser, D. Uhlig,
Y. Zimmermann
pro et con GmbH

{uwe.erdmenger, uwe.kaiser, denis.uhlig,
yvonne.zimmermann}@proetcon.de

Abstract—The SOAMIG Project aims at a general mi-
gration process model with an emphasis on transformation-
based conversion. The SOAMIG Process Model is divided
into several phases and disciplines, which describe and
organize general migration activities. The process is applied
in two industrial software migration projects addressing
architecture and code migration.

Keywords-migration, transformation, process model, soa;

I. MOTIVATION

Most commercially built information systems are based
on traditional technologies preventing them from un-
folding their full potential. Service-oriented architecture
(SOA) promises an increasing flexibility of companies
and enables reusing existing software assets for rapidly
changing business needs [15]. Migrating legacy systems
to SOA enables both, the reuse of already established
and proven software components and the integration with
newly created services, including their orchestration [13].
Migrating to new software architectures usually requires
addressing other migration aspects like data, code and user
interfaces [14].

Current process models in software development rarely
account for migration activities [13]. Activities in mi-
gration projects include legacy analysis (e.g. program
comprehension, identifying reusable software assets), and
legacy conversion [7]. Next to these reengineering and
reverse engineering activities, evolution projects address
target and legacy architectures and require migration
strategies. Furthermore, if e.g. SOA is aspired, the project
has to deal with business process modeling and service
and orchestration designs.

On the one hand, existing migration process models
like [5] mostly blind out forward engineering activities.
On the other hand, existing development process models
like the V-Model XT, the Rational Unified Process (RUP)
or IBM’s SOMA method [1] solely focus on forward
engineering. Hence, a well-defined adaptable methodology
for migration projects is required.

The SOAMIG-Project1 aims at providing a general
transformation-based migration process model with an em-
phasis on code and architecture migration. The SOAMIG

1SOAMIG is partly funded from April 2009 to March 2011 in
the German Federal Ministry of Education and Research funding pro-
gram for small and medium sized enterprises (01IS09017A-D). (cf.
www.soamig.de).

consortium consist of four project members: Amadeus
(Germany), the leading transaction processor for the global
travel and tourism industry, is the legacy expert and
allocates one the legacy systems. Pro et con, a software
reengineering and migration expert, is responsible for Java
and COBOL migration and tool development. University
of Koblenz is the expert for graph-based technologies
and responsible for development of program analysis and
transformation tools and provides rules for a technical
migration. OFFIS contributes expert knowledge on enter-
prise and software architecture, is responsible for the target
architecture development, SOA realization, and provides
in cooperation with University of Koblenz for the generic
SOAMIG Migration process.

This paper introduces the SOAMIG Process Model
(Sec. II) followed by an industrial architecture migration
(legacy to SOA) and a code migration (COBOL to Java)
in Sec. III. Finally, Sec. IV summarizes the current results
and sketches future activities.

II. THE SOAMIG PROCESS

SOAMIG aims at defining an adaptable iterative migra-
tion process model. The process model is developed in
conjunction with an architecture migration (RAIL) and a
code migration (LCOBOL).

A. The SOAMIG Phases

The SOAMIG process distinguishes four organiza-
tional phases exposing important milestones in migration
projects (cf. Fig. 1). The phases collate several disciplines
(cf. Sec. II-B) highlighting activities during migration.

1) Preparation: Starting point of every migration
project is legacy code which has to be prepared and
standardized in the Pre-Renovation discipline by various
reengineering activities to alleviate conversion activities.

The project infrastructure including defining project
goals and work packages or managing resources is set up
in the Project Setup discipline. Migration projects require
a high level of automatization by using appropriate tools.
General development of reengineering and conversion
tools is covered by Tool Initialization; their adaptation to
detailed project-specific requirements is addressed in Tool
Adaptation in Conceptualization phase.



Le
g

e
n

d

 Conceptualization Preparation

Phase

Tool Initialization

Pre-Renovation
Business Modeling

Legacy Analysis
Target Architecture

Strategy Selection
Realization

Testing
Cut Over

Project Set-up

Discipline

Initialization Iteration #-i Iteration #0...

