

Institute of Geography-Geoecology, Mongolian Academy of Sciences

SuMoCoS

Sustainability and Mobility in the Context of Smart Cities

Air pollution study in Ulaanbaatar city of Mongolia

Amarsaikhan Damdinsuren, <u>Jargaldalai Enkhtuya</u>, Enkhzul Natsagdorj, Tsogzol Gurjav

Ulaanbaatar, September 23-27, 2019

→ <u>https://uol.de/se?sumocos</u>

- Air pollution is killing more people every year than all war and violence in the world. More than AIDS and malaria.
- In the Ulaanbaatar city, 10-15 percent of all the deaths were caused by polluted air.

ŀ	File Hom	e Insert	Page Layout	For	mulas	Dat	ta f	Review	Vi	ew											۵	() – Ø
	Cut	Tim	ies New Roman	* 11	• A	A	= =]≡	\$%-		Wrap	Text	General		•				Σ Αι	utoSum • A	Å	
Pa	iste 💞 Forma	at Painter B	ΙŪ·	•	🕭 - 🗛	*	Ē≣	≣	• •	+a+	Merge	e & Center 🔹	\$•%,	€.0 .00 ÷	.00 Co	nditional Form	nat Cell ple ▼ Styles ▼	Insert Delete	Format	"Sort & ear ▼ Filter ▼	Find & Select *	
	Clipboard	G.	Font 🕞			Alignment			ment	t G.		Numbe	Number 🕞		Styles		Cells		Editing			
	E7 • <i>f</i> _x 53																					
	A B		С	DE		F	G	H I		J	J K L		М		N	O P		Q	R	S	Т	U
1	Sample	latitude	longitude	1	2	3	4	5	6	ph	EC	52 Cr [H	[e 55 Mn [He56 1	Fe [H	659 Co [H	e60 Ni [H	[e63 Cu [He	66 Zn [He]	66 Zn.X [He	75 As [He	82 Se [H
2	T-1-0	47.7588056	106.995028	47	45	32	106	59	42.1	7.02	35	0.61	4 20.7	49	75.30	5 0.23	0.38	6 0.606	11.062	11.062	0.958	0.0
3	T-1-1	47.5358049	106.865306	47	53	58	106	51	55.1	6.92	19	0.99	4 31.3	89	81.35	8 0.154	0.37	3 2.096	5.553	5.553	4.128	1.9
4	T-1-2	47.8863611	106.868417	47	53	11	106	52	6.3	6.8	17	0.82	60.2	42	75.29	7 0.661	0.63	6 2.198	6.796	6.796	4.602	1.9
5	T-1-3	47.8948611	106.854056	47	53	42	106	51	14.6	6.96	23	1.61	2 41.4	61	75.130	6 0.187	0.30	1.242	4.928	4.928	5.234	3.0
6	T-1-4	47.8986944	106.846417	47	53	55	106	50	47.1	6.67	9.3	0.96	6 55.8	341	80.238	8 0.298	8 0.67	3 2.991	4.516	4.516	5.444	2.5
7	T-1-5	47.8911389	106.809806	47	53	28	106	48	35.3	6.63	20	1.16	9 151.5	80	76.892	2 0.496	0.91	.6 3.126	5.672	5.672	6.220	9.3
8	T-1-6	47.9071111	106.809056	47	54	26	106	48	32.6	6.83	11	0.86	i9 33.0	557	79.913	3 0.199	0.49	4 2.125	3.904	3.904	4.850	5.0
9	T-1-7	47.9146667	106.7995	47	54	53	106	47	58.2	7.22	12	0.83	3 27.3	50	86.43	5 0.169	0.28	1.447	3.997	3.997	4.523	1.0
10	T-1-8a	47.9373056	106.792306	47	56	14	106	47	32.3	7.29	8.4	0.88	48.8	352	74.891	1 0.271	. 0.69	4 2.983	2.829	2.829	5.674	2.5
11	T-1-8b	47.93775	106.791083	47	56	16	106	47	27. 9	7.07	11	0.92	9 92.3	28	91.550	6 0.380	0.65	3.507	3.367	3.367	3.945	2.6
12	T-1-9	47.9195278	106.812583	47	55	10	106	48	45.3	6.75	24	0.87	5 99.2	61	85.03(0 0.512	0.77	4.462	0.000	-2.898	6.531	3.6
13	T-1-10	47.9431389	106.817583	47	56	35	106	49	3.3	7.6	32	0.94	8 36.4	64	69.390	6 0.427	0.81	.6 2.483	0.000	-4.810	10.878	3.5
