

Welcome to www.KRASS.uz Khorezm Rural Advisory Support Service Xorazm Agromaslahat Markazi Хорезмский Агро-Консультативный центр

Dr. Djumaniyazova Yulduzoy yulduz.d@gmail.com

KRASS (Khorezm Rural Advisory Support Service)

- Is a self-governing, independent, non-governmental, non-profit and non-political organization
- Established in November 2008
- Mission 'To contribute to *improvement* of rural *livelihoods*, *poverty alleviation* and *increasing* long-term *food security* and *environmental sustainability* in rural Uzbekistan through rendering agricultural support services'

Established with support of

- ✓ Urgench State University
- ✓ ZEF/UNESCO Khorezm Project
- ✓ Center for Development Research

COOPERATION / PARTNERSHIP

INTERNATIONAL PARTNERS:

- □ ICARDA, CIMMYT
- DLR, Germany
- **ZEF, Germany**
- Universities of Bonn and Wuerzburg
 Succow foundation

NATIONAL PARTNERS:

- □ Urgench State University
- □ Argrochemistry and Soil Science Research Institute
- **Cotton Research Institute**
- Mamun Academy of Khorezm
- □ Tashkent Institute of Irrigation and Melioration
- Uzbek Association of NGOs

 \Rightarrow Open for partnership and collaboration

- Cooperation with development projects
- Consultancy, research and implementation
- Provision of agricultural extension services, training of extension staff and producers, preparation and circulation of extension aid materials
- Establishment of community based agricultural service centers for conducting workshops, trainings, and exhibitions on agricultural/farming/ecological topics
- Logistic support to research and development activities
- Consultation and technical assistance on educational programs abroad
- Setting up an open access library and data base on ecology/agriculture

KRASS

Provide assistance to farmers Training of agr.producers

Preserve and increase soil productivity

EFFICIENT USE OF LAND AND WATER RESOURCES

Develop actions to restore degraded land

Increase efficiency of water use

Increase crop yields

Promote use of alternative crops

DEMAND – DRIVEN EXTENSION ACTIVITIES Laser levelling in irrigated agriculture

Well-tested and efficient technology Demanded by farmers, agricultural administration, international projects Part of innovative technology package 60 Equipment purchased (ca. 6000 ha levelled throughout Uzbekistan)

- Expert's advice with individuals and farmer groups
- Targeted training for farm workers (field preparation, operation)
- Manuals
- Demo days
- Linking private farmers to producers

Farmers

Service contract

Training of farmers, agricultural specialists upon demand Agricultural Demo days

Administration

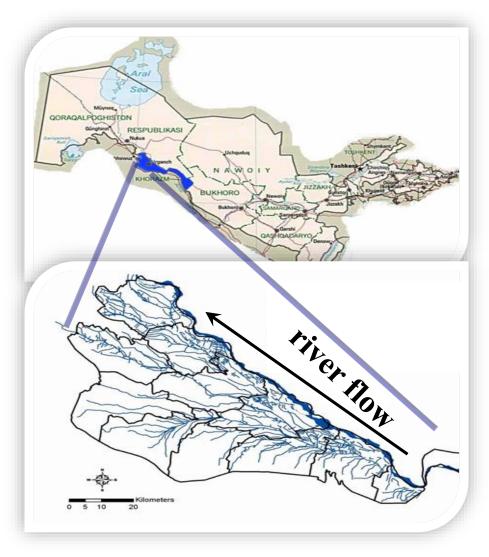
Innovations Fair (local, national) Awareness raising about resource saving (workshops, training, TV, publications, aid materials)

Wider public

Research-driven technology dissemination

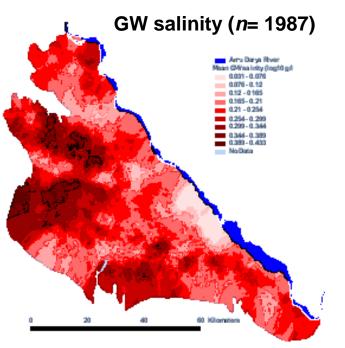
- Improved drought -, cold resistant crop varieties (winter wheat, leguminous, maize, melons, halophytes)
- Conservation agriculture (reduced tillage, permanent bed, cotton, winter wheat, summer crops)
- Crop rotation, cover and mixed cropping
- New irrigation methods (water saving, scheduling)
 - Tools for efficient resource use (GIS, innovative equipment)