 Migration

Iteration #1 Iteration #j...

Business Modeling
Legacy Analysis

Target Architecture
Strategy Selection

Realization
Testing

Cut Over

 Transition

Iteration #j+1 Iteration #k...

Post-Renovation

Iteration

Tool Adaption

Technical 
Feasibility Core 

Migration

Legend

Figure 1. The SOAMIG Phases

2) Conceptualization: 70%-75% of activities in reengi-
neering projects are independent of detailed project needs
[4]. A broad automatization seems possible by eligible
migration factories. A central activity in migration projects
is assessing feasibility of migration and applicability
of provided tool sets during Technical Feasibility. This
discipline includes passing through all SOAMIG core
disciplines (cf. Sec. II-B) for a small, but representative
part of the legacy system to ensure proper provision and
adaptation of migration tools.

3) Migration: Migrating the entire system is applied af-
ter setting up a general migration strategy and tool support.
In the Migration phase, all SOAMIG core disciplines (cf.
Sec. II-B) are performed iteratively in different intensities,
resulting in a migrated system in production.

4) Transition: Code migration usually leads to hardly
maintainable code, which requires additional reengineer-
ing. Software quality degrades by adopting mindsets from
legacy to target structures directly [16]. The quality of
the migrated system has to be improved in the Post-
Renovation discipline e.g. by refactorings in the target
environment.

B. The SOAMIG Core Disciplines

Seven SOAMIG Core disciplines (cf. Fig. 2) are per-
formed during Conceptualization phase for a small part of
the legacy system and eventually in the Migration phase
for the entire system. Most of these disciplines use model-
driven techniques based on an integrated repository [13],
[18].

1) Business Modeling: One objective of SOAMIG is
the migration to SOA, which requires analyzing the busi-
ness processes of legacy systems to allow a reasonable
tailoring of services in the Target Architecture discipline.
The evaluation and documentation of supported business
processes is handled by the Business Modeling discipline
using UML2 activity diagrams and Business Process Mod-
eling Notation (BPMN). These models are integrated with
architecture and code models in the SOAMIG repository.

2) Legacy Analysis: Legacy Analysis deals with ex-
ploring and comprehending the legacy system. Available
information like user or technical documentation, legacy
test cases, architecture description and source code have
to be analyzed. In SOAMIG, static and dynamic analysis
techniques including FGM [2] and JGraLab/GReQL ([8],
[6]) are applied. Service candidates are discovered by

mapping business processes from Business Modeling to
the legacy.

3) Target Architecture: Finding a best target architec-
ture deals with both, the legacy system and the required
software support [17] in the target system. The target
architecture is iteratively approximated, starting from a
technically ideal architecture and taking into account
special requirements of the legacy to enable economic
migration. The SOA target architecture consist of service
design, the realization design and the orchestration design.
The service design describes the interfaces of the target
architecture services. The realization design describes how
to implement the services or the user interfaces, and fi-
nally the orchestration design specifies how to orchestrate
services to support business processes. In code migration
projects, the target architecture is predetermined by target
language structures.

4) Strategy Selection: Strategy Selection decides on
the cut-over strategy, which defines delivery of (parts of)
the migrated system and on the realization strategy for
converting each package. Cut-over strategies vary from
conversion in one go (big bang) to iterative strategies,
providing stepwise migration and calling for bridging
architectures to enable collaboration of parts of legacy
and target system [5]. Choosing the most suitable mi-
gration strategy is an important step (cf. [7]). Perform-
ing iterative migrations also includes deciding on the
parts of the system to be migrated in each iteration.
The realization strategy addresses the conversion of each
migration package. This includes project, package and
service realization strategies. Alternative strategies are
reimplementation, transformation-based conversion, and
wrapping. The corresponding strategy is selected accord-
ing quality and business value of each migration package
[3]. SOAMIG primarily focuses on transformation-based
conversion, which requires the development of appropriate
converters in LCOBOL (cf. Sec. III-B).