14	T-1-11	47.9514722	106.842944	47	57	5.3	106	50	34.6	7	12	0.77	7 123.9	965	64.93(0 0.639	0.70	4 1.674	0.000	-1.759	4.062	2.4
15	T-1-12	47.9422778	106.853056	47	56	32	106	51	11	6.78	8.4	0.67	5 47.2	275	103.19	6 0.511	0.15	6 0.908	7.032	7.032	1.818	1.2
16	T-1-13	47.9347222	106.834444	47	56	- 5	106	50	4	6.59	14	1.15	1 75.0	531	61.798	8 0.278	0.34	9 2.301	6.683	6.683	6.799	3.4
17	T-1-14	47.9169444	106.831472	47	55	1	106	49	53.3	6.69	53	1.58	2 223.4	40	66.753	3 0.969	2.54	9 14.246	11.705	11.705	9.398	13.3
18	T-1-15	47.9158056	106.846333	47	54	57	106	50	46.8	7.41	20	0.93	7 98 .4	01	59.851	1 0.677	1.27	2 7.489	1.892	1.892	8.572	5.1
19	T-1-16	47.9240556	106.869139	47	55	27	106	52	8.9	7.15	17	1.54	5 26.4	147	129.790	6 0.271	0.70	1.551	6.270	6.270	19.193	4.5
20	16-2-1	47.9437222	106.942556	47	56	37	106	56	33.2	7.83	49	1.35	5 131.4	21	94.522	2 0.745	1.86	5.225	1.558	1.558	10.352	4.5
21	16-2-2	47.9281667	106.942778	47	55	41	106	56	34	7.49	140	6.13	922.0)47	132.779	9 9.63	15.75	20.707	815.361	815.361	3.766	14.0
22	16-2-3	47.9127778	106.950528	47	54	46	106	57	1.9	7.76	54	1.66	i3 92.8	199	82.401	1 0.820	2.71	9 10.896	3.699	3.699	13.054	6.8
23	16-2-4	47.9054444	106.958917	47	54	20	106	57	32.1	7.86	24	1.47	8 171.5	i 6 5	81.401	1 1.439	2.65	i8 7.247	33.374	33.374	2.280	4.7
24	16-2-6	47.9229167	106.944389	47	55	23	106	56	39.8	7.66	35	1.52	251.9	56	140.84	5 2.574	3.30	6.216	107.908	107.908	4.030	4.4
25	16-2-7	47 9201389	106 958833	47	55	13	106	57	31.8	71	113	1.93	9 125.5	i41	93.563	3 1.794	4.52	31.096	3.994	3.994	26.462	16.1

Cr, Mn, Fe, Co, Ni, Cu, Zn, Zn.X, As, Se, Se.X, Cd, Sn, Sn.X, Sb, Pb, Cl, NO, SO3, PO4, Na, NH4, K, MG and Ca

Spatial mapping of Arsenic dispersion

Spatial mapping of Copper dispersion

Spatial mapping of Lead dispersion

Spatial mapping of Chromium dispersion

Spatial mapping of Zinc dispersion

Spatial mapping of Nitrogen Monoxide dispersion

Spatial mapping of Sulfur dioxide dispersion

Test results showed that the concentrations of dust heavy metals Pb, Cr, Cu and Zn in the urban areas were significantly higher than those in the suburbs. Air pollution revealed that the degrees of ecological harm of dust heavy metals were very strong in both urban and suburban areas, but especially in urban

and suburban areas, but especially in urban areas. Overall, the study indicated that the air pollution in Ulaanbaatar city is a very serious problem and for its reduction, rapid and thorough measures should be taken.

Thank you for your attention

Sustainability and Mobility in the Context of Smart Cities

Jargaldalai Enkhtuya M.Sc.

Institute of Geography and Geoecology

Division of Remote Sensing and Spatial Model

+976 99168776

Jargaldalaie@mas.ac.mn