Approach of KRASS


- Advisory work
- Cooperation with research institutes
- On-farm adaptive trials
- Seed bank establishment for dissemination
- Field and Demo days
- Awareness raising (workshops, training, TV, publications, aid materials)

Khorezm region

- Located at the Amu Darya Delta
- 680,000ha with 270,000ha
 irrigated land
- Flat topography (elevation 60 150 m a.s.l.)
- ✤ Irrigated alluvial meadow soil



Khorezm climate and soil

<u>Climate</u>

- Arid and continental climate
- Precipitation <100 mm annum⁻¹
- ET_{pot}~1,500 mm annum⁻¹
- Agriculture is highly dependent on irrigation

Source: ZEF/UNESCO www.zef.de

<u>Soil</u>

- Calcaric gleysoils
- Low soil organic matter
- Nitrogen is limiting
- Saline soil

Land degradation



Area of degraded land in the Khorezin Province - 20,000 ha

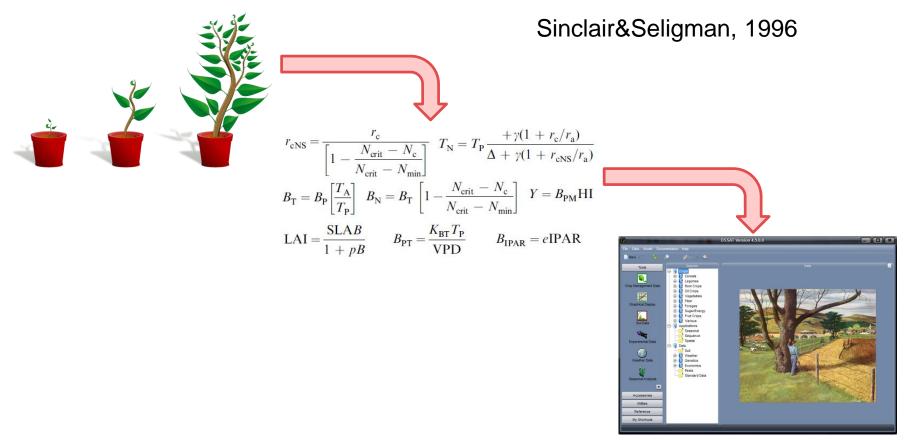
Soil organic matter (humus) is very low 0,4-1,2 %, total content of organic matter in depth of 0-50 cm is 29 -70 t/ha.

Main crops

Maize

Cotton

Rice



Mungbean

A Crop-Soil Simulation model is...

"... the dynamic simulation of crop growth by numerical integration of constituent processes with the aid of a computer."

