

**Institute of Transportation Systems** 

Sustainability and Mobility











New intelligent control methods for traffic light systems (TLS) evaluated with DLR's microscopic traffic simulator SUMO

Author: Mathias Höhne

Co-Authors: Dr. Robert Oertel, Prof. Dr. Peter Wagner,

Dr. Jakob Erdmann, Jan Trumpold

# German Aerospace Center (DLR) at a glance



- Research focuses on the following areas
  - Aeronautics
  - Space
  - Energy
  - Transport
  - Security and Digitalization
- Approx. 8200 employees across 40 institutes and facilities at 20 sites
- Offices outside Germany in Brussels, Paris, Washington and Tokyo



Stade

Bremen

Oldenburg -

Hamburg

Trauen

Neustrelitz

Bremerhaven





#### SUMO - what is it?

- Is <u>open source</u>, licensed under the EPL (Eclipse Public License) v 2.0
- Comes with a complete suite of helper programs like TraCl
- Allows to:
  - simulate large cities and areas in real-time
  - import <u>travel demand</u> from external sources
  - import formats for <u>networks</u>: OpenStreetMap, PTV VISUM, PTV VISSIM, HERE, NavTeq



Current Version: 1.2.0

Website / Download: http://sumo.dlr.de/

Contact: <u>sumo@dlr.de</u>

Under development: Since 2001



#### SUMO – what can be run?

- Exaggeration: "Any moving object in a city can be simulated with SUMO!"
- SUMO allows modelling of intermodal and multimodal traffic systems:
  - Cars,
  - Busses, Passengers,
  - · Bicycles, Pedestrians,
  - Ships, Goods traffic,
  - Transport Chains (Containers etc.)











#### SUMO - who use it?

- Used world-wide, especially in the scientific community
- Active community with approx. 40,000 downloads in year 2019





Source: sourceforge.net



#### Motivation / Expected advantages of the new approach

Reduction of Waiting and Travel Times for all traffic participants



Avoidance of
Emissions in terms
of Climate
Protection and a
healthier Urban
Environment



Reduction of
Financing Costs for
Traffic
Infrastructure by
Municipalities









### **Delay-based control**

- Initial point: New ICT data sources
  - V2X communication
  - Video capturing
  - Wireless in-road detectors
- <u>Delay time</u>: is the additional travel time compared to the uninterrupted passing of an intersection
- Idea: <u>Stop a running green phase</u> as soon as all delayed vehicles on an approach have been served









## **GLOSA (Green Light Optimized Speed Advisory)**











## **Co-operative control**

- GLOSA <u>signal time states</u> are send back to the vehicle
- <u>A</u>GLOSA (Agent-Aware) –
   combination of <u>vehicle-actuated</u>
   <u>traffic signal control</u> and vehiclegiven speed recommendations
- V2X standard enables cooperative bi-directional communication
- Works with <u>short time prediction</u> of further movements and trajectories









#### **Modified control logics**

- Straightforward modification of the existing control strategy
- Only the criteria for stopping a running green phase is replaced



## **Delay-based control**

#### First simulation results

 Several simulation studies on abstract systems in SUMO had been done



#### **Simulation**











#### **Co-operative control**

#### Additional Hardware

- AGLOSA algorithm requires a lot of computing resources
- <u>Embedded PC</u> is directly placed in the control cabinet
- SUMO is modelling the <u>state of traffic</u> in <u>real-time</u>
- <u>Point-based</u> vehicle detections will be transformed into <u>continuous</u> floating car data (FCD)







#### Real-time simulation with SUMO

Example: Traffic light optimization / City of Hefei (China)









## Implementation in the Field

## Field study: Two test Intersections in Germany

|                     | Braunschweig                                                                       | Halle (Saale)                                                                       |
|---------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Control Mode        | vehicle-actuated green time adjustment with <b>static</b> signal program selection | vehicle-actuated green time adjustment with <b>dynamic</b> signal program selection |
| Detection equipment | induction loops (vehicle presence and headway detection)                           | induction loops, radar and video detectors (vehicle presence and headway detection) |
| Bus pre-emption     | No                                                                                 | Yes                                                                                 |
| Traffic load        | Medium                                                                             | Low                                                                                 |
| Typ of vehicles     | cars, cyclists and pedestrians                                                     | cars, less cyclists and pedestrians                                                 |







### Implementation in the Field









- · Complexity: Medium
- Existing TLC (Siemens C900V) and equipment was used
- Additional Hardware:
  - 16 wireless magnetic in-road sensors for vehicle detection
  - 1 additional embedded PC for the co-operative control
  - 1 Road Side Unit for Car-to-Infrastructure Communication (V2X Protocol IEEE 802.11p)









#### Simulation demo case









AN INITIATIVE OF THE Federal Ministry of Education and Research





# Measured values Mean loss time vs. demand



Die Löwenstadt















#### Implementation in the Field





- Complexity: Low
- Existing TLC (Siemens C900V) and equipment was used
- Additional Hardware:
  - 11 wireless magnetic in-road sensors for vehicle detection
  - 1 additional embedded PC for the co-operative control



#### Simulation demo case







Federal Ministry of Education and Research





## Measured values Mean loss time vs. demand















## Consideration of Vulnerable Road Users (VRU)











### Consideration of Vulnerable Road Users (VRU)

- Interactive integration of <u>VRU Mobile</u>
   <u>Devices</u>
- Localization of non-motorized road users with <u>Bluetooth beacons</u>
- Provision of <u>GNSS correction data</u> via V2X protocol
- Data fusion enables <u>high-precision</u>
   <u>position information</u> from VRU









**Environmentally-oriented traffic control**SMartAiRTracer for measuring fine dust (PM<sub>10</sub>)















#### Conclusion

Two new methods reducing waiting and travel times

for <u>all</u> traffic participants significantly



Environmentally oriented traffic management decrease vehicular

<u>emissions</u>



Increasing V2X
equipment rates
(above 15%) will
reduce costs for
municipalities











## Thank you for your attention!



#### **Mathias Höhne**

DLR Institute of Transportation Systems

Rutherfordstraße 2

12489 Berlin

+49 30 67055 160

https://dlr.de/ts

mathias.hoehne@dlr.de

