—  canL | SuMoCoS
OSSIET Z.lf Y DFFIS Sustainability and Mobility
UnlverSItat OLDENBURG in the Context of Smart Cities

Energetic Neighbourhoods
&
In-house Energy
Management

Dr. Jorg Bremer
joerg.bremer@uni-oldenburg.de

Ulaanbaatar, September 23-27, 2019 ® https://uol.de/se?sumocos



https://uol.de/se?sumocos

Agenda

" Transition of Energy Supply System

= Ancillary Services Delivered by Renewables

= Challenges of Necessary Aggregation Scheme
" Energetic Neighborhoods as Special Use Cases




Smart City Definition (EU) 0SS IETZKY

Environment
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Governance
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¢ Reduction of CO2 emissions
¢ Use of renewable energy
e Monitoring on energy consumption

e Co-working cultural initiatives
e Living-lab
¢ Crowd-sourcing co-design

¢ Development of technologies to improve urban mobility
¢ Low environmental impact

e Starting of processes for the involvement of citizens about topics of public
relevance

¢ Cooperation among public and private actors
¢ development of social incubators and of small and medium enterprises

¢ Sharing data
¢ Security and protection of sources
¢ Monitoring and communication
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e Reduction of CO2 emissions

E nV| ronme nt e Use of renewable energy

e Monitoring on energy consumption

= Climate change and environmental pollution demand a change in
energy provision towards cleaner resources

= Use of renewable energy entails some challenges to cope with
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Source: E-Energy, BMWi

Past: Fossil generation close to consumers

Future: Decoupling in time and space of generation and consumption in renewable smart
grid
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" |n the long run and if all traditional (fossil) plants are replaced, the
renewables will have to assume responsibility for grid control and
ancillary services:

® Planning energy provision day-ahead

» Frequency control (provision of reserve power, balancing power)
= Voltage control (local provision of reactive power)

= Black start capabilities

* Problematical because renewable energy is
= volatile and hard to predict (medium- and long term)
= hard to control
= small in size and flexibility
= decentralized

= Aggregation scheme for bundling needed
= must include consumption side
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= Well established aggregation scheme: virtual
power plant (VPP)

= group of distributed energy resources
(generator/ consumer/ battery)

= drawn together by some communication means
= today often still controlled by central control
= acts like a single (larger) power plant

= Agent-based control is seen as a promising
future approach for control
= Copes well with scalability
= Automation
= Self-* properties

» Centralized as well as decentralized control
entail new algorithmic challenges
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= Example use case: predictive scheduling (simplified)
= given:

e Avirtual power plant
* A schedule for the VPP that has to be operated (e.g. from some market)

= problem:

* Find a schedule for each generator/ consumer in the VPP such that the aggregated
schedule resembles the wanted (market) schedule

) (Zpg(j) — min
=1
such that

p; e FUI VU, e Ud.

= Tricky part: how does the algorithm know what schedules can be
operated by which energy resource within the VPP?
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= \What kind of constraints do we have to deal with?

= Operability of schedules (for given time frame) . ..

= .. .isrestricted by technical constraints (min/max power output, state of
charge of buffer, etc.)

= ... may depend on economical or ecological limiting factors (start-up cost,
primary energy cost, user profiles, etc.)

= . ..depends on current operational state

" let’s have a look at a single unit first. . .
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Constraints (Example: u-CHP)

ps: Powerin period 2 (% max.)

py: Power in period 1 (% max.)

Illustrative example

» Each pointin planeis
schedule for 2 time
periods

X-axis: Mean active
power during period 1
Y-axis: Mean active
power during period 2

e Output always between 0
and 100%

o Without further
constraints: each schedule
operable



Constraints (Example: u-CHP)

po: Powerin period 2 (% max.)

L'

pq: Power in period 1 (% max.)

Constraint C;: Modulation
e Only within given range

« OFF is additional option

(exaggerated depiction)

— Red area drops off the
solution space




Constraints (Example: u-CHP)

po: Powerin period 2 (% max.]_

py: Power in period 1 (% rna:-c.}'

Constraint Cy: Inertia
« Noinstantaneous changes
— Additional areas drop off




Constraints (Example: u-CHP)

ps: Power in period 2 (% max.)

py: Power in period 1 (% max.) ,

Constraint Cs: Buffer capacity

« Use or store concurrently
produced thermal energy

e But: Buffer store has
limited capacity

-
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Constraints (Example: u-CHP)

Superposition of all constraints
e« Remaining region is
solution space

» Only take schedules from
this region

pa: Powerin period 2 (% max.)