Crop model

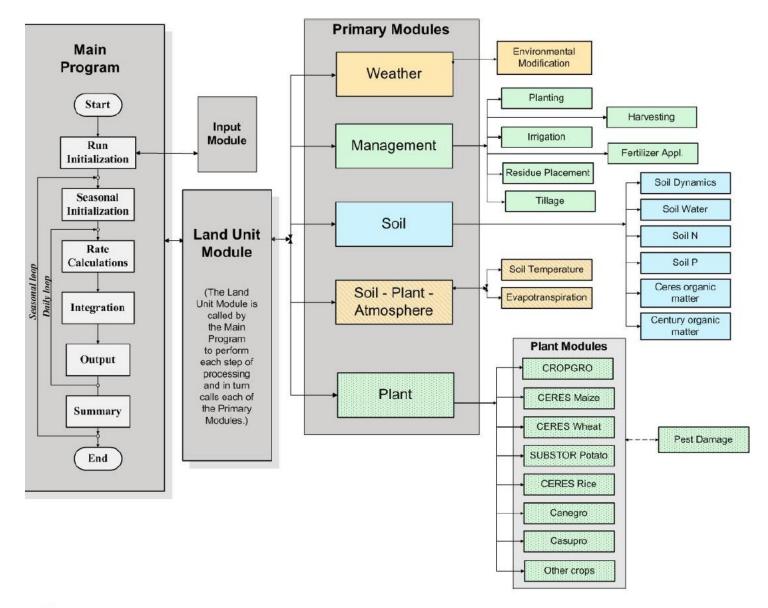
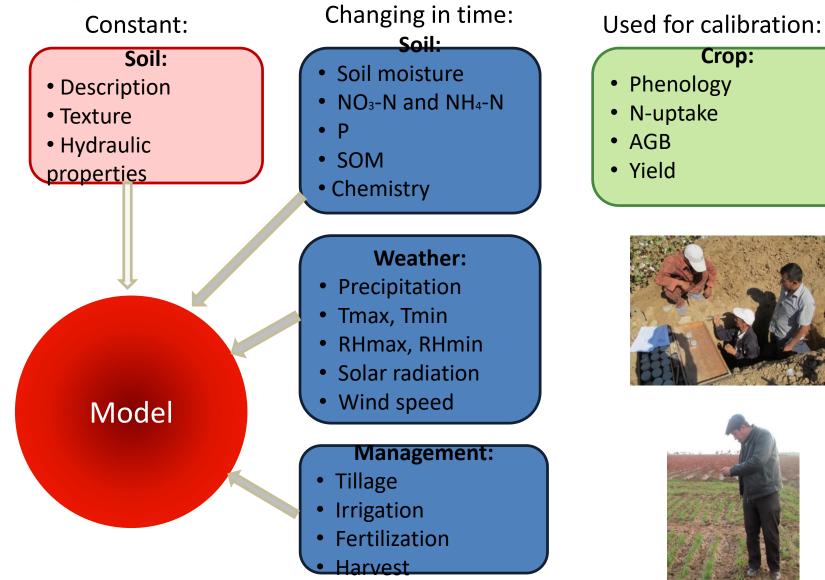
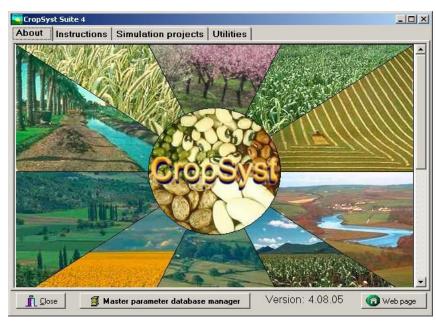



Figure 1. Overview of the components and modular structure of DSSAT-CSM.

Data requirements



Application of modelling

The CropSyst model (Stockle et al., 2003), version 4.19.06, was used to simulate the impact of different soil and ecological factors and climate change on crops in the irrigated agro-ecological condition in Uzbekistan.

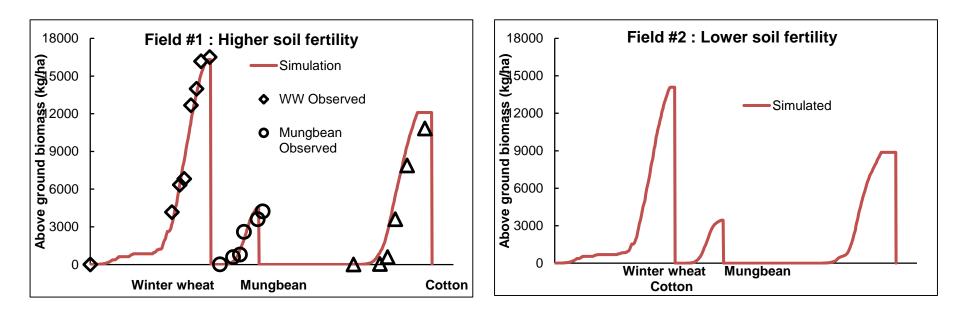
Climate change scenarios comprised the IPCC (2013) CMIP5 scenarios RCP 2.6, RCP4.5-6.0 and RCP 8.5 and three different futures, namely immediate-future (2016-2030), medium-term future (2031-2050) and long-term future (2051-2100).

