

Sustainability and Mobility in the Context of Smart Cities

INTRODUCING A "SMART" CONCEPT IN ENGINEERING CURRICULUM

Bayarmaa Ts., Bolormaa D., Lodoiravsal Ch., Enkhdul T.

Ulaanbaatar, September 23-27, 2019

Contact

lobility rt Cities

Institute of Engineering and Technology

E

Introducing a "SMART" concept in multidisciplinary project

- Programs were selected to introduce multidisciplinary project (MDP)
 - Electronics Engineering (NUM)
 - Environmental Engineering (NUM)
 - Electrical Engineering (IET)
 - Construction Engineering (IET)

Comparison of learning outcomes of Programs

MDP tasks were defined

- 1. Identify environmental problem and confirm them with experimental data
- 2. Design and construct a smart building according to requirement

Identified common skills to enhance through MDP

1942

HONG

ALIGNMENT OF LEARNING OUTCOMES OF ENGINEERING PROGRAMS

Skills/attribut es	Electronics Engineering	Environmental Engineering	Electrical Engineering	Construction Engineering
System thinking	-	\checkmark	✓	\checkmark
Critical thinking	\checkmark	-	-	-
Creative thinking	\checkmark	-	-	-
Problem-solving skills	✓	✓	✓	\checkmark
Innovative thinking	✓	✓	-	-
Global mindset	-	\checkmark	-	\checkmark
Resilient	\checkmark	\checkmark	\checkmark	-
Teamwork and collaboration	\checkmark	\checkmark	✓	✓
Entrepreneur skills	V	-	✓	-
Open minded	\checkmark	-	-	\checkmark

Enhancing Skillsets Implementation: Multi-Disciplinary Student Projects

STAGE 1. Define environmental issue and its confirmation

The following skillsets have been infused in this Multi-Disciplinary Project (MDP):

Students are able to:

- Form effective team
- Manage and participate actively & collaboratively in teams
- Design appropriate communication strategies
- Identify and formulate problems
- Conduct experimental inquiry
- Attest problem by analyzing data and writing report
- Present project findings, recommendations & solutions through oral presentation

MDP Student Presentation

Output of MDP

control)

Introducing a Green/Smart Building concept

 To familiarize students with green and smart concept visited to construction materials manufacturing and construction automation companies:

And visited each universities' facilities

Team work

During implementation of project activities students were able to develop their own team rules and delegated work based on their assigned roles and functions to ensure effective teamwork

Every week students were required to present their research activities and results and conduct discussion

• 3 teams – 3 idea \rightarrow final design

Calculation of energy consumption

N₽		Equipment Power consumption (W)	Summer		Winter	
	Equipments		Using hour in day (min)	Power (W)	Using hour in day (min)	Power (W)
1	Water heater	1500	120	3000	120	3000
2	Floor heater	1200			1080 (16 hour)	19200
3	Well pump	2000	10	300	10	300
4	Humidifier	30	1440	720	1440	720
5	Lights	40	240	160	240	240
6	Kitchen electric tools	600	120	1200	120	1200
	Total power			5380		24580

Power		Battery 24V, (P=5.4kW)					
80%	100%	60%	100%				
2kW	2.5ĸW	225A.h	375A.h				
ЗkW		400A.h 12V					
		200A.h: 2 in series, 2 parallel					

- Mono panel 250W 120\$*4=480\$
- Poly panel 250W 105\$*4=420\$

and Technology

1942

HONG

Технологийн байгуулалт М1:100

Огтлол 1-1 М1:100

Технологийн байгуулалт М1:100

Огтлол 2-2 М1:100

Institute of Engineering and Technology

Construction process

Institute of Engineering and Technology

CONCLUSION AND RECOMMENDATION

- MDP was successfully implemented in order to introduce smart and green concept in engineering programs through the application of theoretical knowledge in real-world situation.
- Implementation of MDP were enhanced soft skills of engineering students;
 - Teamwork and communication,
 - Time management
 - Collaboration with different discipline
- Students were able to understand:
 - other engineering discipline,
 - real-life situation and need
- Not only students' soft skills and knowledge improved also faculty members of different discipline were collaborated in order to finish this MDP

