

ECOSense – Collection and analysis of cycling data

Dr.-Ing. Andreas Solsbach
andreas.solsbach@uni-oldenburg.de

Department of Computer Science Very Large Business Applications University of Oldenburg

No. Topic

- 1. Motivation
- 2. Project presentation
- 3. Sensor development
- 4. Data analysis

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

- Many challenges in the transport sector
 - Climate and environmental impacts
 - Noise pollution
 - Traffic jam
 - Limited parking spaces
 - **-** ...

Promoting cycling as a possible solution!

Integration in Smart City Infrastructure

- Increasing the availability of cycling data
- Communication with infrastructure
- Sensors

Project ECOSense

- Sensors attached to the bicycle, collects data from the following areas:
 - Speed and acceleration data
 - Route and geographical data
 - Traffic safety data
 - Environmental data

Refinement of the collected data with already existing bicycle data (e.g. counting loop data) and integration in Smart Cities

- Analysis of the data with reference to:
 - Speed
 - Environmental influences
 - Route selection
 - Driving behavior
 - Hazardous zones

New insights for the optimization and digitalisation of the bicycle infrastructure

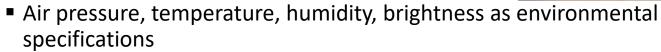
Project schedule and goal

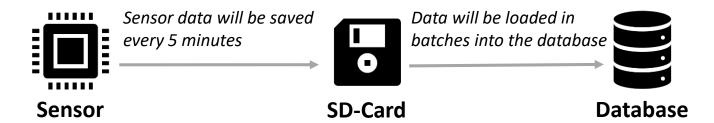
■ Project duration: 01.06.19 – 28.02.2020

- Current project phase:
 - Sensor development
 - Acquisition of test persons
 - Preparation of data collection

Preparation of data collection Start Data Analysis and second part of data collection (2 months) Continue Data Analysis

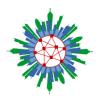
Goals:


- Development of a sensor for bicycles to record driving data, vibration and environmental data
- Equipping 200 bicycles with the developed sensor
- Collection of data over 4 months
- Analysis of the collected data (e.g. route selection, road safety, environmental impacts)

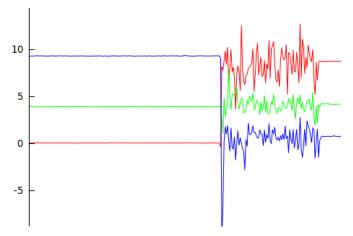

Sensor development

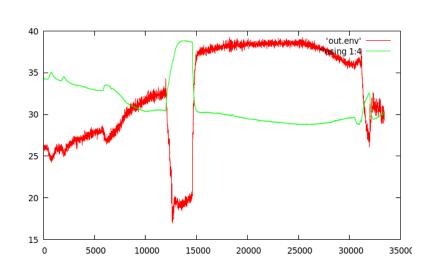
- Current status: Specification phase completed
- Attributes of the sensor for data collection:
 - GPS for position and time
 - Acceleration, position and direction (compass) for driving behavior, path quality etc.

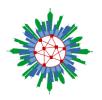
■ Data transfer:


First results of measured data

 Good GPS results and the correct side recognition of the road (e.g. use of cycling paths)


Example: two recorded routes (red and green)

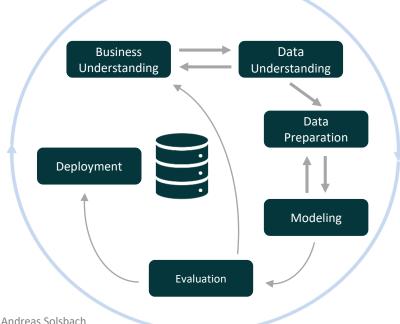

First results of measured data



- Acceleration data still needs to be calibrated and further calculated
 - Three independent vectors
 - Difficult to interpret

- Temperature (not calibrated, green) and humidity (red)
 - Example:
 - Sensor is placed in a pocket
 - Temperature rises while humidity is decreasing

Data protection and analysis



Data protection:

- In the sensors:
 - Data storage is encrypted on SD Cards
 - The data can only be read when the SD cards are removed
- After removing the SC cards:
 - Storage of the data on internal servers of the University of Oldenburg
 - Data will be pseudonomised
 - Data will be evaluated, aggregated and further processed
 - Data will be erased after analysis

Data analysis:

- Use of CRISP-DM
- One iteration per use case

Data analysis – Use Cases and Categories (1/2)

Use Case	Analysis categories	Required data	Complexity
 Influence of weather on bicycle traffic How often will the bicycle used in bad weather conditions? Are different routes used depending on the weather? 	Environmental data/ Route and geographical data	 GPS Temperature Humidity Weather data	High
 Detection of road damage and quality of the road surface Can the sensor on the bike detect road damage? Is the quality of the road related to its use? 	Traffic safety data/ Speed and acceleration data	 GPS Acceleration Location	Very high
 Factors that influence route use Does the use of a road depending on the time of day (e.g. night lighting)? Does the time of day influence the choice of a route? 	Environmental data/ Route and geographical data	 GPS Maps Counting data	Middle

Data analysis – Use Cases and Categories (2/2)

Use Case	Analysis categories	Required data	Complexity
 Identification of hazardous points At which points is braking particular strong (e.g. negative acceleration)? 	Acceleration data/ Traffic safety data/ Route data	 GPS Acceleration data	High
 Influence of weather and driving style (e.g. acceleration, speed, braking behavior) How does the weather influence acceleration and braking? Do cyclists slow down in bad weather conditions? 	Traffic safety data/ Environmental data	 Weather data GPS Acceleration data Temperature Humidity 	High
 Average speed on different routes Does the average speed depend on different routes (e.g. cycle paths and cycle roads)? 	Traffic safety data	• GPS	Low

University of Oldenburg – Very Large Business Applications https://uol.de/vlba/projekte/ecosense

baron mobility service GmbH https://mein-dienstrad.de/

CoSynth GmbH & Co. KG http://www.cosynth.com/

Contact

Dr.-Ing. Andreas Solsbach

University of Oldenburg

Faculty II, Department of Computing Science Very Large Business Applications 26129 Oldenburg

+49 441 798-4479

https://uol.de/vlba/personen/mitarbeiterinne n/andreas-solsbach

andreas.solsbach@uni-oldenburg.de