5) Realization: During Realization, functionality of the
legacy system is converted to the target system according
to the realization strategy selected in Strategy Selection.
Migration projects deal with migrating functionality, user
interfaces and data, etc. SOAMIG especially focuses on
transformation-based migration. So, it is aspired to convert
as much code as possible by an automated transforma-
tion using SOAMIG converters and translators. In SOA
migrations, a special focus lies on services and service



orchestration. Whereas service functionality could be ex-
tracted and migrated (semi-)automatically, the orchestra-
tion of services usually has to be newly implemented since
monolithic (non-SOA) legacy systems lack the required
orchestration information.

6) Testing: Testing deals with ensuring equivalent be-
havior of legacy and migrated system by applying re-
gression tests from the legacy system to the migrated
system. System tests account for correctness within the
target environment. The chosen testing strategies depend
on the embedding of the migrated system. For stand-alone-
systems, test cases are derived by recording messages
from the legacy and replaying them to the target system.
Systems embedded in a landscape of systems additionally
requires effort to simulate interactions with all surrounding
systems [16].

7) Cut Over: Cut Over concludes the core migration
in SOAMIG. The migrated system is deployed at the
customer’s site, while the legacy system is turned off. To
keep decisions and results based on the legacy system
comprehensible for future analysis, in some cases, the
legacy has to be preserved. Cut Over follows the cut-over
strategy selected in Strategy Selection. A fallback strategy
is required to ensure switching back to the old system
without loss, if serious errors occur during migration. This
also includes a reverse migration procedure to reconvert
e.g. data changes already made in the target system before
fallback [16]. In addition, the migrated system has to be
monitored to ensure that it behaves as expected.

Realization
Strategy 
Selection

Legacy 
Analysis

Testing
Target 

Architecture

Business 
Modeling

Cut Over

Model

Business 
model

Legacy code
Analysis 
results
Service 
candidates

Legacy 
architecture

Business model
Realization 

strategy

Service design
Realization 
design
Orchestration 
design

Service design
Analysis results

Migration strategy
Realization strategyService design

Realization design
Orchestration 

design

Services
Orchestration

Services

Test cases

Services

Figure 2. The SOAMIG Disciplines
Since SOAMIG aims at providing a general migration

methodology incl. tool support, main activities deal with
supplying and evaluating tools for SOA and code migra-
tion.

III. APPLYING THE SOAMIG PROCESS

The SOAMIG Process Model is validated by migrating
the architecture of Amadeus Germany’s RAIL-System to
SOA. The ability of transformation-based code migrations
is shown by a COBOL-Java migration in LCOBOL.

A. RAIL
The RAIL migration addresses the (semi-)automated

transformation on architecture level. RAIL is a 229.228

LOC monolithic Java rich client offering functionality
for selling Deutsche Bahn products (e.g. reservations,
tickets), developed by Amadeus. For reducing deployment
complexity, the system should be migrated to SOA. The
migration is currently in Conceptualization and addresses
Technical Feasibility to set up and evaluate a migration
factory and prepare the migration of the entire system.

According to the Preparation phase, the migration
started with setting up existing and newly developed tools
for analyzing and migrating RAIL. Finally, a three-step
tool chain was developed and adapted in Tool Initialization
and Tool Adaptation including (1) JavaFE [18] for extract-
ing facts from the legacy system, (2) JGralab/GReQL ([8],
[6]) and Flow Graph Manipulator [2] for analysis and con-
version, and (3) JGen [18], which re-generates Java code
from the stored facts. These facts are stored for further
analysis and conversion in a graph-based repository, which
provides access to all tool components by an XML-based
data exchange. The repository is capable to represent code
facts in Java-graphs integrated with corresponding graph-
based architecture and business process models created by
conventional CASE-tools.

Next to this tool chain, further newly developed tools
were applied, like the Business Process Tracer for map-
ping the modeled business processes to code artifacts dur-
ing dynamic analysis. The SoamigExtractor identifies, se-
lects, and extracts Java fragments in RAIL to be converted
to services. Selection is controlled by the business process
model and information gathered during dynamic analysis.
By using graph-based GReQL queries [8] SoamigExtrac-
tor delivers slices of the original Java program represented
by subgraphs, which are then converted to Java by JGen.