.9

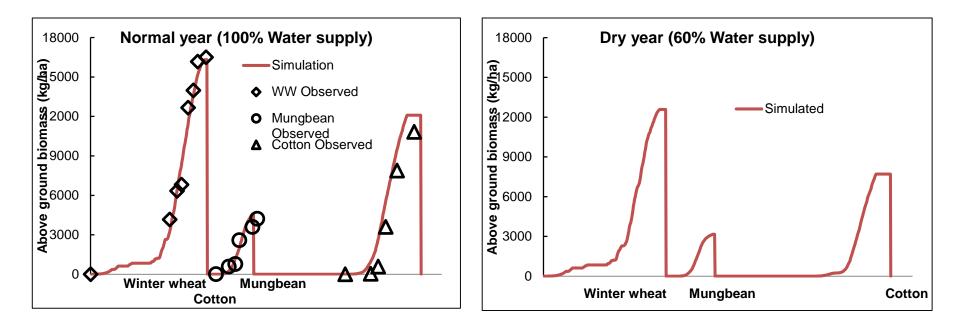
.8

Different soil fertility scenarios

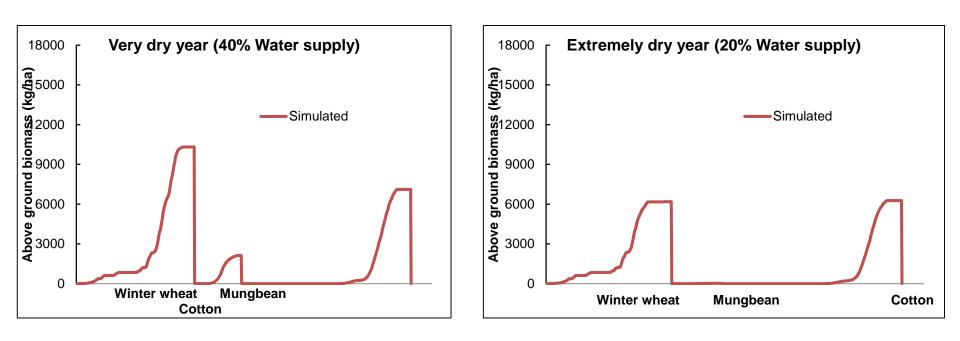
Soil layer (cm)	Sand (%)	Clay (%)	Silt (%)	SOM (%)	NO ₃ -N (kg/ha)	NH ₄ -N (kg/h a)	Soil layer (cm)	Sand (%)	Clay (%)	Silt (%)	SOM (%)	NO ₃ - N (kg/h a)	NH N (kg/ a)
0-5	47	16	37	1.224	4.5	0.9	0-5	36	10	54	0.424	3.6	3.6
5-30	47	16	37	0.626	22.5	4.5	5-30	37	8	55	0.420	5.5	12.
30-50	43	14	43	0.527	17.7	3.5	30-50	19	14	67	0.220	12.2	16.
50-70	47	17	36	0.369	20.4	4.1	50-70	21	12	67	0.170	8.2	6.1
70-100	47	17	36	0.318	16.6	3.3	70-100	23	19	58	0.090	8.6	6.9


Soil texture and chemical characteristics of the Calcic Xerosol in Khorezm (Field #1)

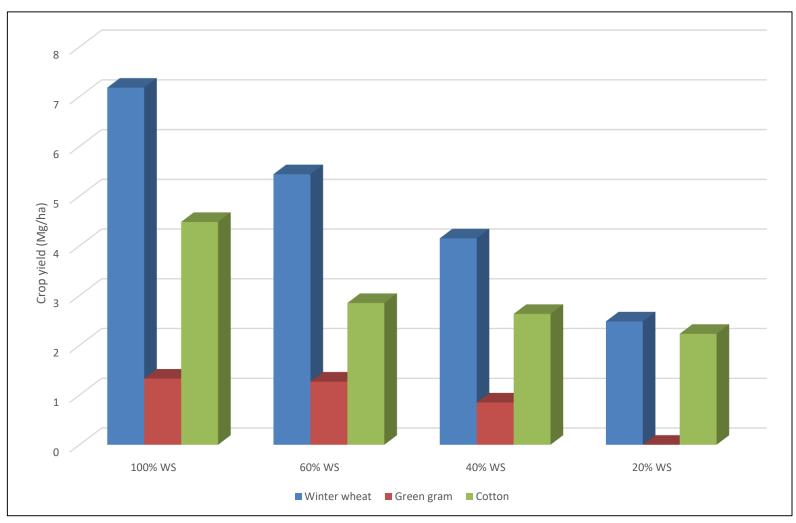
Soil texture and chemical characteristics of the Calcic Xerosol in Khorezm (Field #2)