« Dimension: 96 and more
not unusual!

pi: Power in period 1 (% max.) L
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= Flexibility modeling generates a surrogate of the feasible region of an
energy unit; the phase space
= A schedule for an energy unit can be seen as a real valued vector
= j-th value denotes power during respective time interval
= Surrounding envelope of the feasible region is learned

= Decoders systematically generate feasible schedules without domain or
situational knowledge

m
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" In-house many small sized devices of renewable generation are
operated
= roof top PV, co-generation, batteries (e.g. from electric vehicles),...

" These have to be integrated efficiently into the grid

= Operating all these devices isolated leaves many degrees of freedom
unused

" Integrated operation on the other hand allows e.g. for a
maximization of the fulfilment of the own demand

= Fulfilling ones own demand for energy in-house causes less demand
for control power within the grid

= Can be solved by means from VPP concept

" Integrated operation usually comprises more than just electricity:
" integrated view on heat and electricity
= e.g. co-generation, thermal storages, heat pumps, ...
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" From a hierarchical point of view, the in-house concept can be
extended to a quarter
= Balancing energy on quarter level reduces reversed energy flows within the
grid
= and entails less control energy demand on higher grid levels
= and thus unburdens lines and allows for cheaper dimensioning

" From an algorithmic point of view, concepts from the virtual power
plant can be adapted
= But an energetic neighborhood is more
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" Industrial estates with single companies with specific, separated
energy conversion processes

" |Internal efficiency is usually well-established (saves cost!)

= But, there is a potential for more efficiency regarding unused energy
emissions (heat)

" Inter-process and -company coupling of processes needed to harness
these emissions

= Examples for direct coupling

* Joint use of common (thermal) buffers store (e.g. for district heating)

 Joint marketing as virtual power plant

= Example for market- or platform organized based coupling

* Increase internal consumption of in-house PV generation by finding a neighbor who wants to
charge electric vehicle
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Preliminary Work

el. Strom
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Akademie der Wissenschaften in Hamburg, 9.5.2017



Preliminary Work (cont‘d)

Ex.: industrial estate Drielake

* High (theoretical) synergy potenzial from static viewpoint
* But: dynamic/seasonal process characteristic

summer

Energiefliisse
AGRAVIS 06/2012

Misch-und
Zerklsinerungsprozess

s
Verluste
Kompressor Verluste
Verluste

autumn

Energiefliisse
AGRAVIS 10/2012

Misch- und
Zerkleinerungsprozess.

Akademie der Wissenschaften in Hamburg, 9.5.2017



Preliminary Work (cont‘d)

Ex.: industrial estate Drielake
* High (theoretical) synergy potenzial from static viewpoint
* But: dynamic/seasonal process characteristic

summer autumn

Energiefliisse Energiefliisse
EWE Gasexpansionsanlage 06/2013 EWE Gasexpansionsanlage 10/2013

Eigenbedarf Klte

Wiarme

Akademie der Wissenschaften in Hamburg, 9.5.2017
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Flache gesamt: 3,9ha brutto
i Bestandsgebdude mit 60-70 Wohneinheiten
§4 Zusatzliche Neubauten fiir Wohnen und Arbeiten
ErschlieBung iiber umgebende Promenaden

Smart City Living Lab Oldenburg %0 4@ Innere ErschlieBung konzeptabhiingig
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Provision of an experiment and testbed for experimental living
environments for different topics, especially for

= technical and non-technical innovations
" joint building and living projects
" new supply and mobility concepts on residential quarter level

Stepwise extension of the Smart City Lab Oldenburg by ,,medium-
sized” project development and organizational structure as public
private partnership

= Cooperation of industry- and research projects on different topics
of a Smart City for interdisciplinary exchange among experts

= Development of pilot projects and pooling of partners from
administration, research and business

Jorg Bremer 24



CARL
VON

ENaQ OSSIETZKY

universitat
OLDENBURG

ENaQ: Energetic neighborhood quarter on former Oldenburg air base

Eunding: 6. Energieforschungsprogramm :
9: Forderinitiative ,Solares Bauen / Energieeffiziente Stadt”
Goals & Approach

- Develop multimodal provision system
for electricity and heat

= Participation of house owners in social
and financial incentive system
(cooperative)

- Develop business case for local energy g
cooperatives and added value chains

« Conceptualize and develop digital
platform for automating energy
exchange and marketing
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