The Technical Feasibility phase considers migrating the
functionality of selling a specific product of Deutsche
Bahn: ”Ticket with Timetable (TwT)”. Business Modeling
provided a process model of TwT with UML activity
diagrams [11]. The Business Process Tracer is used in
Legacy Analysis to map business processes to legacy
code [12]. Next to identifying business process relevant
legacy code, these activities also detected deeply nested
legacy components. Further static analysis with JGraLab’s
GReQL confirmed a close linkage especially between the
business logic and the user interfaces, which effected
various decisions on target architecture and migration
strategy.

A classical three tier target architecture consisting of
a view layer, a business process layer and an enterprise
service bus layer was defined in the Target Architecture
activity. The enterprise service bus layer offers services
for e. g. ordering tickets over an external system.

Concerning the deeply nested components in the legacy
system, a (semi-)automated, iterative approach was cho-
sen in Strategy Selection. In Preparation, identified ser-
vice candidates are successively converted, starting with
fractional tool support. Subsequent migrations result in
progressively expanding tool support to provide higher
level of automation for further migrations. In Realization,
identified services on the enterprise service bus layer



were migrated iteratively. Based on the analysis results
of Legacy Analysis, accordant classes and methods of the
legacy system were extracted using SOAMIG’s migra-
tion tools. Furthermore, a new data model is currently
generated (semi-)automatically. Extracted code and data
model were adapted to match the service interfaces. The
process orchestration of TwT on the business process layer
was newly implemented. Due to the tight coupling in the
legacy system and the SOAMIG focus on migrating core
functionality, the user interface is implemented manually.

Currently, the most relevant parts of TwT have been
migrated to SOA. It is planed to complete TwT until March
2011. Furthermore, developing a data model extractor to
increase the degree of automatization is in progress. Expe-
riences and results of the Technical Feasibility disciplines
will be used in an entire migration of RAIL in future work.

B. LCOBOL (Legacy COBOL)

LCOBOL addresses the automated transformation of
legacy software systems on code level. The project aims at
migrating an 81.600 LOC MF-COBOL transaction system
with embedded SQL to Java/JDBC. It is intended to
migrate to a web services-based architecture. LCOBOL
provides an industrial access control system and has been
maintained by pro et con for years.

SOAMIG migration focuses on transformation-based
approaches. Thus, LCOBOL requires preferably auto-
mated transformation techniques and accentuates Tool
Initialization in Preparation and Tool Adaptation in Con-
ceptualization. In particular, mappings from constructs
in COBOL to their equivalent Java representation have
to be defined [9]. Transformation strategies reflect the
need of further maintenance by current maintenance staff,
which results in keeping the migrated code next to its
original. In contrast, enabling further extensions in the
target system, requires to make use of target language
specific constructs. A reasonable compromise is realized in
the ”COBOL→Java”-Translator, building on pro et con’s
migration generation chain [10].

Prior to COBOL to Java transformation, refactorings,
e. g. dead code elimination and code standardizations,
are applied in Pre-Renovation to alleviate automated
migration. Legacy Analysis, including control flow and
GoTo-analysis, was accomplished with FGM Flow Graph
Manipulator [2]. FGM uses an architectural representation
and fine grained representations of each COBOL program
which was built during Project Set-up.

In LCOBOL the Target Architecture refers to web
services, which map the TOMCAT controlled legacy ap-
plication server. Realization in LCOBOL is based on
transformation Strategy: Each COBOL program was trans-
lated to a set of Java classes using SOAMIG’s Translator.
Dynamic SQL (JDBC) in the Java code replaces embedded
static SQL. Transforming the transaction monitor was
based on automatically identifying middleware interfaces
and mapping those to web service interfaces. In Post
Renovation it is planned to reengineer the Java classes by
appropriate refactorings. Currently, the SOAMIG Transla-

tor is a prototype. At the complete stage it is planned to
achieve an automation degree of more than 80%.