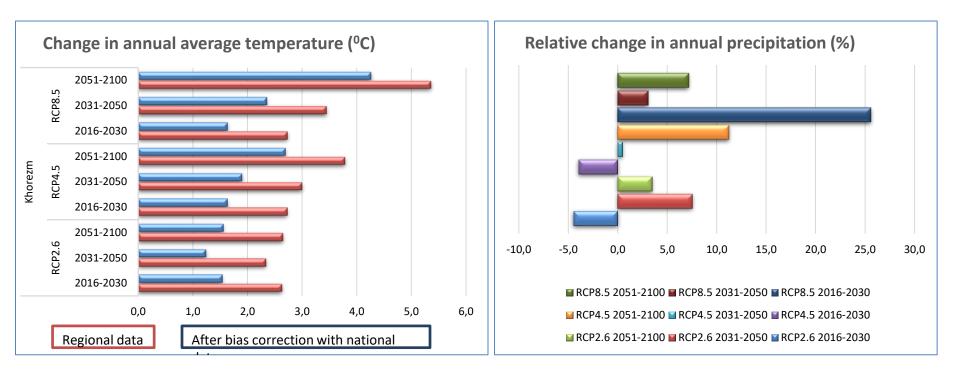


Observed (points) and simulated (line) above ground biomass of rotation crops in the fields with higher (Field #1) and lower (Field #2) soil fertility



The fits between the simulated and empirical values for the various parameters examined in the treble crop rotation "winter wheat - summer green gram – cotton" provided the necessary confidence for using CropSyst in a number of scenario analyses





Crop yield in the treble rotation under different irrigation water availability scenarios

Next Step: Climate change impact on crops yield

Climate change scenarios comprised the IPCC (2013) CMIP5 scenarios RCP 2.6, RCP4.5-6.0 and RCP 8.5 and three different futures

Conclusion

- Model estimated higher yields of winter wheat and cotton on the higher fertility soil compared to the soil with lower fertility. The higher fertility soil produced 7.2 t ha⁻¹ of wheat grain and 4.5 t ha⁻¹ of seedlint cotton while on the soil with lower fertility the crops yields reduced for 12% (wheat) and 31% (cotton).
- Grain yields of green gram were 1.33 and 1.38 t ha⁻¹ in the Field #1 and Field #2 respectively. Equal yields of green gram in the Field #2 in comparison with the Field #2 is apparently attributed with nitrogen fixation ability of the leguminous crop which substantially contributes to the crop nutrition

Conclusion

- The findings should increase the understanding of whether or not to concentrate or to spread-out (thin) the available irrigation water resources in such dryer years. At the same time this distinction mimicked differing levels of access to water (up-stream vs. down-stream)
- Deficits of irrigation (40 and 20% of 'normal', respectively) could decrease yields up to 65%. A shallow groundwater could mitigate to some extent the yield losses caused by lack of irrigation water. However, if groundwater is always below 2 m, as was simulated for the very dry and extremely dry year scenario, and if irrigation water is scarce, a substantial yield decrease can be expected. Shallow groundwater, thus, plays an important role and contributes considerably to ET in Khorezm. Thus, whenever irrigation water is scarce, a shallow groundwater – if still present – acts as a safety-net and sustains yields

Thank you!

KRASS members, supporters, collaborators

Urgench State University Khamid Olimjan street 14, 220100 Urgench, Khorezm **Tel:** +998 62 224 66 71 **Fax:** +998 62 224 66 72

e-mail: kkrass@ymail.com

Web: www.KRASS.uz