IV. CONCLUSION

SOAMIG introduces an iterative and generic software
migration process model with a special focus on conver-
sion by transformation. Case studies showed the applica-
bility for both, architecture migrations and code migra-
tions. Both, RAIL and LCOBOL projects will be finished
in March 2011. Experiences and results of migrating the
business process TwT in SOAMIG subproject RAIL will
be applied in an entire RAIL migration. Results, tools,
mapping descriptions and experiences of the LCOBOL
subproject will be used in further maintenance and mi-
gration projects. Finally SOAMIG shows that funding
collaborative work of universities and practitioners enables
industries to rely on current research results and allows
research institutes researching practical application.

REFERENCES

[1] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapa-
thy, S., Holley, K.: SOMA: A Method for Developing Service-
Oriented Solutions, IBM Sys. Journ., 47(3):377–396, 2008.

[2] Beier, A., Uhlig, D.: Flow Graph Manipulator (FGM):
Reverse Engineering Tool für komplexe Softwaresysteme,
Softwaretechnik-Trends, 2(29):39–40, Mai 2009.

[3] Bennett, K., Ramage, M., Munro, M.: Decision model for
legacy systems, IEE Proc. Software 1999; 146(3):153-159

[4] Borchers, J.: Erfahrungen mit dem Einsatz einer Reengineer-
ing Factory in einem großen Umstellungsprojekt, HMD -
Praxis der Wirtschaftsinformatik, 194:77–94, März 1997.

[5] Brodie, M. L., Stonebraker, M.: Migrating Legacy Systems,
Gateways, Interfaces and The Incremental Approach, 1995.

[6] Ebert, J., Bildhauer, D.: Reverse Engineering Using Graph
Queries, Graph Transformations and Model Driven Engi-
neering, LNCS 5765, 2010

[7] De Lucia, A., Francese, R., Scanniello, G., Tortora, G.:
Developing legacy system migration methods and tools
for technology transfer, Software: Practice and Experience,
38(13):1333–1364, 2008,

[8] Ebert, J., Riediger, V., Winter, A.: Graph Technology in
Reverse Engineering, The TGraph Approach, 10th Work-
shop Software Reengineering (WSR 2008), Bonn, GI. Bd.
126:67–81, 2008.

[9] Erdmenger, U.: Vom COBOL-Server zum Java-Webservice,
Softwaretechnik-Trends, (2)30:64–65, Mai 2010.

[10] Erdmenger, U., Kaiser, U., Loos, A., Uhlig, D.: Methoden
und Werkzeuge für die Software Migration, LNI 126:83–97,
2008.

[11] Fuhr, A., Haas, J.: Erhebung und Modellierung von Ge-
schäftsprozessen in RAIL, Internal SOAMIG Report, 2009.

[12] Fuhr, A., Horn, T., Riediger, V.: Dynamic Analysis for
Model Integration, SWT-Trends, 2(30), Mai 2010.

[13] Fuhr, A., Horn T., Winter, A.: Model-Driven Software Mi-
gration, In SE 2010, LNI 159:69–80, 2010.

[14] Gimnich, R., Winter, A.: Workflows der Software Migr-
ation, SWT-Trends 2(25):22–24, 2005.

[15] Gold, N., Knight, C., Mohan, A., et al.: Understanding
Service-Oriented Software, IEEE Softw., 21(2):71–77, 2004.

[16] Teppe, W.: The ARNO Project: Challenges and Experiences
in a Large-Scale Industrial Software Migration Project, 13th
CSMR, IEEE CSP:149–158, 2009.

[17] Zillmann, C., Gringel, P., et al.: Iterative Zielarchitektur-
definition in SOAMIG, SWT-Trends, 2(30):39–40 Mai 2010.

[18] Zimmermann, Y., Uhlig, D., Kaiser, U.: Tool- und
Schnittstellenarchitektur für eine SOA-Migration, SWT-
Trends, 2(30):66–67, Mai 